Confidence intervals for the common coefficient of variation of rainfall in Thailand

View article
Environmental Science

Main article text

 

Introduction

Methods

Fiducial generalized confidence interval

 
 
 Algorithm 1 
For a given ¯ xi  and s2i, where i = 1,2,...,k 
For g =  1 to m, where m is number of generalized computation 
Generate X∗ and then compute ¯ x∗i  and s2∗i 
Generate χ2ni−1  from chi-squared distribution with ni − 1  degrees of 
freedom 
Compute Rσ2 
i  from Eq.  (11) 
Compute Rθi  from Eq.  (12) 
Compute RV ar(ˆθ 
i)  from Eq.  (14) 
Compute Rθ  from Eq.  (15) 
End g loop 
Compute Rθ (α∕2)  and Rθ (1 − α∕2)  from Eq.  (16)    

Method of variance estimates recovery confidence interval

Computational confidence interval

 
 
   Algorithm 2 
For a given ¯ xi, s2i, and θ, where i = 1,2,...,k 
Compute ˆ μi(RML)  and ˆ θRML  from Eqs.  (30)--31 
For g =  1 to m 
Generate xij(RML)  from N ( 
  ˆ μi(RML),∘ 
  __________log ( 
   ˆ θ2 
RML + 1) 
            ) 
Compute ¯ xi(RML)  and s2i(RML) 
Compute ˆ θRML  from Eq.  (33) 
End g loop 
Compute ˆ θRML (α∕2)  and ˆ θRML (1 − α∕2)  from Eq.  (34)    

Bayesian confidence interval

 
 
   Algorithm 3 
For a given ¯ xi  and s2i, where i = 1,2,...,k 
For g =  1 to m 
Generate μi|σ2i,xi ∼ N(ˆμi,σ2i∕ni) 
Generate σ2i|xi ∼ IG((ni − 1)∕2,(ni − 1)s2i∕2) 
Compute θi  from Eq.  (37) 
Compute V ar(ˆθi)  from Eq.  (38) 
Compute θBS  from Eq.  (39) 
End g loop 
Compute LBS  and UBS    

Results

 
 
     Algorithm 4 
For a given (n1,n2,...,nk), (μ1,μ2,...,μk), (σ1,σ2,...,σk)  and θ 
For h =  1 to M 
Generate xij  from N(μi,σ2i), where i = 1,2,...,k and j = 1,2,...,ni 
Calculate ¯ xi  and s2i 
Construct [LFGCI(h),UFGCI(h)] 
Construct [LMOV ER(h),UMOV ER(h)] 
Construct [LCA(h),UCA(h)] 
Construct [LBS(h),UBS(h)] 
Record whether or not all the values of θ fall in their correspond- 
ing confidence intervals 
Compute U(h) − L(h) 
End h loop 
Compute the coverage probability and the average length for each con- 
fidence interval    

An empirical application

Discussion

Conclusions

Supplemental Information

R code for computing an application data

DOI: 10.7717/peerj.10004/supp-1

R code for running coverage probability and average length width of all confidence intervals

DOI: 10.7717/peerj.10004/supp-2

Rainfall data of Northern, Northeastern, Central, Eastern, and Southern regions (mm)

DOI: 10.7717/peerj.10004/supp-3

Additional Information and Declarations

Competing Interests

The authors declare there are no competing interests.

Author Contributions

Warisa Thangjai conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.

Sa-Aat Niwitpong conceived and designed the experiments, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.

Suparat Niwitpong performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:

Raw data and code are available in the Supplemental Files.

Funding

This research was funded by King Mongkut’s University of Technology North Bangkok (Grant No. KMUTNB-62-KNOW-19). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

16 Citations 2,070 Views 440 Downloads

Your institution may have Open Access funds available for qualifying authors. See if you qualify

Publish for free

Comment on Articles or Preprints and we'll waive your author fee
Learn more

Five new journals in Chemistry

Free to publish • Peer-reviewed • From PeerJ
Find out more