Ask a question about this section

pcr: an R package for quality assessment, analysis and testing of qPCR data

View article
Bioinformatics and Genomics

Main article text

 

Introduction

Materials & Methods

Data sources

Statistical methods

The comparative CT methods

Standard curve

Statistical significance tests

Quality assessment

Results & Discussion

Availability & installation

 
 
# install  the  pcr  package  from  CRAN 
install.packages('pcr')    

Functionality & user interface

Quality assessment

 
 
# load  required  libraries 
library(pcr) 
library(ggplot2) 
library(cowplot) 
library(dplyr) 
library(xtable) 
library(readr)    

 
 
#  pcr_assess 
##  locate  and  read  data 
fl <− system.file('extdata', 'ct3.csv', package = 'pcr') 
ct3 <− read_csv(fl) 
 
## make a vector  of RNA  amounts 
amount <− rep(c(1, .5, .2, .1, .05, .02, .01),  each = 3) 
 
##  calculate  amplification  efficiency 
res1 <− pcr_assess(ct3, 
                      amount = amount, 
                      reference_gene  = 'GAPDH', 
                      method = 'efficiency') 
 
##  calculate  standard  curves 
res2 <− pcr_assess(ct3, 
                      amount = amount, 
                      method = 'standard_curve ') 
 
##  retain  curve  information 
intercept <− res2$intercept 
slope <− res2$slope    

Analysis models

  
 
#  pcr_analyze 
##  locate  and  read  raw ct data 
fl <− system.file('extdata', 'ct1.csv', package = 'pcr') 
ct1 <− read_csv(fl) 
 
## add  grouping  variable 
group_var <− rep(c('brain', 'kidney'), each = 6) 
 
# calculate  all  values  and  errors  in one  step 
## mode == 'separate_tube' default 
res1 <− pcr_analyze(ct1, 
                        group_var  = group_var, 
                        reference_gene  = 'GAPDH', 
                        reference_group  = 'brain') 
 
##  calculate  standard  amounts  and  error 
res2 <− pcr_analyze(ct1, 
                        group_var  = group_var, 
                        reference_gene  = 'GAPDH', 
                        reference_group  = 'brain', 
                        intercept = intercept, 
                        slope = slope, 
                        method = 'relative_curve ')    

Significance testing

 
 
#  pcr_test 
# locate  and  read  data 
fl <− system.file('extdata', 'ct4.csv', package = 'pcr') 
ct4 <− read_csv(fl) 
 
# make  group  variable 
group <− rep(c('control', 'treatment'), each = 12) 
 
# test  using t −test 
tst1 <− pcr_test(ct4, 
                     group_var  = group, 
                     reference_gene  = 'ref', 
                     reference_group  = 'control', 
                     test = 't.test') 
 
# test  using  wilcox.test 
tst2 <− pcr_test(ct4, 
                     group_var  = group, 
                     reference_gene  = 'ref', 
                     reference_group  = 'control', 
                     test = 'wilcox.test') 
# testing  using  lm 
tst3 <− pcr_test(ct4, 
                     group_var  = group, 
                     reference_gene  = 'ref', 
                     reference_group  = 'control', 
                     test = 'lm')    

The pcr package workflow

Comparison with other packages

Limitations & future directions

Conclusion

Additional Information and Declarations

Competing Interests

The authors declare there are no competing interests.

Author Contributions

Mahmoud Ahmed conceived and designed the experiments, performed the experiments, analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or tables, authored or reviewed drafts of the paper, approved the final draft.

Deok Ryong Kim conceived and designed the experiments, prepared figures and/or tables, authored or reviewed drafts of the paper, approved the final draft.

Data Availability

The following information was supplied regarding data availability:

Github: https://github.com/MahShaaban/pcr.

Funding

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2015R1D1A01019753) and by the Ministry of Science, ICT and Future Planning (NRF-2015R1A5A2008833). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

86 Citations 8,654 Views 2,613 Downloads

Your institution may have Open Access funds available for qualifying authors. See if you qualify

Publish for free

Comment on Articles or Preprints and we'll waive your author fee
Learn more

Five new journals in Chemistry

Free to publish • Peer-reviewed • From PeerJ
Find out more