Aboveground and belowground arthropod communities experience different relative influences of stochastic and deterministic assembly processes following disturbance
- Published
- Accepted
- Subject Areas
- Ecology, Entomology
- Keywords
- arthropods, biodiversity, community assembly, community structure, deterministic processes, niche, stochastic processes
- Copyright
- © 2016 Ferrenberg et al.
- Licence
- This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ PrePrints) and either DOI or URL of the article must be cited.
- Cite this article
- 2016. Aboveground and belowground arthropod communities experience different relative influences of stochastic and deterministic assembly processes following disturbance. PeerJ PrePrints 4:e1674v2 https://doi.org/10.7287/peerj.preprints.1674v2
Abstract
Background. Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods. Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies diversity and assemblages. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models calculated from observed vs. expected levels of species turnover (Beta diversity) among samples. Results. Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod communities and vegetation and soil properties, but no significant association among belowground arthropod communities and environmental factors. Discussion. Our results suggest context-dependent influences of stochastic and deterministic community assembly processes across different fractions of a ground-dwelling arthropod community following a disturbance. This variation in assembly may be linked to contrasting ecological strategies and dispersal rates within above- and below-ground communities. Our findings add to a growing body of evidence indicating concurrent influences of different processes in community assembly, and highlight the need to consider potential variation across different fractions of biotic communities when testing community ecology theory.
Author Comment
This is a preprint submission to PeerJ Preprints. This is the second version of this preprint, which was updated to include supplementary materials.