Predicting student success in MOOCs: A Comprehensive analysis using machine learning models


Abstract

Background: This study was motivated by the increasing popularity of Massive Open Online Courses (MOOCs) and the challenges they face, such as high dropout and failure rates. The existing knowledge primarily focused on predicting student dropout, but this study aimed to go beyond that by predicting both student dropout and course results. By using machine learning models and analyzing various data sources, the study sought to improve our understanding of factors influencing student success in MOOCs. Objectives: The primary aim of this research was to develop accurate predictions of students' course outcomes in MOOCs, specifically whether they would pass or fail. Unlike previous studies, this study took into account demographic, assessment, and student interaction data to provide comprehensive predictions. Methods: The study utilized demographic, assessment, and student interaction data to develop predictive models. Two machine learning methods, logistic regression, and random forest classification were employed to predict students' course outcomes. The accuracy of the models was evaluated based on 4-class classification (predicting four possible outcomes) and 2-class classification (predicting pass or fail). Results and Conclusions: The study found that simple indicators, such as a student's activity level on a given day, could be as effective as more complex data combinations or personal information in predicting student success. The logistic regression model achieved an accuracy of 72.1% for 4-class classification and 92.4% for 2-class classification, while the random forest classifier achieved an accuracy of 74.6% for 4-class classification and 95.7% for 2-class classification. These findings highlight the potential of machine learning models in predicting and understanding students' course outcomes in MOOCs, offering valuable insights for improving student engagement and success in online learning environments.
Ask to review this manuscript

Notes for potential reviewers

  • Volunteering is not a guarantee that you will be asked to review. There are many reasons: reviewers must be qualified, there should be no conflicts of interest, a minimum of two reviewers have already accepted an invitation, etc.
  • This is NOT OPEN peer review. The review is single-blind, and all recommendations are sent privately to the Academic Editor handling the manuscript. All reviews are published and reviewers can choose to sign their reviews.
  • What happens after volunteering? It may be a few days before you receive an invitation to review with further instructions. You will need to accept the invitation to then become an official referee for the manuscript. If you do not receive an invitation it is for one of many possible reasons as noted above.

  • PeerJ Computer Science does not judge submissions based on subjective measures such as novelty, impact or degree of advance. Effectively, reviewers are asked to comment on whether or not the submission is scientifically and technically sound and therefore deserves to join the scientific literature. Our Peer Review criteria can be found on the "Editorial Criteria" page - reviewers are specifically asked to comment on 3 broad areas: "Basic Reporting", "Experimental Design" and "Validity of the Findings".
  • Reviewers are expected to comment in a timely, professional, and constructive manner.
  • Until the article is published, reviewers must regard all information relating to the submission as strictly confidential.
  • When submitting a review, reviewers are given the option to "sign" their review (i.e. to associate their name with their comments). Otherwise, all review comments remain anonymous.
  • All reviews of published articles are published. This includes manuscript files, peer review comments, author rebuttals and revised materials.
  • Each time a decision is made by the Academic Editor, each reviewer will receive a copy of the Decision Letter (which will include the comments of all reviewers).

If you have any questions about submitting your review, please email us at peer.review@peerj.com.