Faunal communities are invariant to fragmentation in experimental seagrass landscapes
Author and article information
Abstract
Human-driven habitat fragmentation is cited as one of the most pressing threats facing many coastal ecosystems today. Many experiments have explored the consequences of fragmentation on fauna in one foundational habitat, seagrass beds, but have either surveyed along a gradient of existing patchiness, used artificial materials to mimic a natural bed, or sampled over short timescales. Here, we describe faunal responses to constructed fragmented landscapes varying from 4-400 m2 in two transplant garden experiments incorporating live eelgrass (Zostera marina L.). In experiments replicated within two subestuaries of the Chesapeake Bay, USA across multiple seasons and non-consecutive years, we comprehensively censused mesopredators and epifaunal communities using complementary quantitative methods. We found that community properties, including abundance, species richness, Simpson and functional diversity, and composition were generally unaffected by the number of patches and the size of the landscape, or the intensity of sampling. Additionally, an index of competition based on species co-occurrences revealed no trends with increasing patch size, contrary to theoretical predictions. We extend conclusions concerning the invariance of animal communities to habitat fragmentation from small-scale observational surveys and artificial experiments to experiments conducted with actual living plants and at more realistic scales. Our findings are likely a consequence of the rapid life histories and high mobility of the organisms common to eelgrass beds, and have implications for both conservation and restoration, suggesting that even small patches can rapidly promote abundant and diverse faunal communities.
Cite this as
2016. Faunal communities are invariant to fragmentation in experimental seagrass landscapes. PeerJ Preprints 4:e1823v2 https://doi.org/10.7287/peerj.preprints.1823v2Author comment
Minor formatting and grammatical changes based on referee comments, concurrent with submission of the revised copy to a peer-reviewed journal.
Sections
Supplemental Information
Additional Information
Competing Interests
The authors declare that they have no competing interests.
Author Contributions
Jonathan S Lefcheck analyzed the data, wrote the paper, prepared figures and/or tables.
Scott R Marion conceived and designed the experiments, performed the experiments, reviewed drafts of the paper.
Alfonso V Lombana conceived and designed the experiments, performed the experiments.
Robert J Orth conceived and designed the experiments, performed the experiments, reviewed drafts of the paper.
Data Deposition
The following information was supplied regarding data availability:
The raw data will be uploaded with the final publication of this manuscript in a peer-reviewed journal.
Funding
Funding was provided by the grants from the Virginia Recreational Fishing License Fund, as well as private grants from the Allied-Signal Foundation and the Keith Campbell Foundation for the Environment. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.