Mitochondrial genomes organization in alloplasmic lines of sunflower (Helianthus annuus) with various types of cytoplasmic male sterility
- Published
- Accepted
- Subject Areas
- Agricultural Science, Genetics, Genomics, Plant Science
- Keywords
- cytoplasmic male sterility, sunflower, mitochondrial genome rearrangements, mtDNA structure
- Copyright
- © 2018 Makarenko et al.
- Licence
- This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Preprints) and either DOI or URL of the article must be cited.
- Cite this article
- 2018. Mitochondrial genomes organization in alloplasmic lines of sunflower (Helianthus annuus) with various types of cytoplasmic male sterility. PeerJ Preprints 6:e26438v1 https://doi.org/10.7287/peerj.preprints.26438v1
Abstract
Background. Cytoplasmic male sterility (CMS) is a common phenotype in higher plants, which often is associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce hybrid seeds in a variety of valuable crop species. The CMS phenomenon investigations are also promote understanding of a fundamental issue of nuclear-cytoplasmic interactions in the ontogeny of higher plants. In the present study, we analyzed the structural changes in mitochondrial genomes of three alloplasmic lines of sunflower (Helianthus annuus). The investigation was focused on CMS line PET2, as there are very few reports about its mtDNA organization.
Methods. The NGS sequencing, de novo assembly, and annotation of sunflower mitochondrial genomes were performed. The comparative analysis of mtDNA of HA89 fertile line and two HA89 CMS lines (PET1, PET2) occurred.
Results. The mtDNA of the HA89 fertile line was almost identical to the HA412 line (NC_023337). The comparative analysis of HA89 fertile and CMS (PET1) analog mitochondrial genomes revealed 11852 bp inversion, 4732 bp insertion, and 18 variant sites. In mtDNA of HA89 (PET2) CMS line 5050 bp and 5.9 kb insertions, as well as 0.95 kb and 3.8 kb deletions, were determined. There are also revealed 83 polymorphic sites in the PET2 mitochondrial genome, as compared with the fertile line.
Discussion. Among the revealed rearrangements the 5.9 kb insertion results in putative orf1053 – coxI-atp6 chimeric protein, which could be the main reason for CMS phenotype development, whereas the role of other mtDNA reorganizations in CMS formation is negligible.
Author Comment
This is a submission to PeerJ for review.