High cell density cultivation of Escherichia coli DH5α in shake flasks with a new formulated medium
- Published
- Accepted
- Subject Areas
- Biochemistry, Bioengineering, Biotechnology, Cell Biology, Microbiology
- Keywords
- cell growth, biomass yield, Escherichia coli, metabolic programme, low pH, cell maintenance, growth medium, optimization, shake flask, environmental stress
- Copyright
- © 2018 Ng
- Licence
- This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Preprints) and either DOI or URL of the article must be cited.
- Cite this article
- 2018. High cell density cultivation of Escherichia coli DH5α in shake flasks with a new formulated medium. PeerJ Preprints 6:e26598v1 https://doi.org/10.7287/peerj.preprints.26598v1
Abstract
High cell density cultivation necessitates cell division and biomass formation, the mechanisms of which remain poorly understood, especially from the cellular energetics perspective. Specifically, the sensing of energy abundance and the channelling of nutritional energy into biomass formation and cell maintenance remains enigmatic at the sensory, effector and decision levels. Thus, optimization of cell growth remains an iterative trial and error process where the principal parameters are growth medium composition and incubation temperature. In this study, a new semi-defined formulated medium was shown to be useful for high cell density cultivation of Escherichia coli DH5α (ATCC 53868). Comprising K2HPO4, 12.54; KH2PO4, 2.31; D-Glucose, 4.0; NH4Cl, 1.0; Yeast extract, 12.0; NaCl, 5.0; MgSO4, 0.24; the medium possessed a high capacity phosphate buffer able to moderate pH fluctuations during cell growth known to be detrimental to biomass formation. With glucose and NH4Cl providing the nutrients for initial growth, followed by a lag phase of 3 hours, a maximal optical density of 12.0 was obtained after 27 hours of cultivation at 37 oC and 230 rpm. Yeast extract provides a secondary source of carbon and nitrogen. Maximal optical density obtained in formulated medium was higher than the 10.1, 4.2, and 3.4 obtained in Tryptic Soy Broth, M9 with 1 g/L of yeast extract, and LB Lennox, respectively. Cultivation of E. coli DH5α in formulated medium with 6 g/L of glucose resulted in a longer lag phase of 8 hours and a longer time (68 hours) to attainment of maximal optical density, which marked the upper limit of glucose concentration beyond which biomass formation would be reduced. Specifically, glucose concentration above 6 g/L markedly reduced biomass formation possibly due to the environmental stress arising from low pH in the culture broth. Glucose concentration below 4 g/L, on the other hand, reduced biomass formation through a smaller pool of nutrients serving as biomass building blocks. Deviation from 1:1 molar ratio between glucose and NH4Cl was not detrimental to biomass formation and growth rates. Collectively, a semi-defined formulated medium could increase optical density of E. coli DH5α beyond that of LB Lennox and Tryptic Soy Broth, and may find use in cultivation of cells for applied microbiology research.
Author Comment
This is a preprint submission to PeerJ Preprints.