Ten genes and two topologies: an exploration of higher relationships in skipper butterflies (Hesperiidae)

View article
PeerJ

Main article text

 

Introduction

Methods

Taxon and gene sampling

Dataset encoding

Phylogenetic analyses

Tree comparison

Results

Multilocus tree estimation

Tree comparison

Mito-genomic analysis

Multiple plausible tree topologies

Discussion

Conflicting topologies?

Systematic implications

Conclusions

Supplemental Information

Newly designed primer pairs for an IDH (Isocitrate dehydrogenase) amplicon in Hesperiidae.

This primer pair, along with attached universal tail (T7 promoter and T3) were tested at annealing temperature 55 °C.

DOI: 10.7717/peerj.2653/supp-1

Summarization of tree properties at different proportion of missing data.

The bootstrap support (BS) and branch length for the deep nodes from the ML trees reconstructed using gene partitions for different datasets. The dataset1 is same as the concatenated dataset (> 80% missing data per taxa allowed) and the other datasets were generated after removal of taxa with more than the maximum proportion of permitted missing sites. For instance, to generate dataset6, we removed all those taxa which had more than 40% missing sites.

DOI: 10.7717/peerj.2653/supp-2

New taxonomic positions of few genera.

List of genera for which we observed new taxonomic positions or ambiguity in taxonomic position. The taxonomic positions of rest of the sampled genera follow the list supplied with Warren, Ogawa & Brower (2009).

DOI: 10.7717/peerj.2653/supp-3

Saturation curve of 3rd codon positions on F84 sequence distance.

Transitions: s; blue cross and transversions: v; green triangle. For all genes, the curve saturate at higher sequence divergence or when the genetic distances between sequences increase. (The saturation curves for CAD and GAPDH are not shown because of consistent technical error during analyses which may be due to high sequence divergences within these gene sets crosses the limit of permitted scale length by the software.).

DOI: 10.7717/peerj.2653/supp-4

ML trees from concatenated and combined nuclear dataset under different partition scheme or model of evolution.

ML trees from the analyses of concatenated dataset with the partitions from PartitionFinder (A) and with TIGER partitions (B). ML trees from the analyses of combined nuclear dataset with the partitions from PartitionFinder (C) and with TIGER partitions (D). GTR+G+I model was used for all the analyses and the node supports were calculated from 1,000 bootstraps.

DOI: 10.7717/peerj.2653/supp-5

Bayesian tree from concatenated dataset.

The analysis was performed on the concatenated dataset with TIGER partitions under reversible jump MCMC. The values at nodes represent posterior probabilities. The topology in this tree is similar to that of Fig. 1B except that Euschemoninae and Eudaminae are sisters.

DOI: 10.7717/peerj.2653/supp-6

The maximum likelihood tree from mitogenome analysis.

The maximum likelihood tree from the analyses of 13 protein-coding mitochondrial genes of 6 hesperiids using codon-based partitions. The node supports were derived from 100 bootstrap analysis.

DOI: 10.7717/peerj.2653/supp-7

Cross representation of bootstrap support.

(A) Summarization of the ML-bootstrap trees from the concatenated dataset on the ML-best tree from the combined nuclear dataset. (B) Summarization of the ML-bootstrap trees from the combined nuclear dataset on the ML-best tree from the concatenated dataset.

DOI: 10.7717/peerj.2653/supp-8

Analyses of gene clusters.

Trees from the ML analyses of different gene combinations (A) ArgKin, EF1a, GAPDH, RpS2, RpS5, wingless, (B) CAD, EF1a, IDH, wingless, (C) ArgKin, GAPDH, MDH, RpS2, RpS5 and (D) CAD, MDH using gene partitions. The node supports were derived from 1,000 bootstrap trees. The gene combinations were made based on the relationships recovered in single-gene trees for clade status of Pyrginae and sister status of Eudaminae and Euschemoninae. Thus, the expected relationships in: (A) is that Eudaminae and Euschemoninae are non-sisters, (B) Pyrginae is monophyletic, (C) Pyrginae is paraphyletic and (D) Eudaminae and Euschemoninae are sisters.

DOI: 10.7717/peerj.2653/supp-9

Proportion of contrasting tree topologies across datasets.

The proportion of trees, that show either topology 1 (as in Fig. 1A) or topology 2 (as in Fig. 1B), in the set of 105 or 108 independent ML trees from the analyses of different datasets as mentioned in Table S2. The number on the top of the bar represents the number of ingroup taxa in the respective dataset.

DOI: 10.7717/peerj.2653/supp-10

Summarization of partitioned bremer support.

(A) The node specific partitioned bremer support for ten-gene partitions. (B) The positions of the nodes are shown on the consensus tree reconstructed using concatenated dataset.

DOI: 10.7717/peerj.2653/supp-11

Concatenated aligned sequence file.

The gene partitions in this concatenated aligned sequence file is: ArgKin = 1-596, CAD = 597-1446, COI = 1447-2921, EF1A = 2922-416, GAPDH = 4162-4852, IDH = 4853-5562, MDH = 5563-6298, RPS2 = 6299-6709, RPS5 = 6710-7326, WGL = 7327-7726.

DOI: 10.7717/peerj.2653/supp-12

List of sequences of length less than 200 bp in fasta format.

The definition of each sequence include the name of organism, the specimen voucher, gene name, sequence length and the starting position of codon.

DOI: 10.7717/peerj.2653/supp-13

Additional Information and Declarations

Competing Interests

The authors declare that they have no competing interests.

Author Contributions

Ranjit Kumar Sahoo conceived and designed the experiments, performed the experiments, analyzed the data, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper.

Andrew D. Warren conceived and designed the experiments, performed the experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of the paper.

Niklas Wahlberg conceived and designed the experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of the paper.

Andrew V.Z. Brower analyzed the data, contributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of the paper.

Vladimir A. Lukhtanov conceived and designed the experiments, contributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of the paper.

Ullasa Kodandaramaiah conceived and designed the experiments, performed the experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of the paper.

DNA Deposition

The following information was supplied regarding the deposition of DNA sequences: GenBank: KX947011KX947012, KX947014KX947266, KY014330KY014419, KY019648KY020025, KY027462KY028742, KY045507KY045764.

Data Deposition

The following information was supplied regarding data availability:

The raw data has been supplied as Supplemental Dataset Files.

Funding

The project was funded by the Department of Science and Technology (DST-RFBR-P-155) and INSPIRE Faculty Award to Ullasa Kodandaramaiah, IISER Thiruvananthapuram and the Russian Foundation for Basic Research. Vladimir A. Lukhtanov was supported by the grant N 14-14-00541 from the Russian Science Foundation. Ranjit Kumar Sahoo was supported by a research fellowship from Council of Scientific and Industrial Research, India. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

47 Citations 4,585 Views 1,156 Downloads