Glide analysis and bone strength tests indicate powered flight capabilities in hatchling pterosaurs
- Published
- Accepted
- Subject Areas
- Paleontology
- Keywords
- Pterosaurs, Flight, Biomechanics, Palaeoecology, Sinopterus, Pterodaustro
- Copyright
- © 2017 Witton et al.
- Licence
- This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Preprints) and either DOI or URL of the article must be cited.
- Cite this article
- 2017. Glide analysis and bone strength tests indicate powered flight capabilities in hatchling pterosaurs. PeerJ Preprints 5:e3216v1 https://doi.org/10.7287/peerj.preprints.3216v1
Abstract
Pterosaur embryos and ‘hatchling’ specimens show a surprising level of skeletal development including well-ossified skeletons and large wings. This has prompted interpretations of pterosaurs as being flight-capable from the earliest ontogenetic stages, contrasting them against the majority of other flying animals, living or extinct. Though popular, this hypothesis is not universally accepted. Some authors propose that pterosaurs only became flight capable once they reached 50% of maximum size, explaining a slowing of growth rate in later ontogeny as metabolic resources were diverted into an energy-demanding form of locomotion. We investigated these hypotheses through glide performance and wing bone strength analysis on hatchling-grade specimens of two pterosaurs, Pterodaustro guinazui and Sinopterus dongi. We found that hatchling pterosaurs were excellent gliders, but with a wing ecomorphology more comparable to powered fliers than obligate gliders. Bone strength analysis shows that hatchling pterosaur wing bones are structurally identical to those of larger pterosaurs and – because of their very low body masses – their bending strength relative to body weight is very high, comparable to or exceeding the greatest values estimated for larger, more mature pterosaurs. Hatchling pterosaurs are thus as mechanically adapted to powered flight stresses as other pterosaurs, if not moreso. Together with our glide tests, this result supports interpretations of hatchling pterosaurs as flight-capable. Size differences between pterosaur hatchlings and larger members of their species dictate differences in wing ecomorphology and flight capabilities at different life stages, which might have bearing on pterosaur ontogenetic niching.
Author Comment
This is an abstract which has been accepted for the SVPCA/SPPC 2017 conference.