A novel deep hybrid framework with dynamic composite fitness optimization for robust real-time human activity recognition


Abstract

Real-time Human Activity Recognition (HAR) has wide-ranging applications in areas such as context-aware environments, public safety, assistive technologies, and autonomous monitoring and surveillance systems. However, existing real-time HAR systems face significant challenges, including limited scalability and high computational costs arising from redundant features. To address these issues, the Inception-V3 model was customized with region-based and boundary-aware operations, using average pooling and max pooling, respectively, to enhance region homogeneity, suppress noise, and capture discriminative local features, while improving robustness through down-sampling. Furthermore, to effectively encode motion dynamics, an Attention-Augmented Long Short-Term Memory (AA-LSTM) network was employed to learn temporal dependencies across video frames. Features are extracted from video dataset and are then optimized through a novel proposed dynamic composite feature selection method called Adaptive Dynamic Fitness Sharing and Attention (ADFSA). This ADFSA mechanism is embedded within a genetic algorithm to select a compact, optimized subset of features by dynamically balancing multiple objectives, accuracy, redundancy reduction, feature uniqueness, and complexity minimization. As a result, the selected subset of diverse and discriminative features enables lightweight machine learning classifiers to achieve accurate and robust HAR in heterogeneous environments. Experimental results demonstrate up to 99.65\% accuracy using as few as seven selected features, with improved inference time on the challenging UCF-YouTube dataset, which includes factors such as occlusion, cluttered backgrounds, complex motion dynamics, and poor illumination conditions.
Ask to review this manuscript

Notes for potential reviewers

  • Volunteering is not a guarantee that you will be asked to review. There are many reasons: reviewers must be qualified, there should be no conflicts of interest, a minimum of two reviewers have already accepted an invitation, etc.
  • This is NOT OPEN peer review. The review is single-blind, and all recommendations are sent privately to the Academic Editor handling the manuscript. All reviews are published and reviewers can choose to sign their reviews.
  • What happens after volunteering? It may be a few days before you receive an invitation to review with further instructions. You will need to accept the invitation to then become an official referee for the manuscript. If you do not receive an invitation it is for one of many possible reasons as noted above.

  • PeerJ Computer Science does not judge submissions based on subjective measures such as novelty, impact or degree of advance. Effectively, reviewers are asked to comment on whether or not the submission is scientifically and technically sound and therefore deserves to join the scientific literature. Our Peer Review criteria can be found on the "Editorial Criteria" page - reviewers are specifically asked to comment on 3 broad areas: "Basic Reporting", "Experimental Design" and "Validity of the Findings".
  • Reviewers are expected to comment in a timely, professional, and constructive manner.
  • Until the article is published, reviewers must regard all information relating to the submission as strictly confidential.
  • When submitting a review, reviewers are given the option to "sign" their review (i.e. to associate their name with their comments). Otherwise, all review comments remain anonymous.
  • All reviews of published articles are published. This includes manuscript files, peer review comments, author rebuttals and revised materials.
  • Each time a decision is made by the Academic Editor, each reviewer will receive a copy of the Decision Letter (which will include the comments of all reviewers).

If you have any questions about submitting your review, please email us at [email protected].