GAN inversion and shifting: recommending product modifications to sellers for better user preference

View article
PeerJ Computer Science

Main article text

 

Introduction

  • We propose a framework to optimize distinct shifting vectors that are integrated with the base image’s latent vector, enabling the generator to produce images that are physically closer in dimensions to the base item image, yet unique from each other.

  • Our framework is generalized and can suggest item recommendations to a seller for any number of users, be it multiple or single.

  • Our method is both generator and recommendation system agnostic, i.e., it can work with any available pre-trained generators or recommender systems.

  • To evaluate our method against the baseline, we use multiple metrics and conduct extensive experiments on the publicly available Amazon Fashion Dataset:

    • We compare the increase in preference scores achieved by our method and the baseline.

    • We analyze the rise in preference scores when both explored and unexplored items are used as anchor images for novel item generation across users.

    • Additionally, we present item-level modifications for various fashion object categories.

  • Our strategy improves an item’s user preference score by 16.7% when compared with the baseline.

Background

User preference

Perceptual similarity (LPIPS)

Methodology

Overview

 
_______________________ 
 Algorithm 1: GIGS Training                                                    _________ 
    Initialise: Generator G(⋅), Recommendation Feature Extractor ϕ(⋅), 
      Shift predictor Θs(⋅), dataset S, training iterations T, batch size for 
      shifting vector n, Targets (Y ∈{0,...,n − 1}), base latent vector 
      learning rate α1, shifting vector learning rate α2, search radius ϵ; 
    for each data point {Ui,Xi}∈ S do 
        Sample: Base latent vector z ∈ N(0,1); 
   for iterations = 1 to T do 
       ˆ Xz ← G(z); // Base Image 
  Llpips ← LPIPS(Xi, ˆ Xz); 
   Lmse ← (Xi − ˆ Xz)2); 
   Linv ← Llpips + Lmse; // Inversion Loss 
  z ← z − α1 ⋅∇zLinv; // Backpropagation 
  z ← z−μz 
  σz  ; // Normalization 
  Sample: Shifting vector batch {k}n ∈ N(0,1); 
   for iterations = 1 to T do 
       k ← min(max(k,−ϵ),ϵ); // Clipping Shifting Vectors 
  kz ← z + k; // Shifting Base Latent Vector 
  kz ← kz−μkz 
  σkz   ; // Normalization 
   ˆ Xk ← G(kz); // Generating Shifted Images 
  Lpref ← θTU 
iϕ[Xk]; // Preference Score 
  Pshift,Pclass ← Θs(Xk); 
   Lclass ← Lce(Pclass,Y ); 
   Lshift ← Lmae(Pshift,k); 
   Ls ← Lclass + Lshift − Lpref; // Shifting Loss 
  k ← k − α2 ⋅ 1 n∑(∇ 
kLs); // Backpropagation 
  Θs ← Θs − α3 ⋅ 1 
n ∑ 
   (∇ΘsLs); // Backpropagation 
  Obtain:   ˆ Xk // Shifted Images    

Algorithm

Experimentation

Dataset

Training setup

Evaluation

Inception score

Opposite structural similarity index

Frechet inception distance

User preference

Results

Conclusion & Future Work

Additional Information and Declarations

Competing Interests

The authors declare there are no competing interests.

Author Contributions

Satyadwyoom Kumar conceived and designed the experiments, performed the experiments, analyzed the data, performed the computation work, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.

Abhijith Sharma conceived and designed the experiments, performed the experiments, analyzed the data, performed the computation work, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.

Apurva Narayan conceived and designed the experiments, analyzed the data, authored or reviewed drafts of the article, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:

The data and code is available at GitHub and Zenodo:

- https://github.com/Idsl-group/Gan-Inversion-and-Shifting-GIS

- SATYADWYOOM KUMAR. (2024). Idsl-group/Gan-Inversion-and-Shifting-GIS: GIS (GAN Inversion & Shifting) (v0.0.0). Zenodo. https://doi.org/10.5281/zenodo.13630810.

https://zenodo.org/records/14540482

Funding

The authors received no funding for this work.

MIT

Your institution may have Open Access funds available for qualifying authors. See if you qualify

Publish for free

Comment on Articles or Preprints and we'll waive your author fee
Learn more

Five new journals in Chemistry

Free to publish • Peer-reviewed • From PeerJ
Find out more