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ABSTRACT
The log-normal distribution is often used to analyze environmental data like daily
rainfall amounts. The rainfall is of interest in Thailand because high variable climates
can lead to periodic water stress and scarcity. The mean, standard deviation or coeffi-
cient of variation of the rainfall in the area is usually estimated. The climate moisture
index is the ratio of plant water demand to precipitation. The climate moisture index
should use the coefficient of variation instead of the standard deviation for comparison
between areas with widely different means. The larger coefficient of variation indicates
greater dispersion, whereas the lower coefficient of variation indicates the lower risk.
The common coefficient of variation, is the weighted coefficients of variation based on k
areas, presents the average daily rainfall. Therefore, the common coefficient of variation
is used to describe overall water problems of k areas. In this paper, we propose four
novel approaches for the confidence interval estimation of the common coefficient
of variation of log-normal distributions based on the fiducial generalized confidence
interval (FGCI), method of variance estimates recovery (MOVER), computational, and
Bayesian approaches. A Monte Carlo simulation was used to evaluate the coverage
probabilities and average lengths of the confidence intervals. In terms of coverage
probability, the results show that the FGCI approach provided the best confidence
interval estimates for most cases except for when the sample case was equal to six
populations (k = 6) and the sample sizes were small (nI < 50), for which the MOVER
confidence interval estimates were the best. The efficacies of the proposed approaches
are illustrated with example using real-life daily rainfall datasets from regions of
Thailand.

Subjects Statistics, Computational Science, Natural Resource Management, Ecohydrology,
Environmental Impacts
Keywords Coefficient of variation, Lognormal distribution, Common coefficient of variation,
Dispersion of rainfall, Climate sciences and hydrology

INTRODUCTION
Droughts and floods are regular natural disasters in Thailand. Droughts occur when the
hot season begins after a year with unusually little rainfall. Moreover, floods happen
nearly every year during the monsoon season. The monsoon seasons in the country are
distinct by region. Thailand is divided into six geographical regions such as the north,
the northeast, the west, the central, the east, and the south. Various regions are prone to
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seasonal flash-flooding. The floods often occur in the north, the northern east, and the
south. Since rainfall varies greatly depending on region and season. Therefore, the common
coefficient of variation is used to represent the rainfall dispersion in different regions.

The log-normal distribution, widely used to describe the distribution of right-skewed
data, has been used to model various real-life applications (Jafari & Abdollahnezhad,
2015). For instance, in climate sciences and hydrology, the rainfall measurements are
right-skewed (Thangjai, Niwitpong & Niwitpong, 2020a). The coefficient of variation of
the log-normal distribution depends on the variance (σ 2) only (Thangjai, Niwitpong &
Niwitpong, 2016) whereas the coefficient of variation of normal distribution depends on
the mean (µ) and σ 2. Although the normal distribution is more well-known than the
log-normal distribution in the natural and social sciences, the latter has been used in many
applications. Examples of quantities which have approximate log-normal distributions
include the particulate matter and rainfall frequency. Rumburg, Alldredge & Claiborn
(2001) studied the statistical distributions of daily particulate matter data from Spokane,
Washington from January 1995 to December 1997. They found that the PM2.5 data is
best fit by a three parameter log-normal distribution. Thangjai, Niwitpong & Niwitpong
(2020a) constructed the simultaneous confidence intervals for all differences of coefficients
of variation of daily rainfall data on 17 July 2018 in different regions of Thailand. The daily
rainfall data is log-normal distribution.

In statistics, the information in a sample X = (X1,X2,...,Xn) is used to make inferences
about an unknown parameter θ . The inference methods are hypothesis testing, point
estimation, and confidence interval estimation. The statistical hypothesismakes a statement
about a population parameter. The hypothesis testing uses the sample from the population
for deciding. Two complementary hypotheses in hypothesis testing are the null hypothesis
and the alternative hypothesis. The point estimation uses the sample data to evaluate a
single value. The point estimation is a guess of the single value as the value of the parameter.
The value is called the point estimator. The point estimate is not absolutely accurate because
the estimate is based on only the single random sample. For a contrasting point estimation
method, the confidence interval estimation uses the sample data to calculate an interval
of probable values. The confidence interval is called the confidence interval estimator.
The confidence interval estimation is used rather than the point estimation because the
confidence interval estimation has some guarantee of capturing the parameter. The goal of
this paper is to examine the confidence interval for parameter of log-normal distribution.
Confidence intervals associated with various functions of the log-normal distribution
parameters have been reported by Land (1988), Zhou & Gao (1997), Zhou (1998), Joulious
& Debarnot (2000), Taylor, Kupper & Muller (2002), Krishnamoorthy & Mathew (2003),
Gupta & Li (2005), Hannig et al. (2006b), and Shen, Brown & Hui (2006). In these studies,
confidence intervals were considered on linear functions of the mean and variance of the
log-normal distribution. These results were later extended to stochastic processes such
as homogeneous log-normal (Gutiérrez et al., 2007) and non-homogeneous log-normal
(Gutiérrez et al., 2003).

The coefficient of variation is defined as the standard deviation divided by the
mean (Kelley, 2007). It can be used to compare several populations that have different
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measurement units and is widely used to measure the precision and repeatability of data in
many fields. In hematology and serology, the coefficient of variation has been used for the
measurement of blood samples taken from different laboratories (Tsim et al., 1991) and as
a measure of precision within and between laboratories (Tian, 2005). In finance, a test of
the equality of the coefficients of variation for two stocks has been used to measure risk. In
medicine, the coefficient of variation has been used to compare the variability in the ratio
of total/high density lipoprotein cholesterol with the variability in vessel diameter change
according to diet.

In climate sciences and hydrology, the coefficient of variation has been used to describe
the rainfall and can be used to compare the rainfall variability in two or more different
areas (Thangjai, Niwitpong & Niwitpong, 2020a). If the difference between the rainfall
in a single area and the average rainfall over several areas is high, then the rainfall is
high. In statistical analysis, combine the results of several independent studies is used
in climate sciences and clinical trial. If it is assumed that the samples are collected from
independent log-normal populations with a common coefficient of variation but possibly
with different variances, then the confidence interval for the common coefficient of
variation of several log-normal populations becomes the parameter of interest. Several
researchers have focused on confidence interval estimation for the coefficient of variation
of a log-normal distribution. For example,Niwitpong (2013) presented confidence intervals
for the coefficient of variation of a log-normal distribution with a restricted parameter
space. Ng (2014) proposed an approach to make inference on the common coefficient of
variation of log-normal populations. Simultaneous confidence intervals for the differences
in the coefficients of variation of log-normal distributions were proposed by Thangjai,
Niwitpong & Niwitpong (2016) and Thangjai, Niwitpong & Niwitpong (2020a). Moreover,
Nam & Kwon (2017) andHasan & Krishnamoorthy (2017) studied the confidence intervals
for the ratio of coefficients of variation of two log-normal distributions.

Common problems in applied statistics are confidence interval estimation for the
coefficient of variation and testing the equality of two or more coefficients of variation.
Miller & Karson (1977) proposed a test for the equality of coefficients of variation in two
normal populations. Gupta & Ma (1996) presented testing the equality of the coefficients
of variation in k normal populations. Fung & Tsang (1998) compared parametric and
nonparametric tests and Gokpinar & Gokpinar (2015) proposed a computational approach
to test the equality of the coefficients of variation of k normal populations. Sangnawakij,
Niwitpong & Niwitpong (2016) proposed two new confidence intervals for the ratio of
the coefficients of variation of two-parameter exponential distributions. Sangnawakij
& Niwitpong (2016) presented confidence interval estimation for the single coefficient
of variation and the difference between two coefficients of variation in two-parameter
exponential distributions.

Under many circumstances, confidence interval estimation or hypothesis testing for
the common coefficient of variation based on several independent samples is of interest
(Tian, 2005). Krishnamoorthy & Lu (2003) investigated procedures for confidence interval
estimation and hypothesis testing of the common mean of several normal populations,
while the problem of making inference from common populations with a common
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coefficient of variation of normal distributions was dealt with by Tian (2005). Tian & Wu
(2007) proposed confidence interval estimation and hypothesis testing of the common
mean of several log-normal populations using the generalized variable concept. Similarly,
procedures for hypothesis testing and confidence interval estimation for the common
mean of several inverse Gaussian populations were presented by Ye, Ma &Wang (2010).
Moreover, Ng (2014) constructed a confidence interval for the common coefficient of
variation from several independent log-normal samples based on the GCI approach,
although there was no comparison with other approaches.

The concepts of the generalized pivotal quantity (GPQ) and the GCI first proposed by
Weerahandi (1993) have been applied to solve many statistical problems. For example,
Krishnamoorthy & Lu (2003) presented the generalized variable and GCI approaches
for inference on the common mean of several normal populations. Tian (2005) studied
inferences on the common coefficient of variation of several normal populations.Moreover,
Tian & Wu (2007) proposed the generalized variable approach and the GCI approach for
inferences on the commonmean of several log-normal populations. Thangjai, Niwitpong &
Niwitpong (2020b) developed confidence intervals for the common coefficient of variation
of several normal populations using the GCI and adjusted GCI approaches. Hannig,
Iyer & Patterson (2006a) suggested fiducial GPQ (FGPQ) as a subclass of GPQ, with the
FGCI being constructed using the FGPQ under fairly general conditions. Furthermore,
FGCIs have been constructed to solve many practical problems (Hannig et al., 2006b;
Chang & Huang, 2009; Kharrati-Kopaei, Malekzadeh & Sadooghi-Alvandi, 2013; Thangjai,
Niwitpong & Niwitpong, 2016). Although the FGCI approach is based on simulated data,
one advantage is that it can be used to construct the confidence interval for complex
parameters.

The method of variance estimates recovery (MOVER) approach was introduced by Zou
& Donner (2008) and Zou, Taleban & Hao (2009). Several researchers have successfully
used the MOVER approach to construct confidence intervals (Donner & Zou, 2012;
Suwan & Niwitpong, 2013; Niwitpong & Wongkhao, 2016). The MOVER approach has the
advantage of being easy to compute using the exact formula. However, the disadvantage of
this approach is that one can construct it with or without the initial confidence interval for
a single parameter of interest.

The computational approach proposed by Pal, Lim & Ling (2007) has been used by
many researchers to test the equality of several populations (e.g., Jafari & Abdollahnezhad,
2015; Jafari & Kazemi, 2017; Gokpinar & Gokpinar, 2017). As an advantage, this approach
does not require explicit knowledge of the sampling distribution of the test statistic.
However, it is based on simulation and numerical computations using the maximum
likelihood estimate only. The Bayesian approach uses Bayes’ theorem to compute and
update probabilities after obtaining new data. Although it can be applied to estimate the
confidence intervals for complex parameters, the disadvantages of applying it are that it
requires prior information and is based on simulation.

Ng (2014) constructed the GCI of a log-normal distribution which used asymptotic
variance and provided coverage probabilities close to the nominal confidence level of
0.95. The confidence interval constructed by transforming the log-normal coefficient of
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variation to the normal coefficient of variation. However, its use was only considered for
homogeneous populations. Therefore, in this study, we extend the research of Ng (2014)
to develop four novel approaches for confidence interval estimation for the common
coefficient of variation of several log-normal populations based on the FGCI, MOVER,
computational approach, and Bayesian approaches. Unlike Ng (2014), we compute the
confidence intervals for the common coefficient of variation directly using the log-normal
coefficient of variation that depends on σ 2 only. Moreover, there is no previous literature
on applying their methodology to PM2.5 concentration measurements. Therefore, to
fill the gap, the novel approaches for the confidence interval estimation of the common
coefficient of variation of log-normal distributions were proposed with considering the
log-normality of PM2.5 concentration measurements.

METHODS
Let us consider Y the log-normal distribution with parameters µY and σ 2

Y . It is well known
that X = log(Y ) follows a normal distribution with mean µand variance σ 2, whereas the
mean and variance of Y are given by

µY = exp
(
µ+

(
σ 2/2

))
(1)

and

σ 2
Y =

(
exp

(
σ 2)
−1
)
·
(
exp

(
2µ+σ 2)), (2)

respectively. From Eqs. (1) and (2), the coefficient of variation of Y is given by

θ =

√
exp

(
σ 2
)
−1. (3)

From Eq. (3), it is seen that the coefficient of variation of the log-normal distribution
depends on parameter σ 2 only, whereas the coefficient of variation of the normal
distribution depends on µ and σ 2. And the next result provides a useful approximation for
the variance of an estimator of θ .

Let θ̂ =
√
exp

(
S2
)
−1 be an estimator of θ . Following the Niwitpong (2013) and Hasan

& Krishnamoorthy (2017), the variance of θ̂ is

Var
(
θ̂
)
≈

σ 4exp
(
2σ 2)

2(n−1) ·
(
exp

(
σ 2
)
−1
) . (4)

Suppose that random samples are taken from k log-normal distributions, Yi =

(Yi1,Yi2,...,Yini) ∼ LN (µi,σ
2
i ), where i = 1,2,...,k. Let θi =

√
exp

(
σ 2
i
)
−1 be the

coefficient of variation for i= 1,2,...,k. Let Xi= (Xi1,Xi2,...,Xini) be a random variable of
size ni from the normal distribution with µi and variance σ 2

i . Let µ̂i= X̄i and σ̂ 2
i = S2i be

estimators of µi and σ 2
i , respectively, where X̄i and S2i denote the mean and variance of the

log-transformed sample from a log-normal distribution. The mean and variance are given
by

X̄i=

ni∑
j=1

Xij

ni
(5)
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and

S2i =

∑ni
j=1
(
Xij− X̄i

)2
ni−1

, (6)

where i= 1,2,...,k and j = 1,2,...,ni.
Let x̄i and s2i be the observed values of X̄i and S2i , respectively. The maximum likelihood

estimator of the coefficient of variation θi, is also unbiased estimator, is given by

θ̂i=

√
exp

(
S2i
)
−1, (7)

where S2i is defined in Eq. (6).

Fiducial generalized confidence interval
The FGCI uses the FGPQs. The FGPQs are a subclass of the GPQs. The FGCI has correct
frequentist coverage probability. For i= 1,2,...,k, let X̄i and S2i be the sample mean and
the sample variance for log-transformed data and let x̄i and s2i be the observed sample mean
and the observed sample variance respectively. Let X̄∗i and S2∗i be independent copies of X̄i

and S2i , respectively. Let X̄i and X̄∗i be independent and identically distributed with mean
µi and variance σ 2

i /ni. It is well known that

X̄i∼N
(
µi,

σ 2
i

ni

)
and X̄∗i ∼N

(
µi,

σ 2
i

ni

)
. (8)

Furthermore, let S2i and S2∗i be independent and identically distributed. Then

(ni−1)S2i
σ 2
i

∼χ2
ni−1 and

(ni−1)S2∗i
σ 2
i

∼χ2
ni−1, (9)

where χ2
ni−1 is chi-squared distribution with ni−1 degree of freedom.

According to Hannig, Iyer & Patterson (2006a) and Hannig et al. (2006b), the FGPQs of
µi and σ 2

i are defined by

Rµi = X̄i−
Si
S∗i

(
X̄∗i −µi

)
(10)

and

Rσ 2
i
=

S2i
S2∗i
σ 2
i . (11)

Therefore, the FGPQ for θi based on the FGPQ for σ 2
i is given by

Rθi =
√
exp

(
Rσ 2

i

)
−1. (12)

The FGPQ of θi in Eq. (12) satisfies two conditions defined in Definition ofHannig, Iyer
& Patterson (2006a) and Hannig et al. (2006b). The definition of Hannig, Iyer & Patterson
(2006a) and Hannig et al. (2006b) has two conditions such as the distribution of the GPQ
is free of all unknown parameters and the observed value of the GPQ is the parameter of
interest. From Eq. (4), the variance of θ̂i is provided by

Var
(
θ̂i
)
≈

σ 4
i exp

(
2σ 2

i
)

2(ni−1) ·
(
exp

(
σ 2
i
)
−1
) . (13)
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The FGPQ of Var
(
θ̂i
)
is given by

RVar(θ̂i)=
R2
σ 2
i
exp

(
2Rσ 2

i

)
2(ni−1) ·

(
exp

(
Rσ 2

i

)
−1
) . (14)

The FGPQ for the common coefficient of variation θ is a weighted average of the FGPQ
Rθi based on k individual sample. Therefore, the FGPQ is given by

Rθ =
k∑

i=1

Rθi
RVar(θ̂i)

/ k∑
i=1

1
RVar(θ̂i)

, (15)

where Rθi is defined in Eq. (12) and RVar(θ̂i) is defined in Eq. (14).
The FGPQ in Eq. (12) satisfies two conditions of the definition given above. The FGCI is

constructed using the quantiles of FGPQ defined in Eq. (15). Therefore, the 100(1−α)%
two-sided confidence interval for the common coefficient of variation θ based on the FGCI
approach is

CIFGCI = [LFGCI ,UFGCI ] = [Rθ (α/2),Rθ (1−α/2)], (16)

where Rθ (α/2) and Rθ (1−α/2) denote the 100(α/2)-th and 100(1−α/2)-th percentiles
of Rθ , respectively.

The following algorithm is used to construct the FGCI:
Algorithm 1
For a given x̄i and s2i , where i= 1,2,...,k
For g = 1 to m, where m is number of generalized computation
Generate X∗ and then compute x̄∗i and s2∗i
Generate χ2

ni−1 from chi-squared distribution with ni−1 degrees of freedom
Compute Rσ 2

i
from Eq. (11)

Compute Rθi from Eq. (12)
Compute RVar(θ̂i) from Eq. (14)
Compute Rθ from Eq. (15)
End g loop
Compute Rθ (α/2) and Rθ (1−α/2) from Eq. (16)

Method of variance estimates recovery confidence interval
Zou & Donner (2008) and Zou, Taleban & Hao (2009) proposed the MOVER approach to
construct the confidence interval for the sum of two parameters. For i= 1,2, let θ1 and
θ2 be the parameters of interest. Let L and U be the lower limit and upper limit of the
confidence interval for θ1+ θ2. Moreover, let θ̂1 and θ̂2 be the estimators of θ1 and θ2,
respectively. The central limit theorem and the assumption of independence between the
point estimates θ̂1 and θ̂2 are used. Therefore, the lower limit L is

L= θ̂1+ θ̂2−zα/2
√
V̂ar

(
θ̂1
)
+ V̂ar

(
θ̂2
)
, (17)

where zα/2 is the 100(α/2)-th percentile of the standard normal distribution.
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Let li and ui be the lower limit and upper limit of the confidence interval for θi, where
i= 1,2. The lower limit Lmust be closer to l1+ l2 than to θ̂1+ θ̂2. The variance estimate for
θ̂i at θi= li is defined by

V̂ar
(
θ̂li
)
=

(
θ̂i− li

)2
z2α/2

. (18)

Substituting back into Eq. (17) as follows

L= θ̂1+ θ̂2−
√(
θ̂1− l1

)2
+
(
θ̂2− l2

)2
. (19)

Similarly, the variance estimate for θ̂i at θi= ui is defined by

V̂ar
(
θ̂ui
)
=

(
ui− θ̂i

)2
z2α/2

. (20)

The upper limit U is

U = θ̂1+ θ̂2+
√(

u1− θ̂1
)2
+
(
u2− θ̂2

)2
. (21)

Therefore, the variance estimate for θ̂i at θi= li and θi= ui is defined by

V̂ar
(
θ̂i
)
=

1
2

((
θ̂i− li

)2
z2α/2

+

(
ui− θ̂i

)2
z2α/2

)
, (22)

where i= 1,2.
In this paper, the k parameters of interest are θ1,θ2,...,θk . The concepts of Zou & Donner

(2008) and Zou, Taleban & Hao (2009) are motivated for constructing the confidence
interval for θ1+θ2+ ...+θk are

L= θ̂1+ θ̂2+ ...+ θ̂k−
√(
θ̂1− l1

)2
+
(
θ̂2− l2

)2
+ ...+

(
θ̂k− lk

)2 (23)

and

U = θ̂1+ θ̂2+ ...+ θ̂k+
√(

u1− θ̂1
)2
+
(
u2− θ̂2

)2
+ ...+

(
uk− θ̂k

)2
, (24)

where (l1,u1),(l2,u2),...,(lk,uk) contain the parameter values for θ1,θ2,...,θk , respectively.
According to Graybill & Deal (1959), the common coefficient of variation θ is weighted

average of the coefficient of variation θ̂i based on k individual samples. Therefore, the
common coefficient of variation is defined by

θ̂ =

k∑
i=1

θ̂i

V̂ar
(
θ̂i
)/ k∑

i=1

1
V̂ar

(
θ̂i
) , (25)

where θ̂i=
√
exp

(
S2i
)
−1 and V̂ar

(
θ̂i
)
is defined in Eq. (22).

Applying Krishnamoorthy & Oral (2017), the lower limit and upper limit of the
confidence interval for the common coefficient of variation θ are defined by

LMOVER= θ̂−

√√√√ k∑
i=1

(
θ̂i− li

)2(
V̂ar

(
θ̂li
))2/ k∑

i=1

1(
V̂ar

(
θ̂li
))2 (26)
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and

UMOVER= θ̂+

√√√√ k∑
i=1

(
ui− θ̂i

)2(
V̂ar

(
θ̂ui
))2/ k∑

i=1

1(
V̂ar

(
θ̂ui
))2 , (27)

where θ̂ is defined in Eq. (25).
According to Niwitpong (2013), for i= 1,2,...,k, the confidence interval for coefficient

of variation of log-normal distribution based on the ith sample is given by

[li,ui] =
[√√√√exp

(
(ni−1)S2i

χ2
(ni−1),(1−α/2)

)
−1,

√√√√exp

(
(ni−1)S2i
χ2
(ni−1),(α/2)

)
−1
]
, (28)

where χ2
(ni−1),(1−α/2) and χ

2
(ni−1),(α/2) denote the 100(1−α/2)-th and 100(α/2)-th

percentiles of the chi-squared distribution with ni−1 degrees of freedom.
Therefore, the 100(1−α)% two-sided confidence interval for the common coefficient

of variation θ based on MOVER approach is

CIMOVER= [LMOVER,UMOVER], (29)

where LMOVER is defined in Eq. (26),UMOVER is defined in Eq. (27), and li and ui are defined
in Eq. (28).

Computational confidence interval
Theorem 1: Let Yi=

(
Yi1,Yi2,...,Yini

)
be a log-normal population with parameters µi and

σ 2
i , where i= 1,2,...,k. For i= 1,2,...,k and j = 1,2,...,ni, let Xij = log

(
Yij
)
be the normal

distribution with mean µi and variance σ 2
i . The maximum likelihood estimators of µi and

θ given by Eq. (3) under θ1= θ2= ...= θk = θ are given by

µ̂i= X̄i (30)

and
k∑

i=1

niσ̂ 2
i

log
(
θ2+1

)− k∑
i=1

ni= 0. (31)

Proof: The log-likelihood function of normal distribution with parameters µi and θ is
given by

lnL=−
1
2

k∑
i=1

ni log
(
2π log

(
θ2+1

))
−

k∑
i=1

ni log
(
Yij
)
−

k∑
i=1

ni∑
j=1

(
log
(
Yij
)
−µi

)2
2log

(
θ2+1

) .

Differentiating the lnL with respect to µi and θ , respectively, the maximum likelihood
estimators of µi and θ are given by
µ̂i= X̄i

and

k∑
i=1

niσ̂ 2
i

log
(
θ2+1

)− k∑
i=1

ni= 0.
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Hence, Theorem 1 is proved.
According to Pal, Lim & Ling (2007), the computational approach uses the maximum

likelihood estimates (MLEs). The common coefficient of variation based on maximum
likelihood estimator is defined by

θ̂ML=

k∑
i=1

θ̂i

V̂ar(θ̂i)

/ k∑
i=1

1
V̂ar(θ̂i)

, (32)

where θ̂i=
√
exp

(
S2i
)
−1 and V̂ar

(
θ̂i
)
is defined in Eq. (4) with σi replaced by si.

The computational approach is to obtain the restricted maximum likelihood estimates
(RMLEs) of parameters. The maximum likelihood estimators of µi and θ under
θ1= θ2= ...= θk = θ provide the RMLEs of these parameters.

Then the RMLE of µi is defined by µ̂i(RML)= X̄i. The RMLE of θ obtained iteratively
from Eq. (31) by using bisection method. The θ converge to the RMLE denoted as θ̂RML.

Data replication from f (x|µ̂i(RML),θ̂RML) is used to construct the confidence interval
based on computational approach. Let artificial sampleXi(RML)=

(
Xi1(RML),Xi2(RML),...,Xini(RML)

)
be the normal distribution with mean µ̂i(RML) and variance σ̂ 2

i(RML). Let X̄i(RML) and S2i(RML)
be themean and variance of the log-transformed sample from a log-normal distribution for
the ith artificial sample and let x̄i(RML) and s2i(RML) be observed sample mean and observed
sample variance, respectively.

Therefore, the common coefficient of variation based on k individual samples is defined
by

θ̂RML=

k∑
i=1

θ̂i(RML)

V̂ar(θ̂i(RML))

/ k∑
i=1

1
V̂ar(θ̂i(RML))

, (33)

where θ̂i(RML)=

√
exp

(
S2i(RML)

)
−1.

Therefore, the 100(1−α)% two-sided confidence interval for the common coefficient
of variation θ based on computational approach is

CICA= [LCA,UCA] = [θ̂RML(α/2),θ̂RML(1−α/2)], (34)

where θ̂RML(α/2) and θ̂RML(1−α/2) denote the (α/2)-th and (1−α/2)-th percentiles of
θ̂RML, respectively.

The following algorithm is used to construct the computational confidence interval:
Algorithm 2
For a given x̄i, s2i , and θ , where i= 1,2,...,k
Compute µ̂i(RML) and θ̂RML from Eqs. (30)–31
For g = 1 to m

Generate xij(RML) from N
(
µ̂i(RML),

√
log
(
θ̂2RML+1

))
Compute x̄i(RML) and s2i(RML)
Compute θ̂RML from Eq. (33)
End g loop
Compute θ̂RML(α/2) and θ̂RML(1−α/2) from Eq. (34)
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Bayesian confidence interval
The FGCI approach, MOVER approach, and computational approach are the classical
approach. The classical approach and the Bayesian approach are fundamentally different.
In the classical approach, the parameter of interest θ is unknown, but it is fixed. In the
Bayesian approach, the parameter is considered to be a quantity. The variation of the
quantity is described by the prior distribution. Bayes (1763) introduced that Bayesian
approach uses Bayes’ theorem to update probabilities. Bayes’ theorem describes the
conditional probability of an event based on data. The data is prior information or beliefs
about the event. The posterior distribution is combination of the likelihood function
and the prior distribution. The Bayesian confidence interval is constructed based on the
posterior distribution. The posterior distribution is a conditional distribution which is
based on the observed values of the sample. The posterior distribution is used to make
statements about the parameter. The parameter is considered a random quantity. The
conditional posterior distribution for µi given σ 2

i and xi is the normal distribution with
mean µ̂i and variance σ 2

i /ni. The distribution is defined by

µi|σ
2
i ,xi∼N (µ̂i,σ

2
i /ni). (35)

The posterior distribution for σ 2
i is inverse gamma distribution. It is defined by

σ 2
i |xi∼ IG((ni−1)/2,(ni−1)s2i /2). (36)

The posterior distribution of coefficient of variation of log-normal distribution is

θ̂i=

√
exp

(
σ 2
i
)
−1, (37)

where σ 2
i is defined in Eq. (36).

The variance of θ̂i is

Var(θ̂i)≈
σ 4
i (exp(2σ

2
i ))

2(ni−1)(exp(σ 2
i )−1)

, (38)

where σ 2
i is defined in Eq. (36).

The common coefficient of variation of log-normal distribution based on k individual
samples which the parameter of interest defined by

θ̂BS=

k∑
i=1

θ̂i

Var(θ̂i)

/ k∑
i=1

1
Var(θ̂i)

, (39)

where (θ̂i) is defined in Eq. (37) and Var(θ̂i) is defined in Eq. (38).
Gelman et al. (2013) introduced the highest posterior density interval to construct the

Bayesian confidence interval. Therefore, the 100(1−α)% two-sided confidence interval
for the common coefficient of variation θ based on Bayesian approach is

CIBS= [LBS,UBS], (40)

where LBS and UBS are the lower limit and the upper limit of the shortest 100(1−α)%
highest posterior density interval of θ̂BS, respectively.
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The following algorithm is used to construct the Bayesian confidence interval:
Algorithm 3
For a given x̄i and s2i , where i= 1,2,...,k
For g = 1 to m
Generate µi|σ

2
i ,xi∼N (µ̂i,σ

2
i /ni)

Generate σ 2
i |xi∼ IG((ni−1)/2,(ni−1)s2i /2)

Compute θi from Eq. (37)
Compute Var(θ̂i) from Eq. (38)
Compute θBS from Eq. (39)
End g loop
Compute LBS and UBS

RESULTS
A simulation study was performed to evaluate the coverage probabilities and average
lengths of the FGCI (CIFGCI ), MOVER (CIMOVER), computational (CICA), and Bayesian
confidence intervals (CIBS). The confidence intervals were compared by measuring their
coverage probabilities and average lengths and, in each case, the one with a coverage
probability closest to the nominal confidence level (1−α) and with the shortest average
length was chosen as the most appropriate.

In this simulation study, the nominal confidence level was chosen as 0.95. The sample
cases used were k = 3 and k = 6 with sample sizes n1,n2,...,nk , as in Tables 1 and 2.
Following Tian & Wu (2007) and Ng (2014), the coefficient of variation of log-normal

distribution, which equals
√
exp

(
σ 2
)
−1, is chosen in the range from 0.05 - 2.00.

Since the coefficient of variation of a log-normal distribution is independent of µ, the
population means of the normal data within each sample were given the same value
µ1=µ2= ...=µk =µ= 1 to simplify matters, and the population standard deviations
σ1,σ2,...,σk are as in Tables 1 and 2. For each parameter setting, 5,000 random samples
were generated by applying Algorithm 4, and thus 1000Rθ , 1000θ̂RML, and 1000θBS were
simulated by applying Algorithm 1, 2, and 3, respectively, for each of the random samples.

The following algorithm is used to estimate the coverage probability and average length:
Algorithm 4
For a given (n1,n2,...,nk), (µ1,µ2,...,µk), (σ1,σ2,...,σk) and θ
For h= 1 toM
Generate xij from N (µi,σ

2
i ), where i= 1,2,...,k and j = 1,2,...,ni

Calculate x̄i and s2i
Construct [LFGCI (h),UFGCI (h)]

Construct [LMOVER(h),UMOVER(h)]

Construct [LCA(h),UCA(h)]

Construct [LBS(h),UBS(h)]

Record whether or not all the values of θ fall in their corresponding confidence intervals
Compute U(h)−L(h)
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Table 1 The coverage probabilities and average lengths of 95% two-sided confidence intervals for the common coefficient of variation of sev-
eral log-normal populations: three sample cases.

(n1,n2,n3) (σ1,σ2,σ3) Coverage probability (Average length)
CIFGCI CIMOVER CICA CIBS

(30,30,30) (0.05,0.10,0.15) 0.9514 0.9238 0.9188 0.9400
(0.0317) (0.0306) (0.0305) (0.0309)

(0.50,1.00,1.00) 0.9496 0.9150 0.9246 ) 0.9394
(0.3922) (0.3672) (0.3628 (0.3781)

(50,50,50) (0.05,0.10,0.15) 0.9492 0.9234 0.9244 0.9408
(0.0246) (0.0230) (0.0240) (0.0241)

(0.50,1.00,1.00) 0.9504 0.9054 0.9372 0.9442
(0.3060) (0.2707) (0.2909) (0.2976)

(30,50,100) (0.05,0.10,0.15) 0.9530 0.9160 0.9200 0.9426
(0.0331) (0.0312) (0.0329) (0.0325)

(0.50,1.00,1.00) 0.9498 0.8808 0.9186 0.9360
(0.4259) (0.3831) (0.4055) (0.4147)

(50,100,200) (0.05,0.10,0.15) 0.9528 0.9222 0.9358 0.9430
(0.0251) (0.0234) (0.0252) (0.0247)

(0.50,1.00,1.00) 0.9492 0.8722 0.9314 0.9410
(0.3357) (0.2875) (0.3272) (0.3291)

(100,100,100) (0.05,0.10,0.15) 0.9502 0.9214 0.9388 0.9442
(0.0174) (0.0159) (0.0172) (0.0171)

(0.50,1.00,1.00) 0.9478 0.8952 0.9398 0.9394
(0.2176) (0.1852) (0.2117) (0.2129)

(200,200,200) (0.05,0.10,0.15) 0.9446 0.9178 0.9396 0.9404
(0.0123) (0.0111) (0.0122) (0.0121)

(0.50,1.00,1.00) 0.9488 0.8944 0.9456 0.9434
(0.1542) (0.1288) (0.1520) (0.1513)

(500,500,500) (0.05,0.10,0.15) 0.9482 0.9200 0.9444 0.9420
(0.0078) (0.0070) (0.0078) (0.0077)

(0.50,1.00,1.00) 0.9480 0.8940 0.9470 0.9430
(0.0976) (0.0807) (0.0971) (0.0961)

(1000,1000,1000) (0.05,0.10,0.15) 0.9428 0.9162 0.9446 0.9390
(0.0055) (0.0049) (0.0055) (0.0054)

(0.50,1.00,1.00) 0.9574 0.9020 0.9552 0.9524
(0.0691) (0.0569) (0.0689) (0.0681)

End h loop
Compute the coverage probability and the average length for each confidence interval
Tables 1 and 2 report the coverage probabilities and average lengths for k= 3 and k= 6,

respectively. From Table 1, the simulation results indicate that for all sample sizes, the FGCI
approach provided the best coverage probabilities whereas theMOVER confidence interval
attained coverage probabilities under the nominal confidence level of 0.95. Furthermore,
the coverage probabilities of the MOVER confidence interval decreased when the sample
sizes increased. The computational confidence interval achieved coverage probabilities
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Table 2 The coverage probabilities and average lengths of 95% two-sided confidence intervals for the common coefficient of variation of sev-
eral log-normal populations: six sample cases.

(n1,n2,n3,n4,n5,n6) (σ1,σ2,σ3,σ4,σ5,σ6) Coverage probability (Average length)

CIFGCI CIMOVER CICA CIBS
(30,30,30,30,30,30) (0.05,0.05,0.10,0.10,0.15,0.15) 0.9432 0.9818 0.8812 0.9328

(0.0226) (0.0298) (0.0227) (0.0222)
(0.50,0.50,0.50,1.00,1.00,1.00) 0.9218 0.9838 0.8418 0.8982

(0.2099) (0.3278) (0.2108) (0.2054)
(30,50,100,30,50,100) (0.05,0.05,0.10,0.10,0.15,0.15) 0.9400 0.9800 0.8928 0.9314

(0.0199) (0.0247) (0.0202) (0.0196)
(0.50,0.50,0.50,1.00,1.00,1.00) 0.9350 0.9830 0.8992 0.9224

(0.1490) (0.2033) (0.1505) (0.1461)
(50,50,50,50,50,50) (0.05,0.05,0.10,0.10,0.15,0.15) 0.9392 0.9834 0.9060 0.9342

(0.0175) (0.0227) (0.0175) (0.0172)
(0.50,0.50,0.50,1.00,1.00,1.00) 0.9290 0.9890 0.8812 0.9182

(0.1628) (0.2503) (0.1638) (0.1598)
(30,30,50,50,100,100) (0.05,0.05,0.10,0.10,0.15,0.15) 0.9354 0.9808 0.8636 0.9218

(0.0239) (0.0305) (0.0245) (0.0235)
(0.50,0.50,0.50,1.00,1.00,1.00) 0.9218 0.9800 0.8596 0.9048

(0.2128) (0.2931) (0.2148) (0.2086)
(50,50,100,100,200,200) (0.05,0.05,0.10,0.10,0.15,0.15) 0.9432 0.9860 0.9028 0.9360

(0.0180) (0.0231) (0.0184) (0.0178)
(0.50,0.50,0.50,1.00,1.00,1.00) 0.9354 0.9822 0.9008 0.9218

(0.1598) (0.2103) (0.1611) (0.1571)
(30,30,50,100,100,200) (0.05,0.05,0.10,0.10,0.15,0.15) 0.9398 0.9800 0.8678 0.9312

(0.0226) (0.0283) (0.0236) (0.0223)
(0.50,0.50,0.50,1.00,1.00,1.00) 0.9284 0.9788 0.8618 0.9100

(0.2257) (0.2980) (0.2291) (0.2216)
(100,100,100,100,100,100) (0.05,0.05,0.10,0.10,0.15,0.15) 0.9480 0.9830 0.9282 0.9406

(0.0123) (0.0158) (0.0124) (0.0122)
(0.50,0.50,0.50,1.00,1.00,1.00) 0.9362 0.9952 0.9166 0.9256

(0.1149) (0.1747) (0.1154) (0.1131)
(200,200,200,200,200,200) (0.05,0.05,0.10,0.10,0.15,0.15) 0.9512 0.9872 0.9410 0.9428

(0.0087) (0.0111) (0.0087) (0.0086)
(0.50,0.50,0.50,1.00,1.00,1.00) 0.9418 0.9968 0.9322 0.9364

(0.0813) (0.1231) (0.0816) (0.0801)
(500,500,500,500,500,500) (0.05,0.05,0.10,0.10,0.15,0.15) 0.9510 0.9876 0.9440 0.9464

(0.0055) (0.0070) (0.0055) (0.0054)
(0.50,0.50,0.50,1.00,1.00,1.00) 0.9520 0.9960 0.9494 0.9494

(0.0514) (0.0776) (0.0514) (0.0506)
(1000,1000,1000,1000,1000,1000) (0.05,0.05,0.10,0.10,0.15,0.15) 0.9520 0.9890 0.9496 0.9490

(0.0039) (0.0049) (0.0039) (0.0038)
(0.50,0.50,0.50,1.00,1.00,1.00) 0.9520 0.9974 0.9488 0.9470

(0.0363) (0.0548) (0.0363) (0.0358)
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under the nominal confidence level of 0.95, which became closer to it as the sample sizes
increased. The coverage probabilities of the Bayesian confidence interval performed well
when the population standard deviations were (0.05,0.10,0.15) whereas they were less
than the nominal confidence level of 0.95 when the population standard deviations were
(0.50,1.00,1.00).

From Table 2, it can be seen that the coverage probabilities of the FGCI and the
computational confidence interval were less than the nominal confidence level of 0.95
when the sample sizes were small. For large sample sizes, the coverage probabilities of the
FGCI and the computational confidence interval were close to the nominal confidence
level of 0.95, with those of the FGCIs being closer. The coverage probabilities of the
MOVER confidence interval were greater than the nominal confidence level of 0.95 for
small sample sizes and became close to 1.00 when the sample sizes increased, thereby
showing conservative behavior when the sample case (k) was large and the sample sizes
were large. Therefore, the MOVER approach can be considered as an alternative to
estimate the confidence interval for the common coefficient of variation of log-normal
distributions when the sample case (k = 6) is large and the sample sizes are small. The
coverage probabilities of the Bayesian confidence interval were less than the nominal
confidence level of 0.95 when the sample sizes were small and were close to the nominal
confidence level of 0.95 when the sample sizes were large. The average lengths of the
Bayesian confidence interval were shorter than those of the others.

As the sample case (k) increased, the coverage probabilities of the FGCI and the
computational confidence interval tended to decrease because the common coefficient of
variation θ is based on the variance of the coefficient of variation θ̂i for the k individual
samples. Herein, we present only the results of µ= 1 because they tended toward the
same direction regardless of the value of µ. In all cases, the coverage probabilities were
affected by large σ values because the coefficient of variation of log-normal distributions

θ =

√
exp

(
σ 2
)
−1 depends on parameter σ only.

An empirical application
The rainfall has been the seasonal problem in Thailand. Rainy season in Thailand
is between May and October. The daily rainfall appears on 17 June 2020. Real data
example of rainfall data is used to illustrate the FGCI, MOVER, computational, and
Bayesian approaches. All data were reported by the Thai Meteorological Department
(https://www.tmd.go.th/climate/climate.php).

The rainfall data on 17 June 2020 in Northern, Northeastern, Central, Eastern, and
Southern regions are reported in Dataset 1, and histogram and normal QQ-plots are
presented in Figs. 1 and 2, respectively. The data sets consist of 30 measurements in
Northern region, 31 measurements in Northeastern region, 21 measurements in Central
region, 16 measurements in Eastern region, and 27 measurements in Southern region. The
statistics is summarized in Table 3. The Shapiro–Wilk normality test is used to check the
assumption that the log-data is normal distribution. The Shapiro–Wilk normality test with
p-values 0.2176, 0.4981, 0.0009, 0.0128, and 0.2127 for Northern, Northeastern, Central,
Eastern, and Southern regions, respectively. From p-values, the results show that the rainfall
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Figure 1 Histogram of rainfall data in (A) Northern (B) Northeastern (C) Central (D) Eastern (E)
Southern regions.

Full-size DOI: 10.7717/peerj.10004/fig-1

of the three regions follow log-normal distributions such as Northern, Northeastern, and
Southern regions. The data of Northern, Northeastern, and Southern regions were used to
construct the confidence interval for the common coefficient of variation based on the four
approaches. The true common coefficient of variation was 1.2084. The point estimators
of the common coefficient of variation based on the FGCI, MOVER, CA, and Bayesian
approaches were 1.2776, 1.1486, 1.2273, and 1.2669. The FGCI, MOVER, computational,
and Bayesian confidence intervals were [0.8380, 2.0301] with an interval length of 1.1921,
[0.8460, 1.8481] with an interval length of 1.0021, [0.7745, 1.8663] with an interval length
of 1.0918, and [0.7991, 1.7704] with an interval length of 0.9713, respectively. Hence, the
length of the Bayesian confidence interval was shorter than those of the others, and so was
more accurate.

DISCUSSION
As a limitation of this study, the coefficient of variation of log-normal distribution can be
computed directly from log-normal data and the data transformed using the log function.
The coefficients of variation based directly on log-normal data make it easy to construct
the confidence interval for the common coefficient of variation of log-normal distributions
because the coefficient of variation of a log-normal distribution is based on σ 2 only.
However, for a greater number of samples, i.e., n= 500 and a large σ 2, i.e., σ 2

= 10, the
coverage probabilities of all of the proposed confidence intervals cannot be computed
(the simulation results are not reported here). The coefficients of variation based on
transformed data using the log function make it more difficult to estimate the confidence
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Figure 2 QQ-plot of log- rainfall data in (A) Northern (B) Northeastern (C) Central (D) Eastern (E)
Southern regions

Full-size DOI: 10.7717/peerj.10004/fig-2

Table 3 Sample statistics of Northern, Northeastern, Central, Eastern, and Southern regions (mm).

Statistics Northern region Northeastern region Central region Eastern region Southern region

n 30 31 21 16 27
ȳ 17.1200 16.8677 17.9333 19.9688 18.3852
sY 13.5250 30.9424 14.7627 15.8678 23.2974
x̄ 2.5082 1.6238 2.2851 2.5292 1.8608
sX 0.8945 1.6007 1.5163 1.2827 1.7549
θ̂ 1.1072 3.4592 2.9942 2.0450 4.5550

interval for the common coefficient of variation of log-normal distributions because the
coefficient of variation of a normal distribution is based on both µ and σ 2.

The MOVER approach makes it possible to compute the confidence interval online
because this approach requires a simple formula to construct the confidence interval. Since
the FGCI, computational, and Bayesian approaches are based on simulation techniques, it
is not possible to compute the confidence intervals for them online.

As a final note, the results of the computational approach did not perform well
for the confidence interval estimation for the common coefficient of variation of log-
normal distributions. However, Thangjai, Niwitpong & Niwitpong (2020b) reported that
it performs well for constructing the confidence interval for the common coefficient of
variation of normal distributions when the sample case is large.
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CONCLUSIONS
The results in Tables 1 and 2 indicate that the FGCI approach provided much better
confidence interval estimates than the other approaches in terms of coverage probability for
almost all sample cases (k) and sample sizes (n), except that theMOVER approach provided
the best confidence interval estimates when the sample case was equal to six populations
(k = 6) and the sample sizes were small (ni < 50). Moreover, the FGCI approach was
the best for constructing the confidence interval for all sample sizes (n) when the sample
case is small (k = 3), for which the coverage probability of the FGCI approach was stable
around the nominal confidence level of 0.95. For large sample cases (k = 6), the FGCI
approach performed well for confidence interval estimation when the sample sizes were
large. Furthermore, the FGPQ for the FGCI approach is not dependent on the population
variances (σi). The results are similar to those of Hannig et al. (2006b), Chang & Huang
(2009), Kharrati-Kopaei, Malekzadeh & Sadooghi-Alvandi (2013), and Thangjai, Niwitpong
& Niwitpong (2016). Note that the GCIs based on Ng (2014) had coverage probabilities
close to 1.00 when the sample size was small and close to the nominal confidence level of
0.95 when the sample size was large. Therefore, the GCIs based on Ng (2014) are rather
conservative for small sample sizes.
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