The effect of external lateral stabilization on the control of mediolateral stability in walking and running
- Published
- Accepted
- Subject Areas
- Kinesiology
- Keywords
- gait stability, balance, running, walking, foot placement strategy, stepping strategy
- Copyright
- © 2018 Mahaki et al.
- Licence
- This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Preprints) and either DOI or URL of the article must be cited.
- Cite this article
- 2018. The effect of external lateral stabilization on the control of mediolateral stability in walking and running. PeerJ Preprints 6:e27244v1 https://doi.org/10.7287/peerj.preprints.27244v1
Abstract
It is still unclear how humans control mediolateral (ML) stability in walking and even more so for running. Here, foot placement adjustment as a main mechanism of active control of mediolateral stability was compared between walking and running. Moreover, to verify the role of foot placement as a means of active control of ML stability and associated metabolic costs in both modes of locomotion, this study investigated the effect of external lateral stabilization on foot placement control. Ten young adults participated in this study. Kinematic data of the trunk (T6) and feet (heels) as well as breath-by-breath oxygen consumption data were recorded during walking and running on a treadmill in normal and stabilized conditions. Coordination between ML trunk Center of Mass (CoM) state and subsequent ML foot placement, step width, and step width variability were assessed. Two-way repeated measures ANOVAs (either normal or SPM1d) were used to test for effects of walking vs. running and of normal vs. stabilized locomotion. We found a stronger association between ML trunk CoM state and foot placement in walking than in running from 90-100% of the gait cycle and also a higher step width variability in walking, but no significant differences in step width. The association between trunk CoM state and foot placement was significantly decreased by external lateral stabilization in walking and running, and this reduction was stronger in walking than in running from 75-100% of gait cycle. Surprisingly, energy cost significantly increased by external lateral stabilization, which was more pronounced in running than walking. We conclude that ML foot placement is coordinated to the CoM kinematic state to stabilize both walking and running. This coordination is more tight in walking than in running and appears not to contribute substantially to the energy costs of either mode of locomotion.
Author Comment
This is a submission to PeerJ for review.