Non-native species in the vascular flora of highlands and mountains of Iceland
- Published
- Accepted
- Subject Areas
- Biodiversity, Biogeography
- Keywords
- alien flora, Iceland, highland, Arctic, invasive species, mountain flora
- Copyright
- © 2015 Wasowicz
- Licence
- This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ PrePrints) and either DOI or URL of the article must be cited.
- Cite this article
- 2015. Non-native species in the vascular flora of highlands and mountains of Iceland. PeerJ PrePrints 3:e1165v1 https://doi.org/10.7287/peerj.preprints.1165v1
Abstract
Highlands and mountains of Iceland (defined here as areas located above 400 m a.s.l) are considered to be the largest remaining wilderness areas in Europe. The present study provides first comprehensive and up-to-date data on non-native plant species from this area. The study was aimed to provide a checklist of alien plant species recorded from highland and mountain areas of Iceland, assess their naturalisation status, define spatial patterns and hotspots of their distribution and analyse temporal trends in the data. The presence of 18 non-native vascular plant species was evidenced including 13 casuals and 5 naturalised taxa (1 invasive). The results showed that the central highland is most vulnerable to alien plant colonisation, while mountain and highland areas in other parts of the country are much less impacted by non-native plant taxa. Clear hotspots of occurrence of alien flora can be defined and their geographic location corresponds to places of touristic interest such as hot springs, geothermal areas, mountain huts and shelters as well as main roads and tracks. Temporal trends characterizing non-native plant colonization show clearly that the process is still in its initial phase. The research suggests that human-mediated dispersal is the major force contributing to increased invasion risk within the investigated area.
Author Comment
This will be a submission to PeerJ for review.