Two different approaches to the affective profiles model: median splits (variable-oriented) and cluster analysis (person-oriented)

View article
PeerJ
1αKK1(1Ki=12σY1α2x), retrieved from https://en.wikipedia.org/wiki/Cronbach%27s_alpha.
The homogeneity coefficient of a cluster is the average of the pairwise differences of cases belonging to this cluster (A Vargha, pers. comm., 2015).
s(i)=b(i)a(i)max{a(i),b(i)}, in which:S, silhouette.i, each single data point.a(i), the average dissimilarity of i with all other data within the same cluster. That is, a(i) can be interpreted as how well i is assigned to its cluster (the smaller the value, the better the assignment). This allow us to define the average dissimilarity of point i to a cluster c as the average of the distance from i to points in c.b(i), the lowest average dissimilarity of i to any other cluster, of which i is not a member. The cluster with this lowest average dissimilarity is said to be the “neighboring cluster” of i because it is the next best fit cluster for point i (Rousseeuw, 1987).
R=a+ba+b+c+d=a+b(n2), in which:a, the number of pairs of elements in S that are in the same set in X and in the same set in Y,b, the number of pairs of elements in S that are in different sets in X and in different sets in Y,c, the number of pairs of elements in S that are in the same set in X and in different sets in Y, andd, the number of pairs of elements in S that are in different sets in X and in the same set in Y.Retrieved from https://en.m.wikipedia.org/wiki/Rand_index.

Main article text

 

Several health characteristics are associated with individuals’ affectivity (Watson & Tellegen, 1985); consequently, both positive affect and negative affect possess some degree of explanatory value (e.g., Clark & Watson, 1988). In this context, Wilson and colleagues (1998) indicated that there is no significant correlation between positive affect and negative affect as measured by one of the most common instruments used to self-report affect, the Positive Affect Negative Affect Schedule (Watson, Clark & Tellegen, 1988). Moreover, each one of these dimensions (i.e., positive affect and negative affect) correlates to different personality and health attributes (Garcia, 2011; Norlander, Bood & Archer, 2002). Individuals characterized by high levels of positive affect exhibit a greater appreciation of life, more security, self-esteem, and self-confidence (Archer, Adolfsson & Karlsson, 2008; Costa & McCrae, 1980). They enjoy more social relations and assertiveness and are generally described as passionate, happy, energetic, and alert (Watson & Clark, 1994; Watson & Pennebaker, 1989). In contrast, individuals characterized by high levels of negative affect experience greater stress, strain, anxiety, and uncertainty over a wide range of circumstances and events (Spector & O’Connell, 1994; Watson, Pennebaker & Folger, 1986). In other words, these two dimensions that compose the affective system are uncorrelated from each other. However, even in the case of null correlations there might still be a nonlinear dependency between these two affectivity dimensions. For instance, from a person-centered framework these two affectivity dimensions within the individual can be seen as interwoven components with whole-system properties (Bergman & Wångby, 2014). The outlook of the individual as a whole-system unit is then best studied by analyzing patterns of information (Bergman & Wångby, 2014). Although at a theoretical level there is a myriad of probable patterns of combinations of peoples’ levels of positive and negative affect, if viewed at a global level, there should be a small number of more frequently observed patterns or “common types” (Bergman & Wångby, 2014; Bergman & Magnusson, 1997; see also Cloninger, Svrakic & Svrakic, 1997, who explain nonlinear dynamics in complex adaptive systems).

In this line of thinking, Archer and colleagues (e.g., Archer et al., 2007; Garcia, 2011; Norlander, Bood & Archer, 2002; Norlander, Von Schedvin & Archer, 2005) coined the notion of the affective profiles by proposing four possible combinations using individuals’ experience of high/low positive/negative affect: (1) high positive affect and low negative affect (i.e., the self-fulfilling profile), (2) low positive affect and low negative affect (i.e., the low affective profile), (3) high positive affect and high negative affect (i.e., the high affective profile), and (4) low positive affect and high negative affect (i.e., the self-destructive profile). During the last 10 years, research using the affective profiles model has distinguished individual differences in positive (i.e., well-being) and negative (i.e., ill-being) psychological and somatic health (e.g., Garcia et al., 2010; Garcia, 2012; Garcia & Siddiqui, 2009a; Garcia & Siddiqui, 2009b; Garcia & Moradi, 2013; Garcia & Archer, 2012; Nima et al., 2013; Jimmefors et al., 2014). Particularly, individuals with a self-destructive profile, compared to individuals with a self-fulfilling profile, experience lower subjective and psychological well-being, along with lower levels of energy, dispositional optimism, and higher levels of somatic stress, pessimism, non-constructive perfectionism, depression and anxiety, maladaptive coping, stress at the work-place, external locus of control, and impulsiveness (see among others Archer et al., 2007; Bood, Archer & Norlander, 2004; Garcia, 2012; Garcia, Nima & Kjell, 2014; Karlsson & Archer, 2007; Palomo et al., 2007; Palomo et al., 2008; Schütz, Archer & Garcia, 2013; Schütz, Garcia & Archer, 2014; Schütz et al., 2013). The most important differences, however, are discerned when individuals that are similar in one affect dimension but differ in the other dimension are compared to each other (Garcia, 2011). Individuals with a low affective profile (low positive affect, low negative affect), for example, report to be more satisfied with their life compared to individuals with a self-destructive profile (low positive affect, high negative affect). Hence, suggesting that high levels of life satisfaction are associated to decreases in negative affect when positive affect is low. In essence, the affective profiles model offers a nuanced representation of the composition of the affectivity system—a diametrically different representation than the notion of treating these two dimensions simply as two separate variables or summarizing them to create one mean value (Garcia, 2011; Garcia, 2012). See Fig. 1 for a compilation of findings from the last 10 years of research conducted by Archer, Garcia, and colleagues showing individual differences and similarities using the affective profiles model.

Summary of the main findings during the past 10 years using the affective profiles model by Archer, Garcia, and colleagues.

Figure 1: Summary of the main findings during the past 10 years using the affective profiles model by Archer, Garcia, and colleagues.

The most common approach to the categorization of individuals in four different affective profiles is by means of median splits. Basically, individuals’ self-reported scores on positive and negative affect are divided into high and low in reference to the median (Norlander, Bood & Archer, 2002). The individuals high and low scores are then combined into the four profiles. However, since median splits distort the meaning of high and low, it is plausible to criticize the validity of this approach to create the affective profiles—scores just-above and just-below the median become high and low by arbitrariness, not by reality (Schütz, Archer & Garcia, 2013). That is, the median splits method is variable-oriented because it categorizes individuals in different affective profiles based on the variable’s cut-off scores. A variable-oriented approach is, for instance, characterized for its focus on differences between individuals without considering the existence of sub-populations (Lundh, 2015). In this regard is plausible to suggest that because the affective profiles model is, at least in theory, person-centered, it should be operationalized using an approach that focuses on internal patterns, rather than individual differences (cf. Lundh, 2015).

Recently, MacDonald & Kormi-Nouri (2013) used person-oriented research approaches to cluster individuals depending on their self-reported affectivity and found that the four profiles emerged as originally modeled by Archer and as operationalized using the median splits approach. However, although apparently similar, we argue that these two approaches are still different in their research focus with respect to two contrasts: (a) variable versus pattern focused and (b) individual versus population focused (cf. Lundh, 2015). The median splits approach focuses on variables and their cut-off values in populations, thus it is a top-down procedure. A bottom-up procedure, in contrast, is the hierarchical cluster analysis, which starts by sequentially joining the most similar participants on variables of interest (e.g., positive affect and negative affect) to form groups (i.e., pattern and individual focused). A follow up relocation procedure may then use K-means cluster analysis to ensure people are assigned to a profile most similar to theirs (see MacDonald & Kormi-Nouri, 2013; Kormi-Nouri et al., 2015). In this respect, cluster analytic methods are data-driven and create profiles that are relative to each other. Data-driven methods, compared to median splits, come closer to modeling the dynamic nature of within and between group variability of individual patterns of affectivity, while the median splits procedure is static in nature—equally sized groups are pre-determined because each one of the two variables is divided in high and low using the median.

We argue further that, depending on how profiles are made (i.e., median splits vs. cluster) the model has the potential to discern differences not found before. On average, for example, women recall experiencing negative affect to a larger extent compared to men, while on average men recall experiencing positive affect to a larger extent compared to women (e.g., Crawford & Henry, 2004; see also Schütz, 2015). Despite this fact suggesting clear general differences in affectivity between men and women, past research using the median splits has not found interaction effects between the type of profile and the person’s gender on well-being and ill-being (see Garcia, 2011). While it is plausible to suggest that the differences in affectivity between profiles overrule possible gender differences (Garcia & Siddiqui, 2009a; Garcia, 2011), it might be so that this lack of findings depends on the choice of method to create the profiles. Indeed, in contrast to the variable-oriented method (i.e., median splits), the person-oriented method (i.e., cluster analysis) has as a primary criterion that a sample is analyzed assuming it is drawn from more than one population (Von Eye & Bogat, 2006), for example, males and females.

In sum, the aim of this paper is to compare the most often used variable-oriented median splits approach with the person-oriented cluster analysis approach when categorizing individuals into any of the four affective profiles of the model. As a first step, we compared the homogeneity within the profiles created with the two different approaches and also whether the profiles created with each approach were distinct from each (i.e., heterogeneity between profiles). This was important because, according to the model, people allocated to a specific profile are expected to be similar to each other and distinct to those allocated to any of the other profiles. As a second step, we compared the two procedures to see how they agreed upon classifying people with respect to their affectivity levels. As a third and final step, we compared how males and females were allocated depending on the approach used to create the profiles.

Method

Ethical statement

Participants and procedure

Instrument

Positive affect negative affect schedule (Watson, Clark & Tellegen, 1988)

Statistical treatment

Median splits

Cluster analysis

Results

Homogeneity within and heterogeneity between profiles

Classification by affectivity levels between approaches

Gender and the affective profiles

Discussion

Limitations and further suggestions

Concluding remarks

“Flowers are restful to look at. They have neither emotions nor conflicts.”

Sigmund Freud

Additional Information and Declarations

Competing Interests

The authors declare there are no competing interests. Danilo Garcia is the Director of the Blekinge Centre of Competence, which focuses on education, research, and development of public health and healthcare.

Author Contributions

Danilo Garcia conceived and designed the experiments, performed the experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper.

Shane MacDonald analyzed the data, contributed reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper.

Trevor Archer reviewed drafts of the paper.

Human Ethics

The following information was supplied relating to ethical approvals (i.e., approving body and any reference numbers):

After consulting with the Network for Empowerment and Well-Being’s Review Board we arrived at the conclusion that the design of the present study (e.g., all participants’ data were anonymous and will not be used for commercial or other non-scientific purposes) required only informed consent from the participants.

Data Availability

The following information was supplied regarding data availability:

The raw data is available upon request to the Network for Empowerment and Well-Being, lead researcher Danilo Garcia: http://ltblekinge.se/Forskning-och-utveckling/Blekinge-kompetenscentrum/Summary-in-English/.

Funding

This study was supported by AFA Insurance (Dnr 130345). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

44 Citations 4,067 Views 763 Downloads

Your institution may have Open Access funds available for qualifying authors. See if you qualify

Publish for free

Comment on Articles or Preprints and we'll waive your author fee
Learn more

Five new journals in Chemistry

Free to publish • Peer-reviewed • From PeerJ
Find out more