Analysis of small RNA changes in different Brassica napus synthetic allopolyploids
- Published
- Accepted
- Subject Areas
- Agricultural Science, Bioinformatics, Molecular Biology
- Keywords
- synthetic Brassica napus, small RNA, trait separation
- Copyright
- © 2019 Wei et al.
- Licence
- This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Preprints) and either DOI or URL of the article must be cited.
- Cite this article
- 2019. Analysis of small RNA changes in different Brassica napus synthetic allopolyploids. PeerJ Preprints 7:e27632v1 https://doi.org/10.7287/peerj.preprints.27632v1
Abstract
Allopolyploidy is an evolutionary and mechanisticaly intriguing process involving the reconciliation of two or more sets of diverged genomes and regulatory interactions, resulting in new phenotypes. In this study, we explored the small RNA changes of eight F2 synthetic B. napus using small RNA sequencing. We found that a part of miRNAs and siRNAs were non-additively expressed in the synthesized B. napus allotetraploid. Differentially expressed miRNAs and siRNAs differed among eight F2 individuals, and the differential expression of miR159 and miR172 was consistent with that of flowering time trait. The GO enrichment analysis of differential expression miRNA target genes found that most of them were concentrated in ATP-related pathways, which might be a potential regulatory process contributing to heterosis. In addition, the number of siRNAs present in the offspring was significantly higher than that of the parent, and the number of high parents was significantly higher than the number of low parents. The results have shown that the differential expression of miRNA lays the foundation for solving the trait separation phenomenon, and the significant increase of siRNA alleviates the shock of the newly synthesized allopolyploidy. It provides a new perspective of small RNA changes and trait separation in the early stages of allopolyploid polyploid formation.
Author Comment
This is a submission to PeerJ for review.
Supplemental Information
The number of miRNA
Each number represents the number of sRNA.