Predicting virus-receptor mutant binding by molecular dynamics simulation
- Published
- Accepted
- Subject Areas
- Biochemistry, Bioinformatics, Computational Biology, Virology, Infectious Diseases
- Keywords
- Arenavirus, Machupo, molecular dynamics, protein-protein interaction, computational mutagenesis
- Copyright
- © 2013 Meyer et al.
- Licence
- This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- Cite this article
- 2013. Predicting virus-receptor mutant binding by molecular dynamics simulation. PeerJ PrePrints 1:e138v1 https://doi.org/10.7287/peerj.preprints.138v1
Abstract
Existing computational methods to predict protein–protein interaction affinity often perform poorly in important test cases. In particular, the effects of multiple mutations, non-alanine substitutions, and flexible loops are difficult to predict with available tools and protocols. We present here a new method to interrogate affinity differences resulting from mutations in a host-virus protein–protein interface. Our method is based on extensive non-equilibrium all atom simulations: We computationally pull the machupo virus (MACV) spike glycoprotein (GP1) away from the human transferrin receptor (hTfR1) and estimate affinity using the max imum applied force during a pulling simulation and the area under the force-versus-distance curve. We find that these quantities can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differentiate among wild type and mutant complexes. Second, although the static co-crystal structure shows two large hydrogen-bonding networks in the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for tight binding. Third, one viral site known to be critical for infection may mark an important evolutionary suppressor site for infection-resistant hTfR1 mutants. Finally, our method provides an elegant framework to compare the effects of multi ple mutations, individually and jointly, on protein–protein interactions.
Author Comment
This manuscript was submitted for review with PeerJ.