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ABSTRACT
In efforts to better accommodate users, numerous researchers have endeavored to
model customer behavior, seeking to comprehend how they interact with diverse
items within online platforms. This exploration has given rise to recommendation
systems, which utilize customer similarity with other customers or customer-item
interactions to suggest new items based on the existing item catalog. Since these
systems primarily focus on enhancing customer experiences, they overlook providing
insights to sellers that could help refine the aesthetics of their items and increase their
customer coverage. In this study, we go beyond customer recommendations to propose
a novel approach: suggesting aesthetic feedback to sellers in the form of refined item
images informed by customer-item interactions learned by a recommender system from
multiple consumers. These images could serve as guidance for sellers to adapt existing
items to meet the dynamic preferences of multiple users simultaneously. To evaluate
the effectiveness of our method, we design experiments showcasing how changing the
number of consumers and the class of item image used affect the change in preference
score. Through these experiments, we found that our methodology outperforms
previous approaches by generating distinct, realistic images with user preference higher
by 16.7%, thus bridging the gap between customer-centric recommendations and seller-
oriented feedback.

Subjects Artificial Intelligence, Data Mining and Machine Learning
Keywords Recommendatiomn systems, Machine learning

INTRODUCTION
With the availability of large amounts of data, businesses have started utilizing data-driven
insights to distill their products (Rosa, Rodriguez & Bressan, 2015; He &McAuley, 2016;
Kang et al., 2017). This distillation fosters the development of carefully designed products
to improve their saleability and increase their competitiveness in the market. Moreover, it
also helps in enhancing a consumer’s experience leading to mutually beneficial situation
for both consumers and sellers. A major tool from the artificial intelligence (AI) domain
supporting a portion of this operation across businesses is recommendation systems which
have been extensively used to match users to a relevant catalog of items. Empirically
recommendation systems unravel the hidden similarity between features extracted from
historical data such as past clicked/preferred items or user-user affinity available for a
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user and a set of items currently untouched by that user on the given platform. After this,
it ranks this unseen set of items based on a variety of user-centric metrics to fit a user’s
dynamic preference.

A significant limitation of current recommendation systems is their exclusive focus
on users, primarily retrieving new items from an existing catalog that aligns with user
preferences. This consumer-centric approach neglects the provision of feedback to item
vendors. Introducing a feedbackmechanism for product vendors, such as fashion designers,
real estate agents, and hospitality businesses, would enable them to gain deeper insights into
their customer base. Consequently, this would allow them to make generic refinements in
their product design that enhance their appeal to a wider audience, increasing the product’s
likelihood of commercial success.

In the seminal work by Goodfellow et al. (2014), the author introduced a novel class
of neural networks known as generative adversarial networks (GANs). GANs operate on
the principles of game theory (zero-sum game), to produce synthetic images using actual
images as references. Initially, the images generated by this approach were of low resolution
and poor quality. However, subsequent advancements by researchers such as Karras et
al. (2017), Brock, Donahue & Simonyan (2018), and Karras et al. (2020) addressed these
limitations, achieving the generation of high-resolution, photorealistic images. These
developments have enabled the AI community to leverage GANs to enhance neural
network generalizability by training it on novel data points. Furthermore, GANs have been
extensively explored in various applications, including image inpainting, style transfer,
and the manipulation of object attributes (e.g., altering facial features), underscoring their
broad applicability and utility in diverse domains.

To utilize the explorative power of GANs (Goodfellow et al., 2014), Kang et al. (2017)
propose fetching novel item images out of a convolutional neural network-based generator.
This proposed generator model incorporates a user and class feature to generate image
samples having a high preference score for this user. A user’s preference score is a value
that quantifies whether a user would favor or select a given generated item. Further, the
images generated in Kang et al. (2017) inherited a lot of visual artifacts. The artifacts, as
pointed out by works like Brown et al. (2017a), Liu et al. (2019), Kumar & Narayan (2022),
Jiang et al. (2018), and Jang et al. (2019) provide a false sense of high user preference as the
generator during the optimization process may get biased towards maximizing a user’s
preference score.

Though Kang et al. (2017) propose to explore new horizons within item recommenda-
tion from a user perspective, their setup does not take into account scenarios where the
generated item could belong to multiple classes at a time, eg: sandals + shoes to generate
an entirely novel product that crosses the boundaries of human imagination. Additionally
considering a single class while generating images will have heavy implications from a
seller’s standpoint as any newly generated image would not be appealing to a person
who is looking for a different class item, reducing the item’s consumer coverage. Further,
tailoring products for every single user is not practical for a seller. For example, the sellers
might have to shift entirely from what they were selling previously, just to fulfill a specific
user’s preference. Thus, it is not a cost-efficient solution from a supply chain perspective.
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Figure 1 A seller-oriented approach provides feedback to sellers on how tomodify their items by
querying the recommendationmodel. In contrast, a user-oriented approach presents users with their
preferred items by leveraging the same model.

Full-size DOI: 10.7717/peerjcs.2553/fig-1

Also, it may not be feasible due to constraints on the seller’s resources and machinery
used to manufacture the products. Hence to solve such a problem, one should explore
item-level solutions keeping the main item sold by the seller as the basis (Fig. 1). Such
design modifications will lead to the generation of novel articles with similar physical
dimensions as the base item but considerably distinct aesthetics, suiting the palette of a set
of users.

Drawing inspiration from the work of Kang et al. (2017) and to bridge the gap between
user preference and item-level feedback for sellers, we propose a novel framework to
generate new product designs. Our method explores images in the vicinity of a specific
item image embedded in a GAN’s latent space to tackle the proposed problem of item-level
image generation suited for a large set of users. Generating item images directly allows
sellers to reference something when making modifications while also maintaining these
changes without the ethical concerns associated with copying someone else’s design.
Therefore, our contributions are summarised as follows:
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• Wepropose a framework to optimize distinct shifting vectors that are integrated with the
base image’s latent vector, enabling the generator to produce images that are physically
closer in dimensions to the base item image, yet unique from each other.
• Our framework is generalized and can suggest item recommendations to a seller for any
number of users, be it multiple or single.
• Our method is both generator and recommendation system agnostic, i.e., it can work
with any available pre-trained generators or recommender systems.
• To evaluate our method against the baseline, we use multiple metrics and conduct
extensive experiments on the publicly available Amazon Fashion Dataset:

– We compare the increase in preference scores achieved by our method and the
baseline.

– We analyze the rise in preference scores when both explored and unexplored items
are used as anchor images for novel item generation across users.

– Additionally, we present item-level modifications for various fashion object
categories.

• Our strategy improves an item’s user preference score by 16.7% when compared with
the baseline.

RELATED WORKS
The field of visually aware fashion recommendation involves modeling user behavior
through signals captured from pictorial representations of user-interacted items. This field
has been further segregated into two broad problem categories. First is the one that focuses
on retrieving an actual fashion product by taking a user’s preference history and the other
relates to generating novel items using user-item relation.

To begin with the retrieval problem, He &McAuley (2016) were the first to introduce
visual awareness in recommendation models by incorporating item images into the
matrix-factorization model optimized using bayesian personalized ranking (BPR). To
improve upon this, Liu, Wu &Wang (2017) argue that traditional visual recommendation
systems require better modeling of an item’s style, as they are often unable to distinguish
between items having different styles but falling in the same category. To do this, the
authors explicitly include item style derived from item & category latent representations
in the BPR optimization setup to improve item recommendation to a user. Further,
Chen et al. (2017a) with their method known as attentive collaborative filtering recall that
the conventional collaborative filtering approach does not implicitly take into account
whether the user is interested in the content on which he clicked. Thus, making the
recommendation model give inaccurate recommendations. To solve this, authors employ
an attention mechanism that weights different segments/regions of an item image or a
video to determine how relevant the given item is to an user. Recently, Hou et al. (2024)
investigated the zero-shot capabilities of large language models (LLMs) in item ranking
for recommendation tasks, identifying key challenges such as their inability to grasp the
chronological order of user-item interactions and a tendency to favor items listed earlier in
the catalogwhile ranking. To address these issues, the authors proposed prompt engineering
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techniques, demonstrating how LLMs, combined with their commonsense knowledge, can
serve as an alternative to traditional recommendation models. In addition, a new sub-field
has emerged in this category, i.e., about retrieving compatible garments given an anchor
garment. One such work, Lin, Tran & Davis (2020) proposes to use a nearest neighbor
retrieval algorithm employed on an item’s feature embedding to search for complimentary
items that stylistically fit well with a given item. Another work Lu et al. (2021), proposes
self-attention to learn an outfit representation that captures high-order relationships
between items that could fit together to make an outfit. This outfit representation is
matched to a user style preference using a matching network to suggest compatible outfits.
Shifting from previous works, Sarkar et al. (2023) proposed a unified framework that
leverages self-attention to utilize the interactions among multiple outfit items to predict
their overall compatibility and retrieve a missing item that aligns cohesively with both the
existing outfit and the user-provided specification. Further, Wang et al. (2023) proposes
a diffusion process that gradually corrupts and reconstructs user-item interactions by
applying adjusted noise levels to predict interaction probabilities. Additionally, the authors
incorporate latent and time-aware techniques to consider hidden factors while providing
recommendations, such as item characteristics that affect user preferences and evolving
dynamics of user behavior over time.

Shifting from these works which learn to retrieve items from existing catalog, Kang et
al. (2017) for the first time introduced a generative setup using their method called deep
visually-aware Bayesian personalized ranking (DVBPR). This work directly synthesized
novel item images following a user’s experience history and a class label. Additionally, Phuoc
Huynh et al. (2018) presented another interesting problem of generating a complimentary
product for a given item. Here, the authors propose to utilize a GAN setup that learns the
co-occurrence of items to generate compatible item’s latent representation which is then
used to find a visually similar existing item using nearest neighbor search. Parallely, Yu et
al. (2019) proposes to directly use a GAN setup for synthesizing complementary garment
images, that fit well with a user’s style preference and the given outfit.

Furthermore, there have been some other works that tackle slightly different problems
such as transferring outfits to a given person’s image, allowing users to directly manipulate
physical attributes of an item, etc. Zhu et al. (2017b) is one such work where the authors
propose a two-step image-segmentation based generative model that modifies an outfit by
following an explicit textual description. Han et al. (2018) also proposes a GAN setup for
solving a virtual try-on problem where an outfit is transferred to fit a user’s body shape.
Recently, Baldrati et al. (2023) proposed to utilize the diffusion process to assist users in
generating fashion images by using garment sketches, textual descriptions or body pose
images.

Though these advancements have enabled significant progress in the field of fashion
recommendation/generation, a notable gap remains: they address the recommendation
problem from a single perspective, predominantly the users. In contrast, our work aims to
target the inverse by specifically focusing on how consumer behavior could complement a
seller’s product ideation step.
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BACKGROUND
User preference
Visual recommendation systems utilize visual features extracted from an item image to
model user preference. Kang et al. (2017) propose an end-to-end learnable (all parameters
trained in one go) approach called deep-visually aware bayesian personalized ranking that
learns dataset-specific visual features from scratch using a convolutional neural network
(CNN) while focusing on an implicit feedback problem. In the context of implicit feedback,
the only available information is whether a user has clicked on an item. Consequently, the
recommendation problem reduces to ranking previously observed (clicked) items higher
than unobserved (unclicked) items. The DVBPR (Kang et al., 2017) method formally
describes the problem as follows: Given a dataset D where I denotes the set of items and
U denotes the set of users, we need to rank items set I \ I+u with which a given user u∈U
has not interacted with. This ranking is done using the preference score xu,i which is the
preference of user u∈U towards item i∈ I+u using the item imageXi. This is mathematically
represented by Kang et al. (2017) using the following equation:

xu,i= θTu φ(Xi), (1)

Here θ represents the user embedding andφ represents theweights of a CNNarchitecture
which are learned using the Bayesian personalized ranking (BPR) optimization framework
(Rendle et al., 2012). BPR optimises the ranking using triplets u,i,j ∈ D, where:

D={(u,i,j)|u∈U ∧ i∈ I+u ∧ j ∈ I \ I
+

u }, (2)

Here i∈ I+u is an item observed by user u∈U and j ∈ I \I+u is an unobserved item. Thus
ideally, the preference score (Eq. (1)) of item i should be more than item j, hence BPR
objective function is defined as following:

max
∑

(u,i,j)∈D

(
ln(σ (xuij))−λ2||2||2

)
, (3)

Here σ (·) is the sigmoid function, λ2||2||2 as the regularization term with λ2 as the
regularization hyper-parameter. The 2 is the set of all the trainable weights of a neural
network, and the term xuij is the preference score difference between item i and item j for
a given user u and is mathematically represented as follows:

xuij = xui−xuj . (4)

Perceptual similarity (LPIPS)
Given the seller-oriented focus of our work, we employ perceptual similarity as a key
metric in our methodology. The learned perceptual image patch similarity (LPIPS) metric,
as discussed by Zhang et al. (2018), is foundational to our approach. LPIPS is based on
the notion of human perceptual similarity, reflecting how humans assess the similarity
between image patches. This metric is critical for evaluating and improving the alignment
of fashion items with user preferences from a seller’s perspective. Formally, the LPIPS

Kumar et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2553 6/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2553


metric is defined as the l2 distance between activations extracted from a stack of layers.
The author uses activations (w) obtained from different layers (l) of CNN as it provides a
better representational space for various tasks. LPIPS is mathematically defined as:

d(x,x0)=
∑
l

1
HlWl

∑
h,w

||wl� (ŷ lhw− ŷ
l
0hw)||

2
2, (5)

Here, for two image patches x and x0, we calculate the spatially averaged (H ∗W ), l2
distance aggregated over channel (C) between the ŷ l , ŷ l0 ∈ R

Hl∗Wl∗Xl . The ŷ l and ŷ l0 are
obtained from unit normalized internal activations scaled (using Hadamard product [�])
channel-wise by wl ∈RCl extracted from different layers (l) of a network F .

METHODOLOGY
Overview
Our method builds upon a pre-trained generative adversarial network (GAN) model
(Goodfellow et al., 2014; Karras et al., 2017; Brock, Donahue & Simonyan, 2018). A GAN
consists of two components: a generator and a discriminator. These models improve
through adversarial training, where the generator aims to produce images that the
discriminator cannot distinguish from real images, thereby maximizing the discriminator’s
loss. Conversely, the discriminator learns to accurately classify generated images as fake
and real images as real, minimizing its classification loss. This adversarial process enables
the generator to create images that do not exist in the original dataset, showcasing the GAN
setup’s ability to generate novel and realistic images.

This generative ability leads to their utilization in applications like image inpainting,
facial attribute modification, and novel clothing generation. Kang et al. (2017) also utilizes
the power of GANs to generate images for a given class of clothing to have a high preference
score for a given user. This optimization process is mathematically expressed as:

δ̂(u,c)= argmax
e∈G(·,c)

x̂u,e, (6)

x̂u,e = θTu φ[G(z,c)]−η[Dc(G(z,c))−1]2, (7)

Here, Eq. (7) is the loss that contains the user preference score and discriminator loss of
whether the generated image is real or fake. Thus, the author tries to optimize the generator
such that it efficiently explores the latent data manifold for vectors corresponding to a
given class leading to real and highly preferred item images. However, their work had a few
limitations. First, on the methodology side, the actual generated images were of inferior
quality. The reason for such low-quality images is that their problem formulation is much
harder to solve because a GAN has to map a latent vector with both a given class and a
given user to generate images. Also, the optimized objective is excessively biased toward
maximizing user preference instead of image quality, which introduces noises that fool the
recommendation models into believing that the image will be preferred by the user (Brown
et al., 2017a; Liu et al., 2019). Moreover, at a given time the Kang et al. (2017) generator
would only generate images that belong to a given class basis a user’s preference. This
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is hardly a situation in a real-life scenario, where a seller would want how he can make
changes to his current products such that the modified product is ranked higher in the
user preference list for a set of users (instead of a single user), doing so in a way that the
modified image looks realistic.

These drawbacks motivated us to propose and build a framework that is more
seller/manufacturer oriented allowing them to gain insights from their item consumer’s
preferences, and generalizable to any item by suggesting novel changes considering the
item’s current image. To do this, we utilize a pre-trained GAN architecture and explore
concepts from both GAN inversion theory (Abdal, Qin & Wonka, 2019; Abdal, Qin &
Wonka, 2020;Bau et al., 2020) andGAN latent disentanglement theory (Voynov & Babenko,
2020). GAN inversion deals with accurately back-mapping a given latent vector to an image,
and GAN latent disentanglement refers to the exploration of useful directions within a
GAN’s latent space. One of the main reasons for us to use a pre-trained GAN architecture
is to leverage its ability to generate high-quality/resolution images and solve our problem
of generating realistic fashion images. Since we are using a GAN model that only takes
in a latent vector as input, hence for a given item image, we need to find where this
item is situated in the latent space of the GAN model which is very similar to the reverse
diffusion. Thus, we build a process depicted in Fig. 2 where a latent vector is optimized
to minimize a combination of perceptual loss defined in Eq. (5) and mean-square-error
between the image generated from the optimized latent vector and the actual item image.
The perceptual similarity loss helps in learning how two images are perceptually similar,
and the mean-squared error loss helps in making the generated image look closer to the
actual item image digitally.

After obtaining the latent vector, we fix its position and explore the surrounding latent
space within a defined radius. This process involves optimizing a set of shifting vectors
that when added to the base latent vector, produce images that are physically proximate to
the base image yet exhibit aesthetic diversity. In addition to this, objective of this step is to
maximize the user preference score while simultaneously minimizing diversity loss which
indicates dissimilarity among shifting vectors, and shift prediction loss. To achieve this,
our method utilizes a model composed of a ResNet18 feature extractor and several linear
layers (as illustrated in Fig. 3) to calculate diversity loss and shift prediction. These metrics
ensure the maintenance of uniqueness across the entire batch of shifting latent vectors.

By combining both components of base latent vector search and shifting vectors, our
methodology aims to produce images closely resembling the given item imagewhile catering
to the preferences of user groups, thus enhancing its generalizability. Furthermore, our
approach can also be customized for generating images at a global level by using randomly
sampling base latent vectors, thereby bypassing the need for a seller image as the base.
Similarly, by adjusting shifting vectors across a range of users rather than a single user, it
becomes possible to identify items preferred by a broader user base without knowing about
any item. These customizable enhancements improves the versatility and applicability of
our methodology across diverse scenarios.
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Algorithm 1: GIGS Training
Initialise: Generator G(·), Recommendation Feature Extractor φ(·), Shift predictor
2s(·), dataset S, training iterations T , batch size for shifting vector n, Targets (Y ∈
{0,...,n− 1}), base latent vector learning rate α1, shifting vector learning rate α2,
search radius ε;
for each data point {Ui,Xi} ∈ S do

Sample: Base latent vector z ∈N (0,1);
for iterations = 1 to T do

X̂z←G(z); // Base Image

Llpips← LPIPS(Xi,X̂z);
Lmse← (Xi− X̂z)2);
Linv← Llpips+Lmse; // Inversion Loss

z← z−α1 ·∇zLinv; // Backpropagation

z← z−µz
σ z ; // Normalization

Sample: Shifting vector batch {k}n ∈N (0,1);
for iterations = 1 to T do

k←min(max(k,−ε),ε); // Clipping Shifting Vectors

kz← z+k; // Shifting Base Latent Vector

kz←
kz−µkz
σkz
; // Normalization

X̂k←G(kz); // Generating Shifted Images

Lpref ← θTUi
φ[Xk]; // Preference Score

Pshift ,Pclass←2s(Xk);
Lclass← Lce(Pclass,Y );
Lshift← Lmae(Pshift ,k);
Ls← Lclass+Lshift −Lpref ; // Shifting Loss

k← k−α2 · 1n
∑

(∇kLs); // Backpropagation

2s←2s−α3 ·
1
n
∑

(∇2sLs); // Backpropagation

Obtain: X̂k // Shifted Images

Algorithm
To train our proposed methodology we use Algorithm 1 where we begin by initializing the
pre-trained generator networkG(·), Feature extractor φ(·) obtained from recommendation
model, Shift predictor 2s(·), dataset S, no. of iterations T to run the training process, no.
of output images n, Targets Y ∈ {0,...,n−1}, learning rate of base latent vector α1, learning
rate of shifting vector α2, and learning rate of Shift predictor α3

We then run our method for each randomly sampled user Ui and a given item image Xi.
We first begin by running the GAN inversion process where we first initialize base latent
vector z with normal distribution N (0,1). Then for each iteration in range 1 to T , we first
pass z to the generator G(·) and obtain the image X̂z corresponding to z . Afterward, we
calculate perceptual similarity (Llpips) and mean-squared error loss (Lmse) and optimize z
to minimize the summation of both of these losses. After the optimization, the optimized
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Figure 2 Our framework involves twomain segments for generating item-level feedback for a vendor:
GAN inversion and GAN shifting. The GAN inversion segment optimizes a base latent vector, ensuring
that the corresponding image generated by a GAN generator closely resembles the actual item image. The
GAN shifting segment optimizes shifting vectors utilized to adjust the base latent vector, generating aes-
thetically distinct images that receive high preference across a set of users through cross-entropy loss min-
imization and preference score maximization.

Full-size DOI: 10.7717/peerjcs.2553/fig-2

z may no longer be within the normal distribution. Hence we normalize it to have a mean
of 0 and a standard deviation of 1.

After the first loop is finished, we obtain our final base latent vector z . We build upon
z to get a batch of shifting vectors {k}n, when added to z results, in images with high user
preference. To do this we begin by initialising {k}n with normal distribution N (0,1). Then
for each iteration in the range of 1 to T , we clamp the shifting vector to between a search
radius of ε. This clamping helps our process to only search for images that are somewhat
similar to the image obtained using z . After this, we shift our base latent vector z with
batch k to obtain a batch of shifted latent vectors {kz}. Now we normalize the shifted latent
vectors to have a normal distribution. This normalized variant of the shifted latent vector
is then passed down to the generator G(·) to obtain shifted images X̂k , which we use to
calculate the preference score Lpref for the userUi. To keep all the vectors present in shifting
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Figure 3 Our shift predictor architecture is designed to predict both the shifted latent vector Pshift and
the corresponding class label Pclass. These predictions are used downstream to promote distinctiveness
and separation among shifted latent vectors.

Full-size DOI: 10.7717/peerjcs.2553/fig-3

vector batch {k}n unique, we utilize a shift predictor 2s(·) that learns to predict the {k}n

as Pshift and the probability Pclass with which each image in the batch Xk lies in category
Y ∈ {0,...,n−1}. This category Y is obtained using the batch size of shifting vector {k}n.
These values are then used to calculate the cross entropy loss Lce and mean absolute error
Lmae . Finally, the batch of shifting vector {k}n and shift predictor 2s(·) is optimized to
minimize Ls, which is the summation of Lce and Lmae from which we subtract Lpref . After
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Table 1 Amazon fashion dataset details.

Users Items Interactions Categories

64,583 234,892 513,367 6

completing all the iterations, we obtain the new shifted images (X̂k) that are closer to the
base image and have high user preference.

EXPERIMENTATION
Dataset
We train, test, and compare our methodology on the Amazon fashion dataset (Kang et
al., 2017; McAuley et al., 2015), which is a comprehensive real-world dataset with a large
number of user-item interactions. Moreover, this dataset contains a large variety of item
images mapped to 6 different classes (such as shirts, jackets, trousers, shoes, sandals, etc.)
for both genders (male/female). Further details of the dataset are listed in Table 1.

Training setup
Ourmethodology is designed to be versatile, i.e., compatiblewith variousGANarchitectures
applicable to real-world datasets, as exemplified by architectures such as ProGAN (Karras
et al., 2017), Large Scale GAN (Brock, Donahue & Simonyan, 2018), and StyleGAN (Karras,
Laine & Aila, 2019). However, through experimentation with the Amazon fashion dataset
we observed that the ProGAN architecture proposed by Karras et al. (2017) consistently
outperformed others in generating high-quality images. Although we also trained the
StyleGAN architecture for the same dataset, the results were not comparable to those
achieved with ProGAN. This discrepancy can be attributed primarily to the considerable
variance and diversity of images within each class present in the Amazon fashion dataset.
Note: All GAN architectures are trained using the default hyperparameters recommended
by their respective authors.

For optimizing our base latent vector, shifting vector, and the shift predictor 2s(·),
we use the Adam optimizer with a learning rate of 0.01. Since the pre-trained ProGAN
architecture takes the input of 512 dimensions, thus the size of both our base latent vector
z and shifting vector k is set to 512. Additionally, each pixel in the output image generated
by the pre-trained ProGAN model lies within the [0,1] range. Therefore, throughout our
method, we maintain all image data within this [0,1] range. Further, to determine the
optimal value for the search radius ε, we start with 0.1 and increment it by 0.05. After
each increment, we manually review the generated image results. We found that ε=0.4
yields the best results, as values above this tend to generate images that deviate from the
original class (e.g., given a shoe image, the shifted image becomes a shirt). We also fixed
batch size n to 8 (can have any integer value) for all our experiments to reduce the time
quantum to 1–2 min. We retrain the DVBPR recommendation model proposed by Kang
et al. (2017). To train, we use a single Nvidia RTX A6000. Finally, to compare our work, we
use personalized and non-personalized variants of image generation methods proposed by
Kang et al. (2017) as our baseline because it is the only work in the literature that has some
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architectural similarities to our work, i.e., directly generating an entire image given a user’s
preference. Both our method and Kang et al. (2017) method work at an image resolution
of (64 × 64) scaled in later stages to (128 × 128) using bilinear interpolation.

Evaluation
In this subsection, we discuss the various evaluation metrics used to evaluate the generated
images. Through this evaluation, we want to focus on three main criteria which are:
uniqueness, quality, and user preference.

Inception score
In the GAN literature, this score (Salimans et al., 2016) is predominantly used to assess
the quality of the generated images. It is based upon the output probability score
provided by an inceptionV3 (Szegedy et al., 2015) ImageNet classifier. It is higher when the
entropy/randomness is low in the output class probabilities, which means that the classifier
can classify the given image into a single class. In other words, the generated image contains
a single item or object, which makes the inceptionV3 classifier map it to only one of the
single output imagenet classes.

Opposite structural similarity index
Structural similarity index (SSIM) (Wang et al., 2004) score is used to evaluate the similarity
in generated images. Similar to Kang et al. (2017), we use it because this metric is more
consistent with human perception than mean-square error. Since SSIM is between 0 to
1. By subtracting the SSIM score from 1 we obtain the opposite SSIM, which signifies the
diversity in the generated images.

Frechet inception distance
This score (Heusel et al., 2017) is a direct development over inception score. As explained
above, the inception score only takes into account the generated images. However, the
Frechet inception distance (FID) score considers both generated and ground truth images
and matches stats (mean, std) obtained from the output distribution of the inceptionV3
classifier to determine the quality of the generated images. Since it uses the similarity
between distribution stats as a quality measure, a low-value score is preferred.

User preference
To quantify whether a user would prefer a generated image, we use the preference score
represented by Eq. (1). A higher value of this measure would mean that the item would be
ranked higher in the user preference list.

Results
In this subsection, we first discuss the results of quantitative experiments done to verify
the performance of our method when compared to DVBPR (Kang et al., 2017). We use the
metrics described in ‘Evaluation’ to test the quality, diversity, and user preference of the
generated images. To begin with, since Kang et al. (2017) is a more class-centric approach,
i.e., generates images that belong to a single class domain and are not item-specific, so
we similarly change our methodology to have a suitable comparison. We remove our
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Table 2 Comparison of top-3 returned images for a given user (1,000 trials). For all the metrics, a larger
value is better except for FID. The value after the± is the standard deviation of the score.

Methodology Preference score Opposite SSIM IS FID

Ours 8.97± 3.55 0.63± 0.16 8.22± 0.38 13.1
DVBPR (Personalized) 7.68± 4.1 0.53± 0.12 7.65± 0.24 –
DVBPR (Non-personalized) −1.94± 3.7 0.56± 0.09 6.81± 0.37 -

Figure 4 Image quality comparison between our method andKang et al. (2017)’s personalized
method.

Full-size DOI: 10.7717/peerjcs.2553/fig-4

item-specific portion from the framework defined in Fig. 2 and generate images around
randomly sampled latent vectors using the ProGAN generator (Karras et al., 2017). After
making both approaches comparable, we calculate the specified metrics, whose values are
listed in Table 2.

Table 2 compares our method with two variants of DVBPR method (Kang et al., 2017).
The first variant of the baseline is the personalized one, where the generator learns to
optimize the user preference score, and the second one is the random one, where the
main goal of the generator is to only optimize the quality of the generated images. As
can be seen, our method obtains a mean preference score of 8.97, thus improving by
16.7% over the mean preference score of 7.68 obtained by the personalized variant of
Kang et al. (2017). Similarly, our methodology which is generating personalized images
obtains a mean diversity (opposite SSIM) score of 0.63, thus improving by 12.5% over
the non-personalized variant of Kang et al. (2017) and by 18.8% over the personalized
variant of Kang et al. (2017). Furthermore, our method outperforms (Kang et al., 2017)
personalized method by 7.4%. Figure 4 compares the images generated for the above-
explained experiment using our method and Kang et al. (2017) personalized method.
Here, we see that, due to our proposed latent shifting: images generated using our method
have a lot of variety in aesthetical aspects when compared to Kang et al. (2017).
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Table 3 Results of top-3 returned images for 1,000 randomly sampled users (with 1 randomly sampled
preferred and unpreferred item). For all the metrics, a larger value is better except for FID. The value af-
ter the± is the standard deviation of the score.

Item type Preference score Opposite SSIM IS FID Preference shift

Un-preferred items 5.48± 4.02 0.62± 0.16 8.51± 0.31 17.8 7.31± 3.04
Preferred items 7.40± 4.35 0.60± 0.16 8.25± 0.29 15.58 5.64± 2.63

Figure 5 Item-specific image generation.
Full-size DOI: 10.7717/peerjcs.2553/fig-5

Since our method can also work on item level, i.e., has the ability to generate various
images with high user preference for a randomly sampled user, we also perform item level
experiments. Table 3 depicts the results of the item-level experiments, we perform with
our method, where we first sample a randomly chosen user along with one preferred and
one unpreferred item image and then generate novel images with our method. As can be
seen in Table 3 for unpreferred items our method can generate unique, realistic images
that obtain a mean incremental preference score shift (base image preference - generated
image preference score) of 7.31. This signifies that in an ideal situation, any seller can use
our method to make modifications to their item leading to improved rank in the user
preference list. Qualitatively, Fig. 5 depicts the images generated around a given object
with high user preference, as can be seen, our base item image is really close to the original
item image. Moreover, there is a lot of variety in the shifted item image set aesthetically.
Interestingly we also see a few images that are not related to the actual ground truth image.
We believe that is happening because there is no constraint except for the search radius
limitation on shifted images. Thus, a potential area to explore in the future.
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Table 4 Results of returned images for different subsets obtained fromMcAuley et al. (2015). For all
the metrics, a larger value is better except for FID. The value after the± is the standard deviation of the
score. Across all the object categories, a consistent preference score shift of 7.3 is observed

Subset type Preference score Opposite SSIM IS FID Preference shift

Shirts 5.08± 4.17 0.68± 0.15 7.24± 0.39 18.85 7.26± 3.11
Footwear 5.83± 4.03 0.63± 0.15 8.14± 0.34 16.91 7.54± 3.10
Trousers 5.48± 4.30 0.63± 0.18 8.24± 0.40 17.39 7.33± 3.08

Table 5 Results of top-3 returned images for n= 1, 5, 10, 50, 100, 500, 1,000, 10,000 randomly sampled
users. For all the metrics, a larger value is better except for FID. The value after the± is the standard devi-
ation of the score.

User count Preference score Opposite SSIM IS FID Preference shift

n= 1 8.97± 3.55 0.63± 0.16 8.22± 0.38 13.10 7.31± 3.04
n= 5 2.31± 1.51 0.61± 0.15 8.13± 0.35 17.65 4.37± 1.48
n= 10 1.84± 1.18 0.61± 0.15 7.99± 0.36 17.95 3.77± 1.19
n= 50 1.55± 0.88 0.60± 0.16 8.06± 0.26 17.45 3.06± 0.90
n= 100 1.56± 0.89 0.60± 0.15 8.06± 0.25 17.66 3.22± 0.94
n= 500 1.22± 0.84 0.60± 0.15 7.98± 0.23 17.56 3.12± 0.92
n= 1,000 1.18± 0.85 0.60± 0.15 8.02± 0.22 17.43 3.15± 0.92
n= 10,000 1.04± 0.82 0.60± 0.15 8.03± 0.43 17.12 3.12± 0.91

Additionally, we also perform a more real-life experiment to bring out the pragmatic
capabilities of our approach. Firstly, we perform various tests on our approach against
mutually exclusive datasets. For this, we divide the Amazon-fashion dataset (McAuley et
al., 2015) into three major segments, i.e., shirts, footwear, and trousers. Table 4 provides
the results in line with metrics discussed in ‘Evaluation’. As seen in Table 4 our approach
provides a mean incremental preference score shift (base image preference–generated
image preference score) of 7.3 across different subsets of data. Thus establishing that our
approach is highly transferable.

Another major real-life scenario is where a seller has to modify its product such that
the product has a high preference across a large number of users (not just one). To test
our approach for such a scenario we randomly sample different subsets of users of size
n = {1, 5, 10, 50, 100, 500, 1000, 10000}. Table 5 depicts the results of this experiment,
Here one can see that our approach for user counts greater than 10 (Fig. 6) provides a
constant mean incremental preference score shift (base image preference–generated image
preference score) of 3.2 without affecting the quality of the image depicted by the FID,
Inception Score metric.

CONCLUSION & FUTURE WORK
We present a novel and versatile approach that leverages visual patterns learned by a
recommendation system to discern consumer preferences. This information is then used to
query a pre-trained generativemodel, producing novel images that push creative boundaries
and serve as valuable feedback for item sellers. Extensive experiments demonstrate the high
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Figure 6 Box-plot for preference score shift across various sets of randomly sampled users n= 1, 5, 10,
50, 100, 500, 1,000, 10,000. Similar color plots depict consistency in preference score shift.

Full-size DOI: 10.7717/peerjcs.2553/fig-6

generalizability of our method across diverse item categories, gathering preference insights
from multiple users to generate naturalistic images centered around a single item. These
images represent item-level enhancements, empowering sellers to expand their customer
base. Moreover, our approach is model-agnostic, overcoming the limitations of specific
generative or recommendation models, thus extending its utility beyond fashion or
vision-based domains. In addition, this work marks an initial step toward seller-oriented
feedback methodologies, offering numerous avenues for future refinement. For instance,
latent diffusion models could be employed to enable controllable modifications, providing
insights into how changes in an item are influenced by preferences for other product
categories. Additionally, refining the GAN inversion process could improve the accuracy
of generated outputs by constraining them to closely resemble the original item, effectively
filtering out irrelevant object category associations. Looking ahead, incorporating privacy-
preserving techniques such as differential privacy or selectively masking shifted latent codes
could further enhance the method by safeguarding proprietary patterns while preserving
critical insights for generating creative recommendations. These enhancements would
ensure that our approach aligns with ethical standards and mitigates potential real-world
concerns regarding intellectual property and applicability.
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