Designing vector-symbolic architectures for biomedical applications: Ten tips and common pitfalls


Abstract

Vector-Symbolic Architectures (VSAs) provide a powerful, brain-inspired framework for representing and manipulating complex data across the biomedical sciences. By mapping heterogeneous information, from genomic sequences and molecular structures to clinical records and medical images, into a unified high-dimensional vector space, VSAs enable robust reasoning, classification, and data fusion. Despite their potential, the practical design and implementation of an effective VSA can be a significant hurdle, as optimal choices depend heavily on the specific scientific application. This article bridges the gap between theory and practice by presenting ten tips for designing VSAs tailored to key challenges in the biomedical sciences. We provide concrete, actionable guidance on topics such as encoding sequential data in genomics, creating holistic patient vectors from electronic health records, and integrating VSAs with deep learning models for richer image analysis. Following these tips will empower researchers to avoid common pitfalls, streamline their development process, and effectively harness the unique capabilities of VSAs to unlock new insights from their data.
Ask to review this manuscript

Notes for potential reviewers

  • Volunteering is not a guarantee that you will be asked to review. There are many reasons: reviewers must be qualified, there should be no conflicts of interest, a minimum of two reviewers have already accepted an invitation, etc.
  • This is NOT OPEN peer review. The review is single-blind, and all recommendations are sent privately to the Academic Editor handling the manuscript. All reviews are published and reviewers can choose to sign their reviews.
  • What happens after volunteering? It may be a few days before you receive an invitation to review with further instructions. You will need to accept the invitation to then become an official referee for the manuscript. If you do not receive an invitation it is for one of many possible reasons as noted above.

  • PeerJ Computer Science does not judge submissions based on subjective measures such as novelty, impact or degree of advance. Effectively, reviewers are asked to comment on whether or not the submission is scientifically and technically sound and therefore deserves to join the scientific literature. Our Peer Review criteria can be found on the "Editorial Criteria" page - reviewers are specifically asked to comment on 3 broad areas: "Basic Reporting", "Experimental Design" and "Validity of the Findings".
  • Reviewers are expected to comment in a timely, professional, and constructive manner.
  • Until the article is published, reviewers must regard all information relating to the submission as strictly confidential.
  • When submitting a review, reviewers are given the option to "sign" their review (i.e. to associate their name with their comments). Otherwise, all review comments remain anonymous.
  • All reviews of published articles are published. This includes manuscript files, peer review comments, author rebuttals and revised materials.
  • Each time a decision is made by the Academic Editor, each reviewer will receive a copy of the Decision Letter (which will include the comments of all reviewers).

If you have any questions about submitting your review, please email us at [email protected].