16 Citations   Views   Downloads

Forecasting at scale

View preprint
Forecasting at scale a modular regression model with interpretable parameters that can be intuitively adjusted by analysts with domain knowledge about the time series https://t.co/FMQpgMMomZ
RT @bearloga: @fulhack • The paper on Prophet from @seanjtaylor & @_bletham_: https://t.co/JRJ5ruLObW • Real-world application of causal im…
@fulhack • The paper on Prophet from @seanjtaylor & @_bletham_: https://t.co/JRJ5ruLObW • Real-world application of causal impact methodology https://t.co/W7KN1A3frZ by @chelsyxie et al. • Time series models chapter in Stan user manual: https://t.co/JTbVGZ5ybz
prophetの元論文見つけたので、読み切った。メモを残す: https://t.co/lONQ0uG9Zb
34 days ago
@danielhfrank @gkossakowski @snoble I think you want to use @seanjtaylor's trick from 3.1.1 of https://t.co/y4dx1VIegg to vectorize the changepoints.
RT @PTKDaily:
62 days ago
RT @PTKDaily:
70 days ago
Facebook'un çekirdek veri bilimi ekibi tarafından hazırlanan; açık kaynak, zaman serisi veri tahminleme (time series data forecasting) kütüphanesi Prophet'in yeni versiyonu (0.6) yayınlandı. Kod: https://t.co/rz6o4GOaud Makale: https://t.co/gEdYdFuMZw
@rob_rix Hierarchical modeling works for this. See for example @seanjtaylor 's Prophet writeup https://t.co/m1iHIKwZpq and @mcmc_stan implementation https://t.co/2vaS5Sx1gV
Prophetの論文読んでる 知識が全然無いから時間が読むのにかかるなぁ https://t.co/pYlQDLAJnl
時系列解析のことでふと気になったことがあり、Prophetの論文を読んでたりします。。 統計検定1級の勉強から一生懸命逃げてます。。。 https://t.co/5c6baxUiLC
RT @RichmanRonald: Time series twitter friends: do you know of good discussions of large-scale forecasting problems? One nice paper is from…
RT @RichmanRonald: Time series twitter friends: do you know of good discussions of large-scale forecasting problems? One nice paper is from…
Prophetの論文。14ページにStanのモデルがある。Face Bookはプロダクト化が上手いね。 https://t.co/ntUW3tyQ41
9\ Last but not least, a very detailed paper on the Prophet model framework. https://t.co/QvlXEsJujp
@seanjtaylor & Benjamin Letham describe why & how @facebook’s #DataScience team developed #OpenSource Prophet to help analysts #forecast #timeseries at scale. @fbOpenSource https://t.co/BC8aByroRh https://t.co/DioUvGVF1l
313 days ago
RT @sagecodes: Day 2: Went to a @ps_python meetup discussing time series forecasting at scale with FB Prophet so I thought I would do an im…
313 days ago
RT @sagecodes: Day 2: Went to a @ps_python meetup discussing time series forecasting at scale with FB Prophet so I thought I would do an im…
313 days ago
RT @sagecodes: Day 2: Went to a @ps_python meetup discussing time series forecasting at scale with FB Prophet so I thought I would do an im…
Day 2: Went to a @ps_python meetup discussing time series forecasting at scale with FB Prophet so I thought I would do an implementation using it. Used it on a Chicago crime dataset. Read the paper here: https://t.co/EsR4FftfvI #100DaysOfCode #100DaysOfMLCode https://t.co/zVB1RTO1gM
330 days ago
Forecast meraklısı varsa, Facebook'un #Prophet 'inin whitepaperına göz atsın. https://t.co/ENFpTPDOAm
NOT PEER-REVIEWED
"PeerJ Preprints" is a venue for early communication or feedback before peer review. Data may be preliminary.

Additional Information

Competing Interests

Sean J Taylor and Benjamin Letham are both employees at Facebook, Inc.

Author Contributions

Sean J Taylor analyzed the data, wrote the paper, prepared figures and/or tables, performed the computation work, reviewed drafts of the paper.

Benjamin Letham analyzed the data, wrote the paper, prepared figures and/or tables, performed the computation work, reviewed drafts of the paper.

Data Deposition

The following information was supplied regarding data availability:

All code is available in our open source repository: https://github.com/facebookincubator/prophet

Funding

The authors received no funding for this work.


Add your feedback

Before adding feedback, consider if it can be asked as a question instead, and if so then use the Question tab. Pointing out typos is fine, but authors are encouraged to accept only substantially helpful feedback.

Some Markdown syntax is allowed: _italic_ **bold** ^superscript^ ~subscript~ %%blockquote%% [link text](link URL)
 
By posting this you agree to PeerJ's commenting policies