@DataScienceDojo Prophet is the same as fb prophet right? I'm quite sure they mentioned it based on the statistical model in their paper. So why its part of deep learning models? https://t.co/96b4Lgiaql
Forecasting at scale https://t.co/8zazx7f69X via @PeerJPreprints
Very effective forecasting tool. The xgboost variant with modeltime R package has potential to upend ARIMA and Exponential Trend Smoothing methods if hyperparameters are tuned properly.
@therealfuzzy2 @MKreutzfeldt Rtlive verwendet Prophet. Implementierung gibt’s für R und Python. Könnte im Prinzip auch hier für Trendanalysen nützlich sein.
https://t.co/1DLdFS4vWi
https://t.co/NIltokeWDe
https://t.co/lD4FmRufW0
@SimonWMnhs I worked with it a bit and it's nice. We went with Holt-winters type smoothers, after great sessions on forecasting from @Bahman_R_T. @seanjtaylor 's paper on Proohet was interesting https://t.co/IiNJ3qRtQd
Then we looked into the basic idea and mathematics behind the Prophet library to know how #fbprophet can fit both the trend and the seasonality components for a time series. Check out this paper.
https://t.co/VJwCWSuwaW
@mkeulemans Dit soort voorspellingen zou je ook kunnen doen met een algoritme als Prophet (bv https://t.co/QzVEAuiKIn). Maar met de puntschattingen van twee eenvoudige modellen een ruisloze voorspelling geven -- statistisch zet ik hier mijn vraagtekens bij.
Forecasting at scale
a modular regression model with interpretable parameters that can be intuitively adjusted by analysts with domain knowledge about the time series
https://t.co/FMQpgMMomZ
@fulhack • The paper on Prophet from @seanjtaylor & @_bletham_: https://t.co/JRJ5ruLObW
• Real-world application of causal impact methodology https://t.co/W7KN1A3frZ by @chelsyxie et al.
• Time series models chapter in Stan user manual: https://t.co/JTbVGZ5ybz