An improved hippopotamus optimization algorithm based on adaptive development and solution diversity enhancement

View article
PeerJ Computer Science

Introduction

With the continuous advancements in science, industry, and technology, many problems are defined as optimization problems (Chen et al., 2024a). These problems typically consist of three fundamental components: an objective function, constraints, and decision variables (Zhang et al., 2022). To address such challenges, optimization algorithms can be classified into various categories. One common classification distinguishes between stochastic and deterministic algorithms based on their inherent optimization approach. Unlike deterministic methods, stochastic approaches do not require comprehensive knowledge of the problem’s characteristics, making them advantageous when dealing with complex, high-dimensional, nonlinear, and non-differentiable problems. Stochastic methods are especially effective when the problem is poorly understood or treated as a black box (Ju & Liu, 2024).

Among the numerous stochastic methods, metaheuristic algorithms have garnered significant attention due to their exceptional performance in solving complex problems (Dai & Fu, 2023; Dong & Chen, 2023). These algorithms generate an initial set of candidate solutions randomly and iteratively update these solutions according to specific relationships defined by the algorithm. In each iteration, better solutions are retained based on the number of search agents until a termination criterion, such as a predefined maximum number of iterations or the number of function evaluations, is met. The advantage of metaheuristic algorithms lies in their ability to balance global and local search, allowing them to excel in various applications (Guo, 2023; Chen, 2023; Zhang, 2023).

The hippopotamus optimization algorithm (HO) is a nature-inspired metaheuristic optimization algorithm first introduced in 2024 by Amiri et al. (2024). The HO draws inspiration from three behavioral patterns observed in hippopotamuses: position updates in water, defensive strategies against predators, and predator evasion. These behaviors are mathematically modeled to guide the optimization process. Although many optimization algorithms have been proposed, the “No Free Lunch” (NFL) theorem suggests that no single algorithm can outperform all others in solving every optimization problem. As increasingly complex optimization problems arise, traditional algorithms often struggle to handle issues such as nonlinearity, non-convexity, and non-differentiability. The HO was designed to balance global exploration and local exploitation by simulating hippopotamus behavior, thereby enhancing convergence speed and solution accuracy in multi-dimensional, multi-modal optimization problems. Despite the HO’s strong performance in benchmark tests and practical applications, it still faces certain limitations common to metaheuristic algorithms (Mashru et al., 2024). Therefore, developing novel and efficient optimization algorithms remains a critical research focus (Trojovsky & Dehghani, 2022).

Metaheuristic algorithms have found widespread applications across various engineering fields, including hyperparameter tuning and neural network weight optimization in medical engineering, intelligent fault diagnosis in control engineering, controller parameter optimization in mechanical engineering, and filter design in telecommunications engineering (Liao et al., 2024; Dehghani & Trojovsky, 2021; Emami, 2022; Trojovsky & Dehghani, 2022; Chen, Niu & Zhang, 2022; Yu et al., 2023; Han et al., 2024). These algorithms have also proven valuable in energy, civil engineering, and economics.

Recent studies have shown that chaotic mapping can significantly enhance the performance of metaheuristic algorithms. The mountain gazelle optimizer (MGO) stands out for its fast convergence and high precision, but it suffers from premature convergence and is prone to being trapped in local optima. Sarangi & Mohapatra (2024) proposed the chaotic mountain gazelle optimizer (CMGO), which leverages multiple chaotic maps to overcome these limitations. The Harris hawks optimization (HHO) algorithm, a novel swarm-based nature-inspired algorithm, has exhibited excellent performance but still has the drawbacks of premature convergence and falling into local optima due to the imbalance between exploration and exploitation. Yang et al. (2023) proposed the HHO-cs-oelm algorithm, which enhances global search capability through chaotic sequences and strengthens local search capability via opposition-based elite learning, thereby balancing exploration and exploitation. The HHO, inspired by the unique foraging strategies and cooperative behavior of Harris hawks, is also prone to local optima and slow convergence. Almotairi et al. (2023) presented several techniques to enhance the performance of metaheuristic algorithms (MHAs) and address their limitations. Chaotic optimization strategies, which have been proposed for many years to enhance MHAs, include four different types: chaotic mapping initialization, stochasticity, iteration, and control parameters. This article introduces a novel hybrid algorithm, SHHOIRC, designed to improve the efficiency of HHO. An adaptive HHO algorithm based on three chaotic optimization methods has been proposed.

To address the shortcomings of existing algorithms in terms of convergence speed and solution accuracy, this article proposes an improved hippopotamus optimization algorithm, hereafter referred to as IHO. The IHO optimizes the process by simulating hippopotamus behaviors observed in nature. The main contributions and innovations of this study are as follows. In subsequent sections, the improved algorithm will be referred to consistently as IHO.

  1. Introducing chaotic mapping for population initialization, which improves the diversity distribution of the population and enhances global search capability.

  2. Designing an adaptive exploitation mechanism that dynamically adjusts the weights of the exploration and exploitation phases based on iterative information, balancing global and local searches.

  3. Proposing a solution diversity enhancement strategy that introduces nonlinear perturbations, reducing the risk of trapping in local optima and further improving algorithm performance.

The effectiveness of the improved algorithm is validated through experiments on multiple benchmark functions. The results show that IHO outperforms the traditional HO and other mainstream optimization algorithms in terms of solution accuracy, convergence speed, and global search capability.

The structure of this article is organized as follows: “Related Work” reviews related work. “Hippopotamus Optimization Algorithm” introduces the fundamental HO. “Improved Hippopotamus Optimization Algorithm” describes the proposed improvements to the HO. “Experiment and Analysis” presents the simulation experiments and analysis of the results. Finally, “Conclusion” provides a conclusion and discusses future research directions.

Related work

In recent years, optimization algorithms have found widespread applications across various scientific and engineering fields, primarily due to their flexibility and adaptability in addressing complex, nonlinear, non-convex, and uncertain problems (Sun, 2024; Li, Lin & Liu, 2024; Fu, Dai & Wang, 2024; Sun & Ma, 2024; Ge, Xu & Chen, 2023). These algorithms are often inspired by natural phenomena and solve real-world problems by simulating various processes in nature. The inspirations behind these algorithms span biological evolution, physical and chemical laws, as well as collective behavior, human social dynamics, and game theory (Wang, 2024; Zhang, Wang & Ji, 2024; Zhang, 2024; Han, 2024; Gu et al., 2023; Wang, Li & Chen, 2024).

From different perspectives, optimization algorithms can be classified according to their objectives, decision variables, constraints, and sources of inspiration. Based on the type of objective, optimization algorithms can be categorized as single-objective, multi-objective, or many-objective. In terms of decision variables, they can be divided into continuous or discrete algorithms. Moreover, depending on whether constraints are imposed on the decision variables, optimization algorithms can be further classified as constrained or unconstrained. The diversity of sources of inspiration has led to the development of six major categories of optimization algorithms: evolutionary algorithms, physics- or chemistry-based algorithms, swarm intelligence-based algorithms, human behavior-based algorithms, game theory-driven algorithms, and mathematics-driven algorithms (Zhang et al., 2022; Zhao et al., 2023). Among these, swarm intelligence-based algorithms have gained significant attention for their efficiency and broad applicability in solving complex problems, making them a current research hotspot (Wang, 2024; Tong, 2024; Yang, 2024; Xu et al., 2023).

Swarm intelligence algorithms emulate the collective behaviors observed in animals, plants, and insects in nature, leading to the emergence of several classical algorithms (Amiri et al., 2024; Liu et al., 2024a; Yin et al., 2024). For instance, particle swarm optimization (PSO), inspired by the collective movements of bird flocks and fish schools, became one of the earliest and most widely applied algorithms. Ant colony optimization (ACO), which simulates the foraging behavior of ants, has demonstrated remarkable performance in path optimization problems. Additionally, the grey wolf optimization (GWO) and whale optimization algorithm (WOA) were inspired by the hunting strategies of grey wolves and the bubble-net feeding behavior of humpback whales, respectively, further expanding the application scope of swarm intelligence algorithms. Recently, emerging algorithms such as the beluga whale optimization (BWO) and African vultures optimization algorithm (AVOA) have also attracted research interest, showcasing ongoing innovation and development within the field of swarm intelligence.

In addition to swarm intelligence, optimization algorithms inspired by biological evolution and physical laws also play a significant role in optimization research (Amiri et al., 2024). Classical evolutionary algorithms such as genetic algorithm (GA), differential evolution (DE), and biogeography-based optimization (BBO) have shown exceptional performance across various domains. Physics-based algorithms, such as simulated annealing (SA), gravitational search algorithm (GSA), and multi-verse optimization (MVO), simulate physical phenomena, demonstrating adaptability and flexibility in different optimization scenarios (Chen et al., 2024b; Hou et al., 2023; Gong et al., 2023).

Moreover, algorithms inspired by human behavior and social dynamics have garnered widespread attention (Amiri et al., 2024; Chen, Niu & Zhang, 2022; Zheng et al., 2022; Zhao et al., 2023). For example, teaching-learning-based optimization (TLBO) and political optimizer (PO), based on teaching processes and political interactions, respectively, illustrate the unique advantages of human social behavior in solving optimization problems. Game theory-driven algorithms, such as squid game optimizer (SGO) and puzzle optimization algorithm (POA), simulate game rules and strategies, providing novel approaches to optimization.

As research continues to advance, new optimization algorithms are constantly emerging to address the limitations of existing ones, such as premature convergence and the imbalance between exploration and exploitation. For instance, the hippopotamus optimization algorithm (Amiri et al., 2024), a relatively recent method, integrates adaptive exploitation and solution diversity mechanisms, demonstrating significant advantages in solving complex problems. These innovations not only enhance algorithmic performance but also pave the way for future developments in optimization algorithms (Chen et al., 2024a; Liu et al., 2024b). However, like other stochastic metaheuristic algorithms, HO still faces common limitations. It cannot guarantee the global optimal solution due to its reliance on stochastic search strategies. Despite HO’s strong performance in certain problems, the NFL theorem suggests that it may not consistently outperform other optimization algorithms across all problems.

To overcome these limitations, this article proposes an improved hippopotamus optimization algorithm, which optimizes the problem-solving process by simulating the natural behaviors of hippopotamuses. Wang & Tian (2024) enhances the HO algorithm by integrating the Levy flight strategy based on the swarm-elite learning mechanism and the quadratic interpolation strategy. The aim is to improve its global search ability and information sharing among candidate solutions in PV model parameter extraction. The main improvement lies in the use of an elite retention strategy in the exploration phase, but the rebound in the defense and development phases is neglected. Our improvements start from the initialization of the population, introduce an adaptive strategy in the development phase, and employ Gaussian mutation and chaotic perturbation in the defense and escape phases. This approach enhances population diversity while avoiding the risk of being trapped in local optima.

Hippopotamus optimization algorithm

The workflow of the HO

This section introduces the fundamental HO. HO is inspired by the unique behaviors of hippopotamuses, incorporating their natural traits to address optimization challenges. By understanding the foundational principles and mechanisms of HO, we establish a basis for the subsequent improvements proposed in this study.

XP1 represents the updated individual position in update phase 1. This position is adjusted randomly based on the distance from the dominant hippopotamus (best solution) to explore the solution space.

XP1(i,:)=X(i,:)+rand(0,1)×(XbestI1×X(i,:)),i=1,2,..,N2where the updated position XP1(i,:) of the i-th individual in the first half of the population. X(i,:) is the current position of the i-th individual. Xbest is the distance to the current global best position in the population. N is total number of individuals in the population. m is number of dimensions in the solution space. rand is a random factor that influences the magnitude of the position update. I1 is a weighting factor that controls the influence of the individual’s current position.

XP2 represents the updated individual position in update phase 1. When the temperature parameter T is high, this position is adjusted based on the dominant hippopotamus and the mean of a random group. When T is low, it is adjusted based on the difference between the mean and the dominant hippopotamus or randomly generated within the bounds.

XP2M(i,:)={X(i,:)+B×(XmeanXbest),ifrand(0,1) > 0.5lb+rand(0,1)×(ublb),otherwisewhere B is a random scaling factor that influences the magnitude of the position update. rand(0,1) is random numbers used to decide which movement rule to apply. lb, ub is the lower and upper bounds of the search space. Xmean is the mean position of a group of individuals, which serves as a reference for the update. Xbest is the distance to the best-performing (dominant) hippopotamus in the population. If rand(0,1) > 0.5, the position is updated with respect to the mean group position Xmean and the distance to the best-performing individual Xbest. Otherwise, a random position is generated within the bounds of the search space.

XP2(i,:)={X(i,:)+A×(XbestI2×Xmean),ifT > 0.6XP2M,elsewhere T is adaptive parameter that determines whether strong or weak exploitation is used. I2 is a weight factor controlling the balance between exploration and exploitation. A is a random movement factor for controlling the exploration step size.

XP3 represents the updated individual position in the defense phase, adjusted based on the distance between the hippopotamus and the predator as well as the Levy flight strategy.

P=lb+rand(1,D)×(ublb) lb and ub are the lower and upper bounds of the search space. The predator’s position P is initialized randomly between the lower bound lb and upper bound ub in each dimension.

Levy(u,v,β)=u|v|1/βwhere uN(0,σu2) and vN(0,1) are random variables drawn from normal distributions. This equation provides Levy that follow a heavy-tailed distribution, which is often used in stochastic optimization algorithms to allow both small and occasional large jumps for efficient exploration of the solution space.

σu=(Γ(1+β)sin(πβ2)Γ(1+β2)β2(β1)/2)1/βwhere Γ denotes the gamma function. β is the power-law index, where 1 < β < 2.

DL=|PX(i,:)|

@XP3(i,:)={RL(i,:)×P+(bcd×cos(l))×(1DL),if f(i) > f(P)RL(i,:)×P+(bcd×cos(l))×(12×DL+rand(1,D)),otherwisewhere b, c, d are random scaling coefficients sampled from uniform distributions. rand is a random angle within the range [1,D].

Levy flight RL is a common random walk model used to simulate animal foraging paths, and in this case, it’s represented as: RL=0.05×Levy(S,D,β). S is the number of search agents.D is the dimensionality. β=1.5 is the Levy exponent parameter.

XP4 represents the updated individual position in the escape phase, where positions are adjusted with local random perturbation within the range between the lower and upper bounds.

XP4(i,:)=X(i,:)+rand(0,1)×(lblocal+D×(ublocallblocal)),i=1,2,...,Nwhere ublocal=ub/t and lblocal=lb/t represent the adaptive local lower and upper bounds for the hippopotamus positions, adjusting over iterations to focus the search progressively. t represents the current iteration number in the optimization algorithm.

Detailed description of the three main phases

HO consists of three main stages: exploration, defense, and exploitation. Each phase plays a crucial role in balancing the search process between exploring the solution space broadly and refining around promising areas.

Exploration phase

In this phase, the candidate solutions (i.e., the positions of the hippopotamuses) are updated based on random vectors. The update rule is influenced by the current best solution (i.e., the position of the dominant hippopotamus) and random factors. This ensures the algorithm performs a global search across the solution space, preventing premature convergence to local optima. The position of each hippopotamus is updated using the Eqs. (1) and (3).

Defense phase

In this phase, the hippopotamuses simulate their defensive behavior when predators approach. They turn towards the predator and emit intimidating sounds to drive them away. This phase is designed for exploitation, where a local search is conducted around the current solution to identify better solutions nearby. The movement is modeled by random displacement vectors, allowing the hippopotamuses to make small movements within the search space, thereby refining the search. The defense phase is updated using Eq. (8).

Escape phase

When the hippopotamuses realize they cannot repel the predator, they choose to escape, typically towards the nearest body of water. This phase aims to help the algorithm escape from local optima by generating new solutions and moving to safer positions. The escape phase simulates the behavior of finding a safe zone and enhances the local search capability to improve solution quality. The escape phase is updated using Eq. (9).

To describe the structure of the standard HO, we can mention that the algorithm follows a clear, systematic process. As outlined in Algorithm 1, the flowchart visually represents the HO’s phases.

Algorithm 1:
Hippopotamus optimization algorithm (HO).
 1: Input: Problem definition, maximum number of iterations Tmax, population size N
 2: Output: Optimal solution
 3: Step 1: Define the optimization problem: Specify the objective function and constraints
 4: Step 2: Initialize parameters: Set Tmax and N
 5: Step 3: Initialize population: Generate initial population of hippopotamuses Xi(i=1,2,,N) and evaluate their objective function values f(Xi)
 6: for t=1 to Tmax do
 7:    Update the dominant hippopotamus’s position:
 8:    Update the global best solution Xbest based on the current objective function values f(Xi)
 9:    First phase-Update hippopotamuses’ position in water:
10:    for i=1 to N2 do
11:       Compute new positions Xinew using the update strategy Eqs. (1) and (3).
12:       Update position XiXinew
13:    end For
14:    Second phase-Defend against predators:
15:    for i=N2+1 to N do
16:     Randomly generate predator positions Pi
17:     Compute new positions Xinew considering Pi using Eq. (8)
18:     Update position XiXinew
19:    end for
20:    Third phase-Escape from predators:
21:    for i=1 to N do
22:      Recompute the boundaries for decision variables
23:      Compute new positions Xinew based on new boundary conditions using Eq. (9)
24:      Update position XiXinew
25:    end for
26:    Save the current optimal solution: Record the best solution found Xbest
27: end for
28: Return the optimal solution Xbest
DOI: 10.7717/peerj-cs.2901/table-101

Limitations of HO in solving complex optimization problems

Although the HO demonstrates strong search capabilities in both the exploration and exploitation phases, it may encounter the following limitations when addressing complex, high-dimensional optimization problems.

Despite the inclusion of the escape mechanism, the algorithm remains susceptible to local optima, particularly in complex problems, which can lead to performance degradation. Additionally, in large-scale problems, the convergence speed of HO may not be ideal. The performance of the algorithm is also highly sensitive to parameter settings, such as the balance factor between exploration and exploitation, further impacting its overall effectiveness.

Improved hippopotamus optimization algorithm

Overview of the improvement strategies

The improvement strategies proposed in this article include three key components. First, chaotic map initialization utilizes logistic chaotic mapping to generate a diverse initial population, thereby enriching the solution space. Second, an adaptive exploitation module dynamically adjusts the intensity of exploitation to enhance search capability across different iteration stages. Third, a solution diversity enhancement mechanism is applied after the exploitation and escape phases, incorporating Gaussian mutation and chaotic perturbation to maintain diversity within the population and effectively prevent premature convergence.

Chaotic map initialization strategy and its role

The diversity of the initial population has a significant impact on the global search performance of the algorithm. This article introduces a population initialization method based on the Logistic chaotic map in the standard HO to increase the diversity of the initial solutions and improve the exploration capability in the early stages of the search. The Logistic chaotic map is defined by the following Eq. (10).

Xn+1=r×Xn×(1Xn)where r is the chaotic factor, typically set to 4. The initial solutions generated using chaotic mapping can more evenly cover the search space, enhancing the algorithm’s global search capability.

Design and implementation of the adaptive exploitation mechanism

In the standard HO, the exploitation intensity is fixed, and as the number of iterations increases, the search capability gradually decreases. To address this issue, this article introduces an adaptive exploitation strategy, allowing the exploitation intensity to dynamically adjust based on the iteration count. In the early stages of the algorithm, strong exploitation is used to quickly converge, while in the later stages, fine-tuned exploitation increases the likelihood of finding the global optimum.

The inertia weight w in the algorithm is dynamically updated each iteration to balance exploration and exploitation. It starts at a higher value (0.9) and gradually decreases to a minimum value (0.4) as iterations progress, following the Eq. (11).

w=wmin+(0.9wmin)×(1t/tmax)where t is the current iteration and tmax is the total number of iterations. This adaptive decay allows the search process to initially explore widely, then converge more precisely in later stages. XP1(i,:)=X(i,:)+w×rand(0,1)×(XbestI1×X(i,:)),i=1,2,..,N2

XP4(i,:)=X(i,:)+w×rand(0,1)×(lblocal+D×(ublocallblocal)),i=1,2,...,N.

The adaptive exploitation strategy effectively enhances the search capability at different stages of the iteration.

Mutation-based solution diversity enhancement mechanism

To prevent the algorithm from getting stuck in local optima, this article introduces mutation operations to enhance solution diversity. Specifically, Gaussian mutation is applied to solutions during the exploitation and escape phases to increase the population’s ability to jump out of local regions. The formula for Gaussian mutation is as follows Eq. (14).

rmutation=0.1+0.9×(1t/tmax)where rmutation is the mutation strength parameter that controls the mutation amplitude. This operation increases the randomness of the solutions and enhances the algorithm’s ability to escape from local optima.

A=rmutation×(2×rand(1,D)1)

B=rmutation×rand(1,D).

This enhancement introduces multiple update strategies for the positions XP2M (Eq. (2)) and XP2 (Eq. (3)), incorporating dynamic mutation strategies A and B to regulate the update process. During each iteration, the algorithm uses a combination of inertia-weighted and dynamically adjusted mutation strategies to improve exploration capabilities.

Pseudocode for the improved algorithm

The improvements in the proposed algorithm are threefold, each designed to address specific limitations. First, the inertia weight is gradually reduced to balance exploration and exploitation, as maintaining a fixed inertia weight can lead to premature convergence or insufficient exploration. This dynamic adjustment enhances the algorithm’s performance in the exploration phase. Second, an adaptive mutation rate adjustment is introduced to address the challenge of stagnation in later stages. By dynamically tuning the mutation rate based on the iteration count, the algorithm achieves finer searches in later stages, improving overall exploration effectiveness. Finally, in the predator escape phase, local boundary updates and position adjustments are incorporated to overcome the problem of slow convergence in complex search spaces. This adjustment improves the algorithm’s global convergence and escape capabilities during the exploitation phase, allowing it to better explore optimal solutions.

Figure 1 presents the algorithmic flowchart of the improved hippopotamus optimization algorithm, while Algorithm 2 provides the pseudocode for the enhanced HO.

Flowchart of IHO.

Figure 1: Flowchart of IHO.

Algorithm 2:
Improved hippopotamus optimization algorithm (IHO).
 1:  Input: N(SearchAgents), iter_max, lowerbound, upperbound, dimension, fitness
 2:  Output: best_score, best_pos, IHO_curve
 3:  Initialize X using the Eq. (10) within bounds
 4:  Calculate fitness of each agent
 5:  Set elite as the best solution found
 6:  for t = 1 to iter_max do
 7:     Update inertia weight using the Eq. (11)
 8:     Update mutation rate using the Eq. (14)
 9:     Step 1: River or Pond (Exploration Phase)
10:     for i = 1 to N/2 do
11:        Update Dominant_hippopotamus = best solution
12:        Compute new positions XP1 and XP2 using the Eqs. (12), (15), (16) and (3)
13:        if fitness( XP1) is better than current fitness then
14:           Update agent’s position to XP1
15:       end if
16:       if fitness( XP2) is better than current fitness then
17:         Update agent’s position to XP2
18:       end if
19:    end for
20:    Step 2: Defend against Predators (Exploration Phase)
21:    for i = N/2 + 1 to N do
22:       Generate random predator position
23:       Compute new position XP3 using the Eq. (8)
24:       if fitness( XP3) is better than current fitness then
25:          Update agent’s position to XP3
26:       end if
27:     end for
28:     Step 3: Escape from Predators (Exploitation Phase)
29:     for i = 1 to N do
30:        Update local boundaries lblocal, ublocal
31:        Compute new position XP4 using the Eq. (13)
32:        if fitness( XP4) is better than current fitness then
33:            Update agent’s position to XP4
34:       end if
35:    end for
36:    Record best solution found in current iteration
37: end for
38: Return the best solution found
DOI: 10.7717/peerj-cs.2901/table-102

In the Fig. 1, green rectangles represent Phase 1, the adaptive exploitation phase; yellow rectangles indicate Phase 2, the defense phase; and blue rectangles denote Phase 3, the escape phase.

Experiment and analysis

Experimental setup: benchmark functions and parameter configuration

In this study, we compared the effectiveness of the improved IHO with nine classical metaheuristic algorithms, including HO, PSO, sine cosine algorithm (SCA), firefly algorithm (FA), TLBO, Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), moth flame optimization (MFO), arithmetic optimization algorithm (AOA), Invasive Weed Optimization (IWO), Improved Sand Cat Swarm Optimization (ISCSO), penguin jump algorithm (PGJA) and WOA. The control parameters for these algorithms were carefully adjusted according to the specific descriptions provided in Table 1. This section presents the simulation studies of IHO on various complex optimization problems. The effectiveness of IHO in obtaining optimal solutions was evaluated through a comprehensive set of 68 standard benchmark functions. These benchmark functions include unconstrained problems, high-dimensional problems, multi-modal problems and engineering optimization problems. To further evaluate the performance of the algorithms on F1 to F23 (CEC05), 30 independent runs were performed, evaluate the performance of the algorithms on F1 to F30 (CEC17), 50 independent runs were performed, evaluate the performance of the algorithms on F1 to F12 (CEC22), 50 independent runs were performed, evaluate the performance of the algorithms on engineering optimization problems, 30 independent runs were performed. The population size for IHO was set to 24 members in AOA and TLBO, while other algorithms used 30 or 60 members, with the maximum number of iterations set to 1,000 on CEC05. The optimization results are presented using five comprehensive statistical metrics: mean, best, worst, standard deviation, and median. Among these, the mean index was particularly used as a key ranking parameter to evaluate the effectiveness of the metaheuristic algorithms on each benchmark function.

Table 1:
Algorithm parameters and their values.
Algorithm Parameter Value
HO Search agents 24
PSO Velocity limit 10% of dimension range
Cognitive and social constant (C1, C2) = (2, 2)
Topology Fully connected
Inertia weight Linear reduction from 0.9 to 0.1
SCA A 2
FA Alpha ( α) 0.2
Beta ( β) 1
Gamma ( γ) 1
TLBO Teaching factor (TF) round(1+rand)
Rand A random number between 0 and 1
CMA-ES σ(0) 0.5
μ N/2
MFO b 1
r Linear reduction −1 to −2
AOA a 0
μ 0.5
IWO Minimum number of seeds (Smin) 0
Maximum number of seeds (Smax) 5
Initial value of standard deviation 1
Final value of standard deviation 0.001
Variance reduction exponent 2
DOI: 10.7717/peerj-cs.2901/table-1

This study evaluated 23 functions (CEC05), among which F1–F7 are unimodal (UM) functions, F8–F13 are high-dimensional multimodal (HM) functions, and F14–F23 include fixed-dimensional multimodal (FM) and multimodal (MM) functions.

Specifically, the simulation environment was as follows: Windows 10, Intel Xeon CPU E5-1660 3.0 GHz, 128 GB memory.

Algorithm performance comparison

This section provides a detailed comparison of the performance of IHO against the standard HO and other widely used algorithms. The experimental results demonstrate the superior performance of IHO in terms of solution accuracy, convergence speed, and global search capability, particularly for multi-modal functions. Tables 24 shows the evaluation results of the benchmark functions, while Figs. 24 illustrates the convergence behavior of the five most effective algorithms when optimizing F1–F23 (CEC05).

Table 2:
Algorithm performance comparison on F1, F2, F3, F4, F5, F6, F7 and F8 functions (CEC05).
F M IHO HO PSO SCA FA TLBO CMA-ES MFO AOA IWO
F1 Mean 0 0 3.69E−06 14.855 9,712.8 1.24E−89 3.2243E−08 672.36 9.07E−13 1,292.5
Best 0 0 1.11E−07 0.12079 2,686.8 1.95E−91 1.5314E−08 0.71101 4.77E−160 3.4203
Worst 0 0 6.65E−05 77.5 15.976 7.75E−89 7.6176E−08 10,009 2.72E−11 4,731.2
Std 0 0 1.19E−05 20.848 2,903 1.55E−89 1.36E−08 2,536.9 4.97E−12 1,101.6
Median 0 0 7.37E−07 4.6546 9,605.9 7.33E−90 3.1564E−08 2.7663 3.04E−81 1,019.3
F2 Mean 0 0 0.0034028 0.13089 796.13 4.19E-45 0.00025096 27.865 7.60E−209 0.10835
Best 0 0 6.72E−05 0.00023745 5.1074 2.42E-46 0.00013828 0.11195 1.88E−259 0.04844
Worst 0 0 0.049467 0.070743 19,630 1.15E-44 0.0004223 80.013 2.28E−207 0.19307
Std 0 0 0.0091893 0.017935 3,561.4 3.09E−45 7.04E−05 21.195 0 0.033356
Median 0 0 0.000676 0.0048081 118.56 3.40E−45 0.00025537 25.302 1.36E−233 0.10201
F3 Mean 0 0 162.1 7,903.2 17,097 5.07E−18 0.023561 19,119 0.0075389 9,501.9
Best 0 0 36.17 224.73 7,098.1 6.80E−21 0.0023696 3,189.6 2.59E−126 2,067.5
Worst 0 0 399.71 24,159 28,712 9.53E−17 0.090665 42,334 0.047224 25,025
Std 0 0 89.026 5,848.9 4,911.1 1.72E−17 0.023315 10,697 0.011884 4,795.7
Median 0 0 154.08 6,901.6 16,339 1.20E−18 0.015358 19,243 3.59E−12 8,431.1
F4 Mean 0 1.43E−217 2.828 35.686 42.732 1.30E−36 0.0020537 67.677 0.027967 37.301
Best 0 9.84E−255 0.97132 13.438 28.564 1.24E−37 0.0010508 49.754 9.60E−54 26.965
Worst 0 3.01E−216 6.9104 64.384 51.977 5.75E−36 0.0039077 83.333 0.046479 50.889
Std 0 0 1.3593 12.293 6.0607 1.35E−36 0.0061183 9.6399 0.019333 5.2665
Median 0 4.02E−233 2.4615 33.964 43.963 8.93E−37 0.0018613 69.183 0.040356 38.063
F5 Mean 0.021681 0.12111 43.819 53,121 8,585.4 25.425 56.719 2.68E+06 28.5 145.47
Best 0.000006 0 5.8924 43.934 30.427 24.579 20.528 185.69 27.613 23.25
Worst 0.157879 1.9637 119.87 3.25E+05 41,425 26.293 684.86 8.00E+07 28.916 1,692.8
Std 3.565701E−02 0.36433 33.794 92,441 11,144 0.39027 127.83 1.46E+07 0.29675 314.02
Median 0.004886 0.0070966 25.626 6,262.6 3,219 25.42 22.307 880.08 28.522 29.201
F6 Mean 0 0 4.5 17.067 21,561 0 0 1,727.8 0 3,023.2
Best 0 0 0 0 9,654 0 0 1 0 502
Worst 0 0 37 139 28,728 0 0 10,225 0 6,159
Std 0 0 7.2099 31.139 4,301 0 0 3,791.4 0 1,649.4
Median 0 0 1.5 6 22,142 0 0 13.5 0 2,818.5
F7 Mean 6.436959E−05 3.54E−05 0.024313 0.1112 0.076687 0.0011331 0.011562 4.3902 5.80E−05 0.071947
Best 2.084746E−06 1.30E−06 0.0094839 0.018044 0.035773 0.0004299 0.005156 0.065606 1.76E−06 0.029085
Worst 1.975755E−04 0.00013102 0.055549 0.89506 0.15281 0.0023231 0.017513 77.983 0.00033704 0.12335
Std 5.211867E−05 4.10E−05 0.011822 0.16168 0.029595 0.00050432 0.0032379 14.338 7.42E−05 0.020096
Median 4.521877E−05 1.99E−05 0.020326 0.064266 0.073503 0.0009457 0.012149 0.28247 2.67E−05 0.070357
F8 Mean −13,073.468434 −12,567 −6,590.1 −3,734.5 −7,463.7 −7,906.9 −4,363.9 −8,496.8 −5,340.9 −6,695.5
Best −20,290.596194 −12,569 −8,325.1 −4,553.8 −8,678.6 −9,427.3 −5,177.9 −9,778.5− 6,242.2 −8,233.1
Worst −12,569.404004 −12,530 −4,337.3 −3,362.8 −6,488.8 −5,915.7 −3,860.7 −6,725.5 −4,587.8 −4,759.4
Std 1.918477E+03 7.3469 903.25 281.89 615.82 781.93 320.79 863.55 471.37 677.46
Median −12,569.483846 −12,569 −6,489.3 −3,679.7 −7,454.6 −8,000.2 −4,301.5 −8,559.5 −5,136.7 −6,646.7
DOI: 10.7717/peerj-cs.2901/table-2
Table 3:
Algorithm performance comparison on F9, F10, F11, F12, F13, F14, F15 and F16 functions (CEC05).
F M IHO HO PSO SCA FA TLBO CMA-ES MFO AOA IWO
F9 Mean 0 0 45.735 50.849 186.92 12.924 126.97 155.49 0 65.852
Best 0 0 22.884 0.03564 117.41 0 6.9667 84.588 0 43.819
Worst 0 0 78.602 202.58 258.69 23.007 187.18 228.14 0 93.563
Std 0 0 14.675 48.636 33.884 6.0126 71.067 40.991 0 12.894
Median 0 0 45.271 38.413 187.05 13.042 162.64 152.47 0 64.752
F10 Mean 4.44E−16 4.44E−16 1.1408 14.229 18.297 9.21E−15 5.6832−05 13.321 4.44E−16 10.679
Best 4.44E−16 4.44E−16 6.26E−05 0.050121 18.271 4.00E−15 3.4412E−05 0.68917 4.44E−16 0.0087287
Worst 4.44E−16 4.44E−16 2.4083 20.402 19.296 1.03E−13 9.5468E−05 19.962 4.44E−16 19.228
Std 0 0 0.82655 8.6665 0.21681 1.79E−14 1.5424E−05 7.836 0 9.4921
Median 4.44E−16 4.44E−16 1.3404 20.204 19.028 7.55E−15 5.4007E−05 17.837 4.44E−16 18.181
F11 Mean 0 0 0.021824 0.91439 163.94 0 2.9979e−07 6.9724 0.1554 480.41
Best 0 0 4.46E−07 0.025341 71.221 0 8.804E−08 0.43489 0.00044758 333.51
Worst 0 0 0.087692 1.6975 237.77 0 7.7197E−07 91.085 0.43829 640.31
Std 0 0 0.026358 0.42847 36.504 0 1.7512e−07 22.846 0.11095 71.029
Median 0 0 0.0098613 0.99061 163.4 0 2.6344E−07 1.0093 0.13784 477.65
F12 Mean 0.000132 9.3E−09 0.11094 40,328 42.51 0.0034654 1.9945E−09 17.719 0.51896 8.8769
Best 0 1.49E−09 6.84E−09 0.79446 13.932 6.74E−09 7.8685E−10 0.70708 0.41734 3.4841
Worst 0.000610 7.32E−08 1.0405 7.11E+05 76.246 0.10367 7.2421E−09 285.16 0.61102 12.625
Std 2.203374E−04 1.62E−08 0.23009 1.47E+05 15.885 0.0118926 1.3528E−09 50.987 0.050388 1.8974
Median 0.000011 5.33E−09 2.09E−05 17.858 44.103 1.14E−07 1.6197E−09 6.8694 0.527 8.9038
F13 Mean 0.003340 0.0050467 0.021928 6.69E+05 44,205 0.072491 2.128E−08 2.731E+07 2.81 0.0027154
Best 0 1.35E−32 1.03E−08 2.7393 50.302 2.23E−06 7.311E−09 2.1321 2.6101 5.00E−05
Worst 0.019808 0.063492 0.28572 1.31E+07 3.97E+05 0.20724 4.3763E−08 4.10E+08 2.9944 0.011275
Std 5.546983E−03 0.012164 0.05445 2.56e+06 86.550 0.069667 9.3747E−09 1.04E+08 0.092163 0.0047482
Median 0.000143 0.0014522 0.010988 1,130.3 2,772.3 0.047853 1.9344E−08 29.131 2.7955 0.00014517
F14 Mean 0.998004 0.998 5.5195 2.2512 9.502 0.998 4.7816 2.51 8.0876 11.358
Best 0.998004 0.998 0.998 0.998 0.998 0.998 1.992 0.998 0.998 0.998
Worst 0.998004 0.998 12.671 10.763 21.988 0.998 11.721 10.763 12.671 23.809
Std 0 0 3.0682 1.8878 6.2553 3.86E−16 2.4391 2.3156 4.7721 7.3331
Median 0.998004 0.998 5.9288 2.0092 8.3574 0.998 3.9742 0.998 10.763 10.763
F15 Mean 0.000308 0.00030836 0.0024923 0.0010454 0.0058617 0.00036839 0.0019 0.0013293 0.0071685 0.0027859
Best 0.000307 0.00030749 0.00030749 0.00057375 0.00030749 0.00030749 0.0011 0.000742582 0.00034241 0.00058505
Worst 0.000308 0.00031288 0.020363 0.0016389 0.020363 0.0012232 0.0035 0.0083337 0.069975 0.020363
Std 4.603049E−08 1.31E−06 0.0060732 0.00035949 0.089054 0.00018223 7.25E−06 0.0013978 0.014639 0.0059637
Median 0.000307 0.00030779 0.00030782 0.00087851 0.00030749 0.00030749 0.0016 0.00080207 0.00047392 0.00074539
F16 Mean −1.031628 −1.0316 −1.0316 −1.0316 −0.8956 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Best −1.031628 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Worst −1.031628 −1.0316 −1.0316 −1.0314 −0.21543 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Std 5.258941E−13 5.96E−16 6.71E-16 5.7E-05 0.30937 6.65E-16 6.78E−16 6.78E−16 1.22E−16 1.44E−08
Median −1.031628 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
DOI: 10.7717/peerj-cs.2901/table-3
Table 4:
Algorithm performance comparison on F17, F18, F19, F20, F21, F22 and F23 functions (CEC05).
F M IHO HO PSO SCA FA TLBO CMA-ES MFO AOA IWO
F17 Mean 0.397887 0.39789 0.39789 0.40008 0.39789 0.39789 0.39789 0.39789 0.41197 0.39789
Best 0.39789 0.39789 0.39789 0. 3,979 0.39789 0.39789 0.39789 0. 39,789 0.39813 0.39789
Worst 0.397887 0.39789 0.39789 0.40747 0.39789 0.39789 0.39789 0.39789 0. 4415 0.39789
Std 0 0 7.23E−16 0.0023394 3.86E−11 0 0 0 0.01286 5.57E−09
Median 0.397887 0.39789 0.39789 0.39939 0.39789 0. 39789 0.39789 0.39789 0.40712 0.39789
F18 Mean 3 3 3.9 3.0001 3.9 3 3 3 7.7674 3
Best 3 3 3 3 3 3 3 3 3 3
Worst 3 3 30 3.0004 30 3 3 3 37.986 3
Std 2.365956E−11 1.27E−15 4.9295 0.00010081 4.9295 5.53E−16 1.35E−15 1.62E−15 10.92 8.47E−07
Median 3 3 3 3 3 3 3 3 3 3
F19 Mean −3.862782 −3.8628 −3.8628 −3.8542 −3.8628 −3.8628 −3.8628 −3.8628 −3.8512 −3.8628
Best −3.862782 −3.8628 −3.8628 −3.8621 −3.8628 −3.8628 −3.8628 −3.8628 −3.8605 −3.8628
Worst −3.862782 −3.8628 −3.8628 −3.8443 −3.8628 −3.8628 −3.8628 −3.8628 −3.8408 −3.8628
Std 6.386724E−09 2.70E−15 6.42E−07 0.0032649 5.72E−11 2.71E−15 2.71E−15 2.71E−15 0.0088724 6.32E−07
Median −3.862782 −3.8628 −3.8628 −3.8542 −3.8628 −3.8628 −3.8628 −3.8628 −3.8516 −3.8628
F20 Mean −3.300409 −3.322 −3.2784 −2.8823 −3.2586 −3.2811 −3.2919 −3.2422 −3.0755 −3.203
Best −3.321995 −3.322 −3.322 −3.1473 −3.322 −3.3206 −3.322 −3.322 −3.1844 −3.2031
Worst −3.188840 −3.322 −3.2031 −1.9133 −3.2031 −3.1059 −3.2031 −3.1376 −2.9507 −3.2026
Std 5.843069E−02 9.78E−12 0.058273 0.32598 0.060328 0.066162 0.051459 0.063837 0.063759 0.00012908
Median −3.321995 −3.322 −3.322 −2.9914 −3.2031 −3.3109 −3.322 −3.2031 −3.0905 −3.2031
F21 Mean −10.153200 −10.153 −6.3165 −2.1516 −5.6345 −9.778 −7.9121 −6.3132 −3.4351 −6.6391
Best −10.153200 −10.153 −10.153 −6.0051 −10.153 −10.153 −10.153 −10.153 −5.5613 −10.153
Worst −10.153200 −10.153 −2.6305 −0.35136 −2.6305 −3.9961 −2.6829 −2.6305 −1.9507 −2.6305
Std 8.791181E−08 4.74E−06 3.6985 1.872 3.1766 1.4345 3.4819 3.5169 0.97125 3.4561
Median −10.153200 −10.153 −5.078 −0.88031 −5.0552 −10.153 −10.153 −5.078 −3.2531 −5.1008
F22 Mean −10.402941 −10.403 −6.7572 −2.7098 −5.3848 −9.7414 −10.403 −8.2382 −3.7002 −7.4415
Best −10.402941 −10.403 −10.403 −6.3217 −10.403 −10.403 −10.403 −10.403 −6.8593 −10.403
Worst −10.402940 −10.403 −1.8376 −0.52104 −1.8376 −5.0265 −10.403 −2.7519 −1.2708 −1.8376
Std 5.043988E−08 6.16E−05 3.7466 1.9244 3.194 1.7896 1.65E−15 3.3738 1.2624 3.7449
Median −10.402941 −10.403 −7.7659 −2.6079 −3.7243 −10.403 −10.403 −10.403 −3.6181 −10.403
F23 Mean −10.536410 −10.536 −6.0645 −4.1564 −4.7569 −10.123 −10.536 −7.9819 −4.6738 −8.3548
Best −10.536410 −10.536 −10.536 −8.3393 −10.536 −10.536 −10.536 −10.536 −8.6767 −10.536
Worst −10.536409 −10.536 −1.8595 −0.94428 −1.6766 −3.8354 −10.536 −2.4217 −1.8573 −2.4217
Std 7.476629E−08 2.99E−05 3.7424 1.5765 3.0762 1.5801 1.78E-15 3.6868 1.5405 3.437
Median −10.536410 −10.536 −3.8354 −4.6344 −3.8354 −10.536 −10.536 −10.536 −4.8892 −10.536
DOI: 10.7717/peerj-cs.2901/table-4
Convergence curves of five algorithms in each benchmark functions (CEC05, F1–F8).

Figure 2: Convergence curves of five algorithms in each benchmark functions (CEC05, F1–F8).

Convergence curves of five algorithms in each benchmark functions (CEC05, F9–F16).

Figure 3: Convergence curves of five algorithms in each benchmark functions (CEC05, F9–F16).

Convergence curves of five algorithms in each benchmark functions (CEC05, F17–F23).

Figure 4: Convergence curves of five algorithms in each benchmark functions (CEC05, F17–F23).

Figures 24 illustrates the convergence curves of the five most effective algorithms during the optimization process for F1–F23. This evaluation, as presented in Table 2, aims to assess the algorithms’ local search capabilities on eight distinct unimodal functions (F1–F8). IHO achieved global optima on F1–F4 and F5–F6, making it the only algorithm among the nine evaluated to reach this level of performance. Its performance on F4 significantly surpassed that of the other algorithms. In the highly competitive F6 test, IHO reached global optima alongside four other algorithms. Additionally, IHO demonstrated clear superiority on F7 and F8. For F1–F4 and F6, IHO consistently converged with a standard deviation of zero. For F7, the standard deviation was 5.21E−05, and for F5, it was 3.57E−2. Compared to the other algorithms, IHO exhibited the lowest standard deviation, indicating remarkable stability.

Figures 57 displays the box plots of the optimal values of the objective function obtained from 30 independent runs on F1–F23 (CEC05), utilizing IHO and five other algorithms.

Boxplot illustrating the performance of the IHO in comparison to other algorithms (CEC05, F1–F8).

Figure 5: Boxplot illustrating the performance of the IHO in comparison to other algorithms (CEC05, F1–F8).

Boxplot illustrating the performance of the IHO in comparison to other algorithms (CEC05, F9–F16).

Figure 6: Boxplot illustrating the performance of the IHO in comparison to other algorithms (CEC05, F9–F16).

Boxplot illustrating the performance of the IHO in comparison to other algorithms (CEC05, F17–F23).

Figure 7: Boxplot illustrating the performance of the IHO in comparison to other algorithms (CEC05, F17–F23).

Table 3 presents the results for HM functions on F9–F16, tested using different algorithms. These functions were chosen to evaluate the global search capabilities of the algorithms. IHO significantly outperformed all other algorithms on F12 and F13. In F9, IHO achieved global optima along with HO and AOA, demonstrating superior performance over the other algorithms. On F10, IHO performed comparably to HO and surpassed all other algorithms. For F11, IHO converged to the global optimum alongside HO and TLBO, showcasing exceptional performance. IHO also outperformed all other algorithms on F12, and in F13, IHO ranked first. In F16, IHO exhibited a notably lower standard deviation than some algorithms. For F13, the standard deviation was 5.55E−3, outperforming all other algorithms. These findings indicate that IHO demonstrates robust resilience in effectively handling these functions (refer to Fig. 3).

Furthermore, an assessment was conducted to examine the algorithm’s ability to balance exploration and exploitation during searches on F17–F23, with results recorded in Table 4. IHO exhibited the best performance on F17–F23, achieving a significantly lower standard deviation, particularly for F21–F23. These results suggest that IHO, characterized by a strong capacity to balance exploration and exploitation, exhibits outstanding performance when addressing FM and MM functions.

In benchmarked tests for CEC17 and CEC22, IHO was compared against four algorithms, including ISCSO, PGJA, SCA, and WOA. We run each problem 51 times independently. Comparison results between IHO and other algorithms are shown in Tables 5 to 15.

Table 5:
Algorithm performance comparison on F1–F11 functions (CEC17, D10).
F M ISCSO PGJA SCA WOA IHO
F1 Mean 4,987.123315 5,152,068,207 453,892,150.8 5,677.886088 425.3499924
Worst 7,462.523097 14,176,457,086 828,619,257.2 11,768.29185 1,392.986225
Best 1,883.922791 501,940,941.8 224,092,914.3 817.6520327 109.1973094
Std 2,421.895976 4,208,212,553 193,082,106.7 4,795.956709 424.9428172
p-value 0.0001554 0.0001554 0.0001554 0.0004662
F3 Mean 300.0048631 28,326.28152 738.5664608 319.5393755 300.0000036
Worst 300.0129943 59,965.39757 949.3114193 387.2733974 300.0000039
Best 300.0014739 12,745.49304 578.2110906 301.5697167 300.0000033
Std 0.003786698 19,742.95592 131.4069608 29.43817809 2.88E−07
p-value 0.0001554 0.0001554 0.0001554 0.0001554
F4 Mean 401.6984057 971.294942 424.9710217 422.7298603 400.0972279
Worst 402.4788786 1,634.217658 432.602983 480.1877739 400.0972279
Best 400.2932751 503.0818602 418.3269302 403.3673956 400.0972279
Std 0.662455257 407.8453014 4.84319693 31.86833438 0
p-value 0.0001554 0.0001554 0.0001554 0.0001554
F5 Mean 525.4378711 578.7101462 539.3010021 550.4831931 531.9629316
Worst 550.2631156 598.1207866 551.9366662 576.7734447 545.7679413
Best 512.9352649 557.6157058 533.0219727 522.8844111 509.9495863
Std 12.03057378 16.00161696 5.845632604 16.77641932 5.526872364
p-value 0.016472416 0.0001554 0.211965812 0.212587413
F6 Mean 615.043237 651.3019612 613.4589642 618.8880448 604.5450446
Worst 623.4759625 673.0403356 617.8767148 631.5962627 604.5450446
Best 608.4757515 629.8806275 608.3111776 612.0278709 601.4792689
Std 4.112977893 15.36811062 3.249770499 5.776172275 5.170038862
p-value 0.0001554 0.0001554 0.0001554 0.0001554
F7 Mean 767.696279 812.1582608 761.6917992 769.7738782 736.2916253
Worst 796.9088529 835.8907197 773.7917762 810.7424527 730.2916253
Best 741.6644502 778.5043777 752.6181514 755.0158719 727.9820221
Std 18.68517396 22.46842876 6.516619375 20.01406921 22.98925146
p-value 0.033411033 0.0001554 0.26993007 0.152292152
F8 Mean 828.7295445 857.8577399 827.6090855 836.6903697 821.267219
Worst 842.7832089 887.0136726 842.1572056 848.7532071 822.8840131
Best 814.9246164 830.502357 820.0987876 821.890121 815.919331
Std 8.826341479 19.24227874 7.491915403 8.66508297 4.573016158
p-value 0.088578089 0.0001554 0.425951826 0.0003108
F9 Mean 1,080.380236 1,944.200946 940.6257476 1,462.3526 900
Worst 1,185.15901 2,849.769501 1,001.100877 3,199.749399 900
Best 903.5457809 1,105.766715 916.6051911 989.5193139 900
Std 89.98589908 663.2691308 29.00918399 712.9630477 0
p-value 0.0001554 0.0001554 0.0001554 0.0001554
F10 Mean 1,810.778037 2,622.657972 2,071.511798 1,991.618814 1,243.198114
Worst 1,926.625916 3,000.609949 2,327.715403 2,283.262482 1,243.198114
Best 1,118.646839 2,108.924388 1,817.11791 1,681.878592 1,243.198114
Std 282.7225444 293.8512235 189.8125496 187.280999 0
p-value 0.005749806 0.0001554 0.0001554 0.0001554
F11 Mean 1,129.236945 2,224.42686 1,175.235781 1,171.019655 1,122.027224
Worst 1,223.503721 4,021.684916 1,280.410351 1,261.759158 1,120.027224
Best 1,106.854316 1,262.455908 1,141.673395 1,131.294941 1,118.40417
Std 39.39308907 1,011.358464 43.89837056 41.65821637 5.821715642
p-value 0.141258741 0.0001554 0.0001554 0.0001554
DOI: 10.7717/peerj-cs.2901/table-5
Table 6:
Algorithm performance comparison on F12–F21 functions (CEC17, D10).
F M ISCSO PGJA SCA WOA IHO
F12 Mean 15,500.44852 69,702,386.15 5,484,677.173 3,733,118.946 7,244.032995
Worst 41,581.17202 2,68,355,231.3 24,921,041.74 11,681,992.88 10,332.20899
Best 2,420.308225 4,639,492.886 311,759.8881 12,598.27213 4,447.057512
Std 14,144.74464 86,696,374.66 7,956,068.409 4,566,798.445 2,037.535011
p-value 0.694327894 0.0001554 0.0001554 0.000621601
F13 Mean 6,603.652817 2,570,794.312 8,964.410908 16,017.15392 2,761.521945
Worst 15,486.46427 7,741,754.264 14,231.06068 54,505.33354 3,923.922656
Best 1,503.173747 7,815.113334 3,281.696832 2,414.126219 1,700.251804
Std 4,446.803911 3,585,718.047 3,604.847762 18,191.85426 874.7351623
p-value 0.428127428 0.0001554 0.007925408 0.428127428
F14 Mean 1,466.944324 1,789.204279 1,510.786667 1,510.233472 1,446.784048
Worst 1,490.696059 1,874.139619 1,557.509699 1,554.596642 1,445.784048
Best 1,442.195229 1,671.107152 1,474.199885 1,446.827282 1,444.017391
Std 17.77802576 69.46464676 24.15437664 35.62557825 19.57333086
p-value 0.404195804 0.0001554 0.005749806 0.005749806
F15 Mean 1,532.435549 22,658.0514 1,743.927269 2,178.805327 1,588.391776
Worst 1,565.068607 41,491.91855 1,949.778361 4,917.587161 1,568.391776
Best 1,513.721288 11,804.87546 1,608.456658 1,552.217692 1,546.496198
Std 21.21370731 9,807.425367 116.2118651 1,126.062543 46.17100853
p-value 0.0001554 0.0001554 0.045376845 0.098212898
F16 Mean 1,840.967016 2,017.155024 1,664.989324 1,825.098683 1,612.578714
Worst 1,990.826531 2,168.334864 1,747.147766 1,943.234022 1,613.283201
Best 1,721.892698 1,925.258736 1,630.503759 1,610.639455 1,612.478073
Std 107.879074 94.71349596 35.62449591 106.2893587 0.284655822
p-value 0.305050505 0.0001554 0.000621601 0.008391608
F17 Mean 1,758.598857 1,887.343989 1,762.472079 1,754.298622 1,742.590785
Worst 1,767.225638 2,028.271588 1,777.32652 1,772.387575 1,751.510034
Best 1,742.23283 1,777.123288 1,756.040438 1,746.814912 1,727.725372
Std 7.995523967 89.46217558 7.103721377 8.39444804 12.30973196
p-value 0.009479409 0.0001554 0.0001554 0.435120435
F18 Mean 19,232.70015 2,476,478.355 58,435.879 19,803.47944 2,043.094365
Worst 45,227.44588 15,500,448.49 121,581.7599 38,859.26493 2,168.551001
Best 3,062.104297 11,679.04117 33,396.40452 2,330.88776 1,895.261609
Std 13,524.12215 5,341,003.63 29,629.35695 13,202.58429 392.1042637
p-value 0.0001554 0.0001554 0.0001554 0.0001554
F19 Mean 1,923.901044 28,665.59854 2,114.878879 26,955.70709 1,940.65217
Worst 1,931.891439 104,706.9098 2,276.780707 112,795.7633 1,990.856998
Best 1,914.481335 2,038.567496 1,976.507273 2,759.738166 1,906.403849
Std 6.243335105 32,000.17485 101.2430295 36,743.23508 28.30599937
p-value 0.0001554 0.0001554 0.0001554 0.0001554
F20 Mean 2,158.864646 2,207.448872 2,065.34018 2,126.241696 2,047.081574
Worst 2,236.338875 2,295.259967 2,098.766204 2,205.176509 2,050.141926
Best 2,039.529609 2,076.860971 2,036.44419 2,051.716088 2,035.988619
Std 67.24935225 61.73073421 17.07862108 60.64364337 60.45100662
p-value 0.083139083 0.005749806 0.005749806 0.404195804
F21 Mean 2,200.757078 2,307.476403 2,207.374272 2,270.419438 2,223.684384
Worst 2,203.598813 2,384.143801 2,210.342896 2,345.950974 2,294.737522
Best 2,200.003631 2,226.252765 2,203.282162 2,204.46207 2,200.000005
Std 1.221212601 61.31568217 2.340995504 66.44060791 43.85494879
p-value 0.093706294 0.003418803 0.093706294 0.008547009
DOI: 10.7717/peerj-cs.2901/table-6
Table 7:
Algorithm performance comparison on F22–F30 functions (CEC17, D10).
F M ISCSO PGJA SCA WOA IHO
F22 Mean 2,332.246804 2,631.769368 2,322.340101 2,372.951026 2,291.536988
Worst 2,406.281485 3,257.792962 2,343.626277 2,757.41482 2,305.072932
Best 2,308.422587 2,327.533254 2,279.142406 2,309.960526 2,212.847318
Std 32.40782935 284.1795227 25.13327707 155.4368648 31.81831746
p-value 0.0001554 0.0001554 0.088578089 0.0001554
F23 Mean 2,641.068178 2,682.44855 2,649.297214 2,644.496033 2,606.826544
Worst 2,653.366621 2,722.826597 2,653.906069 2,664.430431 2,606.826544
Best 2,626.797346 2,638.175271 2,646.622882 2,620.958212 2,606.826544
Std 9.498932884 30.61273839 2.388264412 15.90551062 0
p-value 0.0001554 0.0001554 0.0001554 0.0001554
F24 Mean 2,500.061424 2,800.353532 2,775.398787 2,778.338253 2,628.802761
Worst 2,500.092632 2,829.524799 2,783.262573 2,797.679729 2,628.802761
Best 2,500.043539 2,769.664572 2,770.601641 2,752.315952 2,500.000052
Std 0.015879457 20.28774188 4.321810298 15.64018283 80.98815952
p-value 0.0001554 0.0001554 0.0001554 0.0001554
F25 Mean 2,967.721806 3,240.145238 2,948.46828 2,939.368058 2,910.806677
Worst 3,031.040483 3,626.851166 2,966.017341 2,952.849554 2,944.189028
Best 2,945.234831 3,029.301761 2,925.951382 2,907.701395 2,943.793474
Std 38.73777098 203.9350638 15.35799872 19.15944435 20.60403462
p-value 0.0001554 0.0001554 0.003418803 0.001398601
F26 Mean 2,988.93012 3,712.706711 3,032.834061 3,703.5209 2,800.000946
Worst 3,319.502151 4,292.145424 3,053.666331 4,301.631272 2,800.000946
Best 2,800.598538 3,347.108725 3,006.151074 3,067.714586 2,800.000946
Std 170.137041 387.1582457 16.81272898 537.5671261 4.86E−13
p-value 0.0001554 0.0001554 0.0001554 0.0001554
F27 Mean 3,100.594577 3,121.884771 3,100.68734 3,109.811102 3,097.544261
Worst 3,106.427012 3,140.520171 3,103.766309 3,136.74044 3,104.16276
Best 3,092.045661 3,106.555095 3,098.953946 3,101.033305 3,090.02563
Std 5.129880954 10.73436255 1.441367004 12.47982542 4.994746238
p-value 0.0001554 0.0001554 0.0001554 0.0001554
F28 Mean 3,186.435776 3,291.891967 3,221.033323 3,421.240623 3,307.953766
Worst 3,411.821841 3,298.899209 3,236.723456 3,731.812926 3,411.924746
Best 3,100.124649 3,285.776599 3,189.756521 3,167.181092 3,100.00028
Std 141.0167965 5.629186259 15.05241389 151.9086581 125.0510793
p-value 0.083139083 0.0001554 0.0001554 0.005749806
F29 Mean 3,220.232879 3,362.776512 3,204.338191 3,314.677351 3,180.742307
Worst 3,284.86415 3,547.084329 3,258.780348 3,616.515779 3,170.742307
Best 3,178.965682 3,202.987359 3,174.073677 3,189.705822 3,177.370178
Std 31.72096474 105.5135997 29.32504574 136.631167 57.11133917
p-value 0.005749806 0.005749806 0.005749806 0.404195804
F30 Mean 13,509.80496 1,156,661.566 163,875.8087 327,472.6918 20,006.43474
Worst 51,444.99872 3,396,235.475 327,850.7839 820,578.1674 39,409.21878
Best 5,174.145667 28,130.07444 45,063.73684 15,808.2439 10,972.8307
Std 15,563.51633 1,260,349.307 116,473.4587 333,452.1831 9,917.56265
p-value 0.000621601 0.004506605 0.255788656 0.054545455
DOI: 10.7717/peerj-cs.2901/table-7
Table 8:
Algorithm performance comparison on F1–F11 functions (CEC17, D30).
F M ISCSO PGJA SCA WOA IHO
F1 Mean 292,017,921.2 54,602,176,926 11,944,943,682 4,401,883.079 1,937.38149
Worst 527,437,381 73,891,840,167 14,432,878,261 16,506,040.69 4,163.047573
Best 1,157,315.861 34,732,236,903 10,080,370,622 1,176,371.352 571.6410095
Std 242,841,632.6 14,505,437,048 1,445,590,005 5,148,145.471 1,194.963304
p-value 0.0001554 0.0001554 0.0001554 0.0001554
F3 Mean 6,592.875554 193,862.9193 36,946.78344 152,112.0146 972.2301397
Worst 16,280.07041 257,517.6835 48,791.52284 231,347.5323 1,456.793182
Best 2,069.102652 123,307.0256 23,183.20465 69,120.91318 588.2283329
Std 4,394.691599 44,226.80563 8,873.788623 58,900.29004 358.3808352
p-value 0.0001554 0.0001554 0.0001554 0.0001554
F4 Mean 521.2871451 15,390.90328 1,519.778972 531.0941842 514.1838143
Worst 540.3761612 29,569.24634 1,768.512026 594.2612394 521.9156609
Best 471.5028443 8,475.816002 1,189.835173 478.7331691 490.578135
Std 29.30041845 7,081.799406 201.2803899 32.32963674 9.947761249
p-value 0.104895105 0.0001554 0.0001554 0.104895105
F5 Mean 729.7771593 856.9469445 778.2580037 774.3609374 728.8753933
Worst 757.6973487 925.3544808 800.9015842 831.9468905 746.7491739
Best 690.1336578 773.3180969 757.13216 707.341441 699.9856953
Std 23.95054976 44.58029759 14.33161208 36.40504277 21.27144608
p-value 0.441802642 0.0001554 0.000621601 0.028127428
F6 Mean 646.6319023 683.4511262 648.9364883 669.6568011 651.280708
Worst 653.1660693 700.356083 658.1752722 688.2936903 657.8615813
Best 639.4347778 666.4831652 643.2417739 653.5274391 649.0870836
Std 4.482597405 14.64303146 5.39966958 11.56909408 4.061803166
p-value 0.001864802 0.0001554 0.028127428 0.01041181
F7 Mean 1,196.584529 1,403.412487 1,110.917413 1,235.142759 1,054.778105
Worst 1,260.347902 1,464.117048 1,161.628717 1,394.803133 1,064.188065
Best 1,111.789344 1,325.532085 1,063.090669 1,109.529037 953.8814871
Std 52.59169901 46.64549253 40.56630954 116.5113486 90.23290204
p-value 0.006993007 0.0001554 0.441802642 0.037917638
F8 Mean 973.5104573 1,129.481363 1,046.330124 1,004.69169 922.5286381
Worst 1,027.853338 1,189.891676 1,075.09119 1,058.843414 962.1857079
Best 924.521515 1,076.20449 1,034.548231 936.6616101 916.8633424
Std 38.7982171 35.46911457 13.6491679 39.99126557 16.02387599
p-value 0.194871795 0.0001554 0.0001554 0.001864802
F9 Mean 5,222.372804 9,877.964111 5,187.794745 8,177.540975 4,183.031751
Worst 5,867.601194 13,102.14064 6,550.236105 11,305.23666 4,887.721362
Best 4,577.853746 6,294.855092 4,317.271029 5,749.647385 3,070.88618
Std 479.7332628 2,078.316099 730.1754764 1,743.327276 646.2343344
p-value 0.006993007 0.0001554 0.028127428 0.0001554
F10 Mean 4,900.446449 8,769.033832 8,144.736264 6,108.605085 4,761.012918
Worst 5,633.035287 9,289.762328 8,465.174251 7,519.041975 5,196.529638
Best 3,856.79703 7,833.452431 7,802.535599 5,571.76996 4,078.291982
Std 563.0801194 456.5019826 225.5531433 598.497455 351.7157137
p-value 0.573737374 0.0001554 0.0001554 0.0001554
F11 Mean 1,235.856792 16,272.53715 2,242.839168 1,485.187865 1,164.529094
Worst 1,266.464581 28,968.65435 4,347.208243 1,749.053725 1,165.529094
Best 1,198.065961 5,315.71357 1,646.069466 1,346.271373 1,161.877026
Std 22.800785 8,626.178484 871.5621147 128.2040341 35.72963828
p-value 0.064957265 0.0001554 0.0001554 0.0001554
DOI: 10.7717/peerj-cs.2901/table-8
Table 9:
Algorithm performance comparison on F12–F21 functions (CEC17, D30).
F M ISCSO PGJA SCA WOA IHO
F12 Mean 3,893,735.818 10,762,991,447 1,204,150,091 53,544,181.27 2,739,363.429
Worst 6,136,774.139 12,631,613,989 1,558,108,812 106,630,291.9 5,338,630.393
Best 927,323.8437 8,704,282,079 893,265,690.2 21,095,292.26 649,972.9927
Std 1,837,315.004 1,417,182,823 245,946,936.1 31,721,212.59 1,708,162.482
p-value 0.13038073 0.0001554 0.0001554 0.0001554
F13 Mean 66,848.22803 7,108,305,222 278,159,803.3 236,060.1539 55,020.19703
Worst 122,008.7687 16,620,595,721 576,404,881.3 661,885.213 88,225.81303
Best 32,169.76374 211,349,141 9,532,874.93 51,304.33087 21,968.71571
Std 26,916.26907 4,982,950,718 170,009,905 188,910.7041 22,061.70522
p-value 0.573737374 0.0001554 0.0001554 0.001864802
F14 Mean 28,109.51102 7,994,248.012 115,088.8492 1,518,712.397 28,382.08989
Worst 50,614.75129 15,915,233.21 258,163.8981 4,095,454.8 58,915.79243
Best 4,903.370735 110,294.4551 30,832.44457 53,646.85126 3,362.728206
Std 18,815.74363 6,015,214.103 69,909.87692 1,487,251.065 20,130.70307
p-value 0.959129759 0.0001554 0.001864802 0.0003108
F15 Mean 16,980.33092 823,753,944.9 14,554,206.93 61,766.98681 9,130.539813
Worst 50,830.10537 2,284,609,344 50,725,595.6 138,050.7618 11,300.42731
Best 5,531.727914 151,702,816.9 841,043.1355 18,477.97716 3,632.767213
Std 14,399.81892 666,426,828.7 16,299,656.58 44,554.8301 2,908.626101
p-value 0.441802642 0.0001554 0.0001554 0.0001554
F16 Mean 2,999.107543 5,022.043056 3,532.109544 3,548.532546 2,885.769671
Worst 3,767.154767 6,043.114712 3,730.446138 3,989.026258 3,084.016852
Best 2,067.574106 3,751.13632 3,292.79637 2,845.474297 2,336.795091
Std 497.3112671 781.4674299 145.5982883 425.728683 353.9876677
p-value 0.505361305 0.0001554 0.0001554 0.006993007
F17 Mean 2,442.655259 3,352.432549 2,410.73059 2,633.775657 2,111.266319
Worst 2,816.070687 3,789.297967 2,691.834453 3,022.684126 2,121.266319
Best 2,048.597595 2,971.061296 2,114.401126 2,199.598566 2,031.212632
Std 314.681462 342.3736545 181.0819424 282.6577852 152.0067553
p-value 0.160528361 0.0001554 0.04988345 0.004662005
F18 Mean 80,356.95534 58,115,817.64 2,349,346.867 1,753,869.604 115,769.8552
Worst 126,927.4433 157,501,238.6 3,443,059.504 6,040,101.907 217,638.707
Best 40,390.9835 9,844,360.306 971,575.9576 131,232.1066 41,490.61988
Std 29,850.6702 48,382,069.71 775,955.834 1,875,590.054 55,170.35594
p-value 0.160528361 0.0001554 0.0001554 0.000621601
F19 Mean 246,965.075 518,728,506.7 24,821,409.49 3,470,629.376 70,275.40673
Worst 446,145.1839 1,484,266,735 51,959,847.63 6,560,155.248 161,706.0163
Best 2,954.224537 32,366,446.67 11,553,243.37 1,406,647.559 4,935.709261
Std 173,052.6664 468,853,978.5 14,178,050.79 2,052,430.979 63,335.7412
p-value 0.064957265 0.0001554 0.0001554 0.0001554
F20 Mean 2,567.281207 3,159.267152 2,579.284812 2,728.096849 2,436.261628
Worst 2,781.508133 3,392.528895 2,756.405947 3,059.465485 2,593.002205
Best 2,302.34815 2,729.407894 2,411.55585 2,387.230722 2,362.370376
Std 192.4560571 202.4511233 112.0988851 235.4730425 78.45269469
p-value 0.278632479 0.0001554 0.01041181 0.006993007
F21 Mean 2,572.51916 2,694.186289 2,554.434603 2,559.012129 2,438.717795
Worst 2,642.311429 2,838.229827 2,576.84909 2,676.467007 2,438.717795
Best 2,509.890835 2,623.942895 2,531.639516 2,458.412602 2,438.717795
Std 51.14666156 76.2712779 18.39540383 62.17989791 0
p-value 0.13038073 0.0001554 0.064957265 0.328205128
DOI: 10.7717/peerj-cs.2901/table-9
Table 10:
Algorithm performance comparison on F22–F30 functions (CEC17, D30).
F M ISCSO PGJA SCA WOA IHO
F22 Mean 3,094.1814 9,092.11298 8,471.509827 7,072.896845 3,686.286016
Worst 7,871.646366 10,228.67584 10,015.87024 9,962.733388 7,118.750543
Best 2,307.894963 5,853.17166 4,663.290857 4,371.685441 2,300.003441
Std 1,933.356211 1,588.089287 2,066.028385 1,648.110519 2,037.23275
p-value 0.573737374 0.000621601 0.001864802 0.01041181
F23 Mean 3,012.683212 3,246.422092 2,981.313836 3,115.234801 2,874.494647
Worst 3,161.106827 3,468.868344 3,004.324878 3,212.76467 2,949.559422
Best 2,880.171663 3,044.450811 2,945.840725 2,873.263341 2,792.294751
Std 91.75925869 159.0001986 19.96224234 106.2430543 57.03912532
p-value 0.004662005 0.0001554 0.0003108 0.001864802
F24 Mean 3,262.17368 3,454.817034 3,164.941193 3,207.096879 3,029.078137
Worst 3,334.903778 3,567.955707 3,196.220456 3,401.250435 3,035.370079
Best 3,100.531143 3,304.138491 3,131.798738 3,009.651887 2,957.550837
Std 73.33435879 87.66140419 21.66106942 130.6393863 51.63234843
p-value 0.001864802 0.0001554 0.006993007 0.037917638
F25 Mean 2,917.66177 5,619.257499 3,187.527743 2,947.500442 2,945.519632
Worst 3,052.510397 7,394.318822 3,394.763524 2,986.311453 2,962.684802
Best 2,885.323924 4,268.59773 3,099.524355 2,908.564728 2,908.071022
Std 55.80294739 1,154.923286 92.62697519 26.92310133 17.61016888
p-value 0.01041181 0.0001554 0.0001554 0.194871795
F26 Mean 7,042.629065 10,854.39371 6,809.200766 7,331.584475 6,665.625262
Worst 8,751.640492 12,973.2633 7,810.991274 8,226.531488 7,738.319778
Best 3,600.219462 8,612.54091 4,729.814685 6,641.802357 2,800.009595
Std 1,642.023335 1,574.961224 945.4346689 613.2100457 1,641.411716
p-value 0.278632479 0.0001554 0.278632479 0.04988345
F27 Mean 3,365.180066 3,200.007275 3,381.463625 3,377.371312 3,356.756468
Worst 3,440.583453 3,200.007309 3,405.395808 3,497.983108 3,515.291845
Best 3,263.110573 3,200.007255 3,352.702104 3,257.317301 3,266.563595
Std 60.4009494 2.10E−05 18.26956401 66.49338878 88.45829752
p-value 0.720901321 1.55E-04 0.194871795 0.382284382
F28 Mean 3,348.433888 3,300.007296 3,880.423941 3,323.201987 3,264.934756
Worst 3,458.499929 3,300.007344 4,458.943086 3,370.746706 3,276.515001
Best 3,221.564408 3,300.007255 3,673.597126 3,230.843037 3,213.320007
Std 96.78331233 3.61E−05 251.1540734 46.90082494 24.9135985
p-value 0.160528361 1.55E−04 0.0001554 0.01041181
F29 Mean 4,304.267122 7,231.881019 4,617.214905 4,589.774637 4,257.69641
Worst 4,859.970391 9,130.545881 4,839.838089 5,104.602889 4,247.69641
Best 4,031.610678 5,485.274069 4,211.358315 3,991.744675 3,781.594522
Std 265.6988526 1,186.947621 232.9355674 428.6714343 380.6498471
p-value 0.328205128 0.0001554 0.001864802 0.04988345
F30 Mean 679,632.1067 1,008,907,129 72,093,210.49 13,987,338.26 952,537.4116
Worst 2,177,700.418 2,020,243,537 96,868,364.84 20,825,059.16 1,482,768.199
Best 225,829.102 358,782,799.1 50,891,002.34 3,524,684.38 486,342.7661
Std 626,989.1644 617,846,992.6 18,720,181.93 6,035,567.003 414,447.396
p-value 0.037917638 0.0001554 0.0001554 0.0001554
DOI: 10.7717/peerj-cs.2901/table-10
Table 11:
Algorithm performance comparison on F1–F11 functions (CEC17, D50).
F M ISCSO PGJA IHO
F1 Mean 2,314,099,692 1.09517E+11 136.840116
Worst 8,198,278,337 1.26697E+11 136.840116
Best 20,208,421.52 86,911,769,556 136.840116
Std 2,843,388,068 13,807,029,031 0
p-value 0.0001554 0.0001554
F3 Mean 26,386.64688 397,051.7131 10,602.8233
Worst 38,357.0491 562,402.2137 11,451.01267
Best 14,650.02724 255,866.7868 8,058.255166
Std 8,544.87766 121,229.5124 1,570.541547
p-value 0.0001554 0.0001554
F4 Mean 759.0707486 32,027.03949 537.2610501
Worst 1,120.646643 40,355.53108 537.2610501
Best 633.1780322 26,388.32262 537.2610501
Std 154.8346565 5,897.527889 0
p-value 0.0001554 0.0001554
F5 Mean 869.955658 1,165.503128 879.0762527
Worst 911.0651916 1,247.942274 879.0762527
Best 840.2921017 1,057.015335 879.0762527
Std 22.29331944 55.22214722 1.22E−13
p-value 0.404195804 0.0001554
F6 Mean 658.2406525 702.4874347 666.8369202
Worst 664.0948239 715.0579358 666.8369202
Best 646.8882899 691.6213642 666.8369202
Std 5.582102644 7.311618235 0
p-value 0.0001554 0.0001554
F7 Mean 1,607.708753 2,594.14136 1,585.87234
Worst 1,660.602809 2,897.755392 1,598.024979
Best 1,534.491621 2,192.247545 1,500.803861
Std 45.20701757 235.3686815 34.37285611
p-value 0.255788656 0.0001554
F8 Mean 1,174.289768 1,504.794049 1,151.606486
Worst 1,234.950511 1,590.087983 1,161.353849
Best 1,094.997975 1,391.408435 1,122.3644
Std 44.96484331 63.34009926 18.04860774
p-value 0.055633256 0.0001554
F9 Mean 13,153.88226 35,528.15606 12,453.95075
Worst 14,722.03726 45,211.8866 12,453.95075
Best 11,462.79806 25,635.42303 12,453.95075
Std 981.4170759 7,669.769752 0
p-value 0.083139083 0.0001554
F10 Mean 8,034.456962 14,540.15265 8,396.009456
Worst 8,385.917489 16,083.51594 8,396.009456
Best 7,623.952502 13,519.63647 8,396.009456
Std 291.8761871 968.1372401 1.94E−12
p-value 0.0001554 0.0001554
F11 Mean 1,497.234556 39,836.45248 1,438.295597
Worst 2,039.311997 65,413.8759 1,438.295597
Best 1,291.997226 24,918.83344 1,438.295597
Std 274.3483854 16,165.17532 2.43E−13
p-value 0.404195804 0.0001554
DOI: 10.7717/peerj-cs.2901/table-11
Table 12:
Algorithm performance comparison on F12–F21 functions (CEC17, D50).
F M ISCSO PGJA IHO
F12 Mean 18,565,838.19 72,253,248,327 15,172,139.37
Worst 61,470,238.03 1.14439E+11 36,806,291.76
Best 6,881,750.138 43,529,553,921 7,960,755.245
Std 17,744,990 20,649,104,729 13,352,888.75
p-value 0.211965812 0.0001554
F13 Mean 115,673.4413 43,008,030,561 30,789.3711
Worst 187,464.0141 61,717,816,386 30,789.3711
Best 58,543.75843 21,754,994,609 30,789.3711
Std 41,702.14048 14,797,303,325 7.78E−12
p-value 0.0001554 0.0001554
F14 Mean 150,776.8918 45,671,647.33 198,708.0026
Worst 397,490.9004 56,395,938.55 198,708.0026
Best 13,179.61048 30,666,512.55 198,708.0026
Std 144,330.1219 8,958,847.141 3.11E−11
p-value 0.404195804 0.0001554
F15 Mean 32,526.42873 6,346,023,143 40,475.88833
Worst 45,655.50297 10,806,139,052 40,475.88833
Best 23,601.7272 3,702,532,382 40,475.88833
Std 7,919.675402 2,130,310,224 7.78E−12
p-value 0.083139083 0.0001554
F16 Mean 4,088.56059 7,450.126177 3,881.020621
Worst 4,664.264423 9,426.512662 4,383.841565
Best 2,962.777752 5,728.470888 3,579.328055
Std 574.1646386 1,326.03294 416.3752989
p-value 0.225485625 0.0001554
F17 Mean 3,544.74373 9,388.045439 3,156.434988
Worst 4,075.034571 22,133.00435 3,381.474316
Best 2,583.06957 4,581.519772 2,931.395659
Std 448.7058611 6,994.111059 240.5771616
p-value 0.032944833 0.0001554
F18 Mean 603,500.6482 213,665,529 573,322.3636
Worst 967,792.8767 312,242,464.6 726,014.2105
Best 140,938.2612 60,582,287.99 115,246.823
Std 254,020.2798 92,960,961.08 282,730.3618
p-value 0.68982129 0.0001554
F19 Mean 110,661.7469 2,894,965,576 383,732.6233
Worst 239,577.9614 5,331,080,081 466,838.3318
Best 18,915.58155 1,124,037,801 134,415.498
Std 66,649.18961 1,326,650,161 153,881.8705
p-value 0.001398601 0.0001554
F20 Mean 3,490.99755 4,384.976119 3,034.259798
Worst 3,811.434398 4,834.057077 3,034.259798
Best 2,882.390684 3,817.158148 3,034.259798
Std 315.6157628 404.3570663 4.86E−13
p-value 0.005749806 0.0001554
F21 Mean 2,852.755744 3,152.229775 2,711.42004
Worst 2,994.926201 3,266.921142 2,711.42004
Best 2,726.387748 2,981.223517 2,711.42004
Std 82.43139462 87.21052092 4.86E−13
p-value 0.0001554 0.0001554
DOI: 10.7717/peerj-cs.2901/table-12
Table 13:
Algorithm performance comparison on F22–F30 functions (CEC17, D50).
F M ISCSO PGJA IHO
F22 Mean 10,097.24514 16,803.13079 9,732.499713
Worst 11,349.78656 17,464.97428 9,732.499713
Best 8,540.927621 16,043.0824 9,732.499713
Std 1,031.750704 526.810641 0
p-value 0.404195804 0.0001554
F23 Mean 3,602.451297 4,045.506676 3,253.492207
Worst 3,871.667746 4,468.972728 3,253.492207
Best 3,411.751427 3,746.183096 3,253.492207
Std 145.7138778 249.9047003 4.86E−13
p-value 0.0001554 0.0001554
F24 Mean 3,848.679083 4,276.830802 3,351.770618
Worst 4,013.647607 4,540.111469 3,351.770618
Best 3,668.632648 4,074.245681 3,351.770618
Std 139.8321169 190.8561342 9.72E−13
p-value 0.0001554 0.0001554
F25 Mean 3,185.211572 15,882.78515 3,152.955715
Worst 3,596.612505 18,749.49117 3,236.749371
Best 2,968.714186 12,740.29072 3,140.985193
Std 221.423474 2,212.060556 33.85774996
p-value 0.365967366 0.0001554
F26 Mean 8,777.798701 18,080.35163 10,606.71126
Worst 11,889.39314 19,558.16955 10,606.71126
Best 3,920.09441 17,277.78713 10,606.71126
Std 2,891.009547 733.2340026 0
p-value 0.404195804 0.0001554
F27 Mean 4,399.218332 3,200.012303 3,832.989558
Worst 4,931.682129 3,200.012333 3,832.989558
Best 4,021.580808 3,200.012234 3,832.989558
Std 337.3443606 3.33E−05 0.00E+00
p-value 0.0001554 1.55E−04
F28 Mean 3,492.179616 3,300.012256 3,682.983594
Worst 3,570.484076 3,300.012271 3,706.738994
Best 3,385.987202 3,300.012254 3,659.228193
Std 58.81338379 5.72E−06 2.54E+01
p-value 0.0001554 1.55E−04
F29 Mean 5,476.629177 33,729.43285 7,268.356279
Worst 5,975.510304 87,404.64033 7,674.186487
Best 4,820.372827 15,559.58063 6,862.526071
Std 393.0630929 24,358.23358 433.8507415
p-value 0.0001554 0.0001554
F30 Mean 15,148,162.29 5,828,428,279 73,112,987.03
Worst 26,376,873.21 8,004,252,232 73,112,987.03
Best 9,533,173.098 2,851,446,925 73,112,987.03
Std 5,037,618.121 1,892,099,398 0
p-value 0.0001554 0.0001554
DOI: 10.7717/peerj-cs.2901/table-13
Table 14:
Algorithm performance comparison on F1–F12 functions (CEC22, D10).
F M ISCSO PGJA SCA WOA IHO
F1 Mean 300.0012578 21,338.68361 906.5997847 2,829.335784 300.0002745
Worst 300.001671 27,074.97094 1,746.427039 6,948.481906 300.0002745
Best 300.0006552 16,887.61786 559.3418705 852.7937575 300.0002745
Std 0.000360695 4,090.369186 515.2253636 2,021.677714 0
p-value 0.0001554 0.0001554 0.0001554 0.0001554
F2 Mean 414.8410642 847.092998 440.7568793 415.7694813 400.0013254
Worst 470.7811823 1,178.825537 458.830874 470.9843296 400.0016179
Best 404.0431036 488.229109 424.6529838 400.5182491 400.000838
Std 22.72884453 259.0588808 13.33279631 22.72119917 0.00040364
p-value 0.0001554 0.0001554 0.0001554 0.0001554
F3 Mean 610.4462434 645.518811 615.1519582 618.0276477 605.3286787
Worst 623.0026936 665.0160481 619.6103312 626.0617612 615.7245529
Best 604.5948396 622.1797317 611.9532154 609.7453232 603.8435538
Std 5.867560732 12.80481863 2.83449212 5.771840262 4.200567518
p-value 0.001087801 0.002486402 0.0001554 0.003574204
F4 Mean 831.2168366 849.1022722 830.4806923 838.4271051 823.8789572
Worst 840.793418 873.8764745 837.1507328 852.7325001 823.8789572
Best 828.8537737 819.5417472 820.1171686 821.8615371 823.8789572
Std 4.082916517 17.38866659 6.492910164 12.08543922 1.22E−13
p-value 0.0001554 0.005749806 0.083139083 0.005749806
F5 Mean 1,127.132015 1,698.560702 956.6005676 1,248.855047 1,058.149104
Worst 1,286.699153 2,774.698988 1,002.719039 1,523.89676 1,058.149104
Best 909.3275639 1,343.481464 931.7917725 931.0984207 962.3759894
Std 111.840472 484.3676296 28.26596108 217.3116082 50.24911778
p-value 0.083139083 0.0001554 0.0001554 0.083139083
F6 Mean 2,215.112601 37,154,384.36 1,014,506.694 3,481.401386 1,875.065285
Worst 3,132.335475 153,147,587.9 1,948,446.737 7,289.229874 1,875.065285
Best 1,890.547321 481,459.4485 145,228.7776 1,937.256284 1,875.065285
Std 413.1683248 53,166,581.43 568,951.3022 1,855.875635 4.86E−13
p-value 0.0001554 0.0001554 0.0001554 0.0001554
F7 Mean 2,056.321589 2,102.976131 2,046.161298 2,054.607512 2,030.758565
Worst 2,080.29621 2,168.781983 2,059.740497 2,110.136792 2,040.865563
Best 2,021.030765 2,058.764382 2,034.308974 2,017.281643 2,027.389565
Std 17.50209049 41.0124064 7.396737978 28.80401545 6.238174686
p-value 0.005749806 0.0001554 0.005749806 0.404195804
F8 Mean 2,223.500609 2,237.046616 2,229.873114 2,229.785739 2,223.073336
Worst 2,226.232685 2,256.779258 2,232.604617 2,233.828848 2,223.073336
Best 2,220.34207 2,227.803163 2,225.677743 2,223.831819 2,223.073336
Std 2.022923903 11.22947611 2.172679836 3.781934734 0
p-value 0.404195804 0.0001554 0.0001554 0.0001554
F9 Mean 2,529.284404 2,683.420966 2,540.361975 2,529.454456 2,529.324209
Worst 2,529.284425 2,806.680338 2,546.003124 2,529.934086 2,529.461261
Best 2,529.28439 2,560.456424 2,536.387211 2,529.289165 2,529.30463
Std 1.19E−05 89.14189293 3.368801013 0.26891251 0.05537734
p-value 1.55E−04 0.0001554 0.0001554 0.632012432
F10 Mean 2,500.763953 2,633.763317 2,501.379955 2,531.058537 2,501.398645
Worst 2,501.588971 2,717.11002 2,501.692888 2,627.359992 2,501.398645
Best 2,500.349608 2,523.660092 2,501.153504 2,500.590289 2,501.398645
Std 0.380386122 81.77358517 0.163161169 56.25562509 0
p-value 0.005749806 0.0001554 0.404195804 0.083139083
F11 Mean 2,619.110939 3,576.461769 2,757.536158 2,820.69916 2,912.204163
Worst 2,750.610263 4,177.032161 2,769.738377 3,000.115535 2,912.204163
Best 2,600.269189 2,798.869696 2,732.661559 2,600.325514 2,912.204163
Std 53.13375914 414.3148504 13.16798927 129.0200532 0
p-value 0.0001554 0.005749806 0.0001554 0.005749806
F12 Mean 2,866.390826 2,887.361512 2,867.070403 2,874.959046 2,867.476747
Worst 2,869.03429 2,900.002364 2,868.105648 2,890.594673 2,872.827683
Best 2,863.874865 2,874.877797 2,866.174792 2,866.016365 2,865.221204
Std 1.615114155 10.20492632 0.585047573 9.10518868 2.162104734
p-value 0.71002331 0.0001554 0.31033411 0.146542347
DOI: 10.7717/peerj-cs.2901/table-14
Table 15:
Algorithm performance comparison on F1–F12 functions (CEC22, D20).
F M ISCSO PGJA SCA WOA IHO
F1 Mean 488.8042873 52,158.81726 8,317.419385 1,029.367555 1,052.905909
Worst 804.0535642 84,288.25498 11,741.11935 1,678.114956 1,052.905909
Best 300.07585 26,667.36825 5,868.122615 516.056089 1,052.905909
Std 260.3916547 22,317.80721 1,776.063565 362.7102611 0
p-value 0.0001554 0.0001554 0.0001554 1
F2 Mean 447.3834514 1,907.550058 622.4472336 481.4735839 455.319274
Worst 452.9074736 2,550.505744 687.3139401 565.7871322 455.319274
Best 444.9123181 1,096.912876 581.5163473 449.1374627 455.319274
Std 2.786319672 465.351248 33.45574714 43.72293039 0
p-value 0.0001554 0.0001554 0.0001554 0.404195804
F3 Mean 632.2573257 679.1834401 631.9149429 655.9119578 645.3814982
Worst 646.6117706 694.2620618 638.395115 677.4479154 645.9315182
Best 620.9962574 669.0115305 621.8877361 638.107855 641.5313582
Std 7.98755262 8.185014182 5.471980267 14.26477887 1.555691481
p-value 0.0001554 0.0001554 0.0001554 0.68966589
F4 Mean 881.5961829 967.5608162 928.9619702 914.1121341 872.6318082
Worst 910.440157 1,004.202627 941.6453729 1,008.016661 872.6318082
Best 854.7906913 945.4250628 917.6065107 859.7987221 872.6318082
Std 16.70932698 18.48610962 10.18169581 46.79015057 1.22E-13
p-value 0.088578089 0.0001554 0.0001554 0.005749806
F5 Mean 2,555.926717 5,332.554773 1,986.496681 3,213.587228 2,049.345083
Worst 2,783.651934 8,907.179362 2,477.240028 5,200.323265 2,050.440548
Best 2,382.487316 2,914.518721 1,681.335774 2,488.711257 2,049.188588
Std 136.4568109 2,034.825769 276.9718404 868.5469296 0.442634661
p-value 0.0001554 0.0001554 0.090753691 0.0001554
F6 Mean 4,075.697684 1,154,401,226 81,954,086.58 7,949.369402 2,677.887165
Worst 6,641.240621 2,583,141,493 149,857,095.6 20,786.25895 2,938.176238
Best 2,429.680752 291,954,563.6 20,375,879.8 2,195.946759 2,521.713722
Std 1,267.899961 719,990,911.7 41,721,914.5 7,663.163639 215.5398297
p-value 0.009479409 0.0001554 0.0001554 0.318414918
F7 Mean 2,120.05609 2,260.937642 2,104.445225 2,164.418042 2,137.30073
Worst 2,187.496746 2,433.01941 2,120.083384 2,229.150558 2,137.30073
Best 2,071.509508 2,127.474371 2,081.140945 2,092.004779 2,136.636663
Std 35.41168296 97.98106173 16.0447879 49.37958283 1.2
p-value 0.005749806 0.005749806 0.0001554 0.083139083
F8 Mean 2,240.200397 2,458.173285 2,245.755753 2,274.434031 2,230.445148
Worst 2,253.602792 2,713.626065 2,249.40696 2,376.551734 2,231.024571
Best 2,226.81159 2,239.791749 2,240.582754 2,232.883657 2,228.70688
Std 9.276854148 171.1019923 3.571372924 62.95429951 1.072882727
p-value 0.008391608 0.0001554 0.0001554 0.0001554
F9 Mean 2,480.793405 2,961.059114 2,542.279169 2,486.065295 2,481.871841
Worst 2,480.804732 3,284.67978 2,575.337128 2,494.690517 2,481.871841
Best 2,480.783828 2,593.116114 2,520.524817 2,480.881462 2,481.871841
Std 0.006424571 205.6861281 21.20646064 5.360079074 0
p-value 0.0001554 0.0001554 0.0001554 0.083139083
F10 Mean 2,570.431061 5,321.696779 2,518.082924 4,273.195864 2,500.832789
Worst 3,056.987303 7,211.498925 2,525.290057 5,396.578064 2,500.946918
Best 2,500.523244 2,899.972799 2,511.887519 2,500.919791 2,500.466397
Std 196.598616 1,951.02717 5.117671087 905.7961643 0.303401546
p-value 1 0.0001554 0.0001554 0.005749806
F11 Mean 3,098.018288 7,622.174023 4,259.125479 3,217.164464 2,900.003623
Worst 3,363.530219 9,568.223698 4,682.75808 5,311.841662 2,900.003623
Best 2,604.4943 6,477.055237 3,659.227011 2,604.146351 2,900.003623
Std 338.3518427 970.2817973 419.1889007 860.8487609 4.86E−13
p-value 0.083139083 0.0001554 0.0001554 0.005749806
F12 Mean 2,969.309989 2,900.004765 3,023.264466 3,030.207843 2,976.303321
Worst 3,002.925356 2,900.004782 3,049.894619 3,307.222416 2,976.303321
Best 2,953.774194 2,900.004753 3,011.539927 2,953.662188 2,976.303321
Std 16.43738863 1.09E−05 13.15477767 115.7593027 4.86E−13
p-value 0.083139083 0.0001554 0.0001554 0.404195804
DOI: 10.7717/peerj-cs.2901/table-15

From Tables 5 to 15 shows four indicators, namely mean value, maximum value, minimum value and standard deviation. In addition, at the significance level of 5%, Wilcoxon rank sum tests are used to confirm whether IHO makes a significant contribution to other algorithms. “−” means “not applicable” which means that the best algorithm cannot be statistically compared to itself in the rank sum test.

The results of each evaluation are shown in Tables 5 to 15 for the total number of runs. The table also shows the p-values of the IHO and other algorithms, confirming the significant differences between the IHO proposed in this article and the other algorithms.

When dealing with CEC17, CEC22 benchmark functions, the convergence curve of IHO is compared with other classical algorithms, as shown in Figs. 812. Observing from this, it can be realized that many algorithms fall into the local solutions of most functions. For many functions, the IHO shows a high balance between the exploration and development phases.

Convergence curves of five algorithms in each benchmark functions (CEC17 D10).

Figure 8: Convergence curves of five algorithms in each benchmark functions (CEC17 D10).

Convergence curves of five algorithms in each benchmark functions (CEC17, D30).

Figure 9: Convergence curves of five algorithms in each benchmark functions (CEC17, D30).

Convergence curves of three algorithms in each benchmark functions (CEC17, D50).

Figure 10: Convergence curves of three algorithms in each benchmark functions (CEC17, D50).

Convergence curves of five algorithms in each benchmark functions (CEC22, D10).

Figure 11: Convergence curves of five algorithms in each benchmark functions (CEC22, D10).

Convergence curves of five algorithms in each benchmark functions (CEC22, D20).

Figure 12: Convergence curves of five algorithms in each benchmark functions (CEC22, D20).

The speed reducer problem (Eq. (17)) aims to minimize the total weight by adjusting parameters such as gear module, teeth number, and shaft length, while meeting stress, deformation, and gear ratio constraints. It involves mixed-integer nonlinear programming (e.g., integer teeth counts) and is a classic case in mechanical transmission optimization.

minx0.7854x1x22(3.3333x32+14.9334x343.0934)1.508x1(x62+x72)+7.4777(x63+x73)+0.7854(x4x62+x5x72)s.t.g1=27x1x22x310,g2=397.5x1x22x3210,g3=1.93x43x2x64x310,g4=1.93x53x2x74x310,g5=(745x4x2x3)2+16.9×106110x6310,g6=(745x5x2x3)2+157.5×10685x7310,g7=x2x34010,g8=5x2x110,g9=x112x210,g10=1.5x6+1.9x410,g11=1.1x7+1.9x510,2.6x13.6,0.7x20.8,17x328,7.3x4,x58.3,2.9x63.9,5.0x75.4.

Gear train design problem (Eq. (18)) optimizes gear teeth numbers and modules (discrete variables) to minimize transmission ratio error, subject to geometric constraints (e.g., no undercutting) and material strength limits. It is widely used in multi-stage reducers and robotic joint design.

minxf(x)=(16.931x3x2x1x4)2s.t.12xi60,i{1,2,3,4}xiZ+,

Three-bar truss design problem (Eq. (19)) minimizes truss mass by adjusting cross-sectional areas of bars under stress, displacement, and stability constraints. Its nonlinear constraints and narrow feasible domain make it a benchmark for testing optimization algorithms.

minx1,x2(22x1+x2)×100+1015k=13[gk2H(gk)],H(gk)={1,gk > 00,gk  0s.t.g1:2(2x1+x2)2x12+2x1x220g2:2x22x12+2x1x220g3:22x2+x1200x11,0x21.

When dealing with three engineering optimization problems, IHO is compared with other classical algorithms, as shown in Table 16. From these observations, we can know that IHO performs better than other algorithms.

Table 16:
Algorithm performance comparison on engineering problems.
Problem Metrics GJO PGJA IHO
Speed reducer Mean 3,002.3409 3,410.0096 2,983.1335
Worst 3,012.5920 4,127.4708 2,992.5352
Best 2,996.4256 3,189.4433 2,894.7444
Std 6.1953 402.2998 18.4221
Gear train design Mean 1.69×1014 6.78×1012 0
Worst 4.36×1014 3.39×1011 0
Best 2.19×1016 0 0
Std 2.18×1014 1.52×1011 0
Three bar truss design Mean 263.8969 264.0344 263.8958
Worst 263.8976 264.2412 263.8958
Best 263.8961 263.9156 263.8958
Std 5.41×104 0.1242 3.65×105
DOI: 10.7717/peerj-cs.2901/table-16

Hyperparameter sensitivity analysis

This subsection also provides a sensitivity analysis of IHO to the hyperparameter N. To examine the sensitivity of HO to hyperparameter N, the proposed algorithm is applied across varying values of N, specifically 20, 30, 50, and 100. These differing values of N are utilized to optimize the performance on benchmark functions F1 to F23. The optimization results are presented in Table 17. The sensitivity analysis of IHO to the hyperparameter N indicates that increasing the number of search agents enhances IHO’s capability in exploring the search space, thereby improving the performance of the proposed algorithm and reducing objective function values.

Table 17:
Function values for different N (CEC05).
Fun N=20 N=30 N=50 N=100
F1 0.000000×100 0.000000×100 0.000000×100 0.000000×100
F2 0.000000×100 0.000000×100 0.000000×100 0.000000×100
F3 0.000000×100 0.000000×100 0.000000×100 0.000000×100
F4 0.000000×100 0.000000×100 0.000000×100 0.000000×100
F5 2.340199×102 1.225009×104 6.915110×103 4.712653×104
F6 0.000000×100 0.000000×100 0.000000×100 0.000000×100
F7 1.789226×105 3.078213×105 8.631090×105 8.970116×106
F8 1.256949×104 1.256946×104 1.256949×104 1.256949×104
F9 0.000000×100 0.000000×100 0.000000×100 0.000000×100
F10 4.440892×1016 4.440892×1016 4.440892×1016 4.440892×1016
F11 0.000000×100 0.000000×100 0.000000×100 0.000000×100
F12 2.197844×104 4.980854×107 8.288517×109 5.816707×105
F13 4.965446×1031 1.359225×104 5.141361×105 4.638197×105
F14 9.980038×101 9.980038×101 9.980038×101 9.980038×101
F15 3.076108×104 3.074877×104 3.074866×104 3.074879×104
F16 1.031628×100 1.031628×100 1.031628×100 1.031628×100
F17 3.978874×101 3.978874×101 3.978874×101 3.978874×101
F18 3.000000×100 3.000000×100 3.000000×100 3.000000×100
F19 3.862782×100 3.862782×100 3.862782×100 3.862782×100
F20 3.321995×100 3.321995×100 3.321995×100 3.321995×100
F21 1.015320×101 1.015320×101 1.015320×101 1.015320×101
F22 1.040294×101 1.040294×101 1.040294×101 1.040294×101
F23 1.053641×101 1.053641×101 1.053641×101 1.053641×101
DOI: 10.7717/peerj-cs.2901/table-17

Analysis of advantages and disadvantages of the improved algorithm

Through a series of standard benchmark functions, this study validates the performance of the improved IHO. The experimental results indicate that the improved algorithm outperforms the standard HO and other common metaheuristic algorithms in both convergence speed and solution accuracy. Notably, IHO demonstrated stronger global search capability on multi-modal functions. The evaluation results are presented in Tables 24, and Figs. 2, 5 displays the convergence curves of the three most effective algorithms in optimizing CEC05, CEC17, CEC22 and engineering optimization problems. The key findings are summarized as follows.

IHO consistently outperformed other algorithms in terms of convergence speed across a range of benchmark functions, achieving global optima in multiple cases, demonstrating superior convergence. Additionally, the improved algorithm provided higher solution accuracy compared to the standard HO and other metaheuristic algorithms, particularly in multi-modal optimization problems. Furthermore, IHO exhibited lower standard deviation, indicating greater stability in maintaining solution quality over multiple independent runs.

While IHO demonstrates substantial improvements over HO and other algorithms, some limitations remain, such as parameter sensitivity and the computational cost for large-scale problems. However, the overall performance of IHO shows that it is a promising optimization algorithm for solving complex optimization problems.

Conclusion

In this article, we introduced an improved version of the hippopotamus optimization algorithm by implementing three key modifications to enhance its performance. The first modification introduces a gradual reduction of the inertia weight, which helps balance the exploration and exploitation phases, allowing the algorithm to search the solution space more efficiently. The second modification involves adaptively adjusting the mutation rate based on the iteration count, improving the precision of the search in the later stages and reducing the risk of premature convergence. Finally, the predator escape phase has been refined with local boundary updates and position adjustments, resulting in significantly improved global convergence and a greater ability to avoid local optima.

The improved HO was benchmarked on a set of optimization problems, where its performance was compared against the original HO and several well-known metaheuristic algorithms. Results demonstrated that the improved HO consistently achieved superior solutions with higher accuracy, while effectively avoiding common issues such as getting trapped in local minima. The adaptive mechanisms incorporated into the algorithm improved its balance between exploration and exploitation, particularly in complex, high-dimensional search spaces.

Comparative experiments on functions (CEC05, CEC17 and CEC22), using metrics like mean, variance, median, p-value, convergence curves, and box plots, confirmed the enhanced performance of the modified HO over the original and other algorithms. These results highlight the effectiveness and robustness of the proposed improvements in addressing diverse optimization challenges.

In conclusion, the proposed enhancements to the HO algorithm have demonstrated their ability to significantly improve global optimization performance. Future work could explore further extensions of this algorithm, including multi-objective or binary versions, and investigate its application to a wider range of real-world optimization problems across various domains.

Supplemental Information