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ABSTRACT
Background. This review focuses on reviewing the recent publications of swarm
intelligence algorithms (particle swarm optimization (PSO), ant colony optimization
(ACO), artificial bee colony (ABC), and the firefly algorithm (FA)) in scheduling and
optimization problems. Swarm intelligence (SI) can be described as the intelligent
behavior of natural living animals, fishes, and insects. In fact, it is based on agent
groups or populations in which they have a reliable connection among them and with
their environment. Inside such a group or population, each agent (member) performs
according to certain rules that make it capable of maximizing the overall utility of
that certain group or population. It can be described as a collective intelligence among
self-organized members in certain group or population. In fact, biology inspired many
researchers to mimic the behavior of certain natural swarms (birds, animals, or insects)
to solve some computational problems effectively.
Methodology. SI techniques were utilized in cloud computing environment seeking
optimum scheduling strategies. Hence, the most recent publications (2015–2021) that
belongs to SI algorithms are reviewed and summarized.
Results. It is clear that the number of algorithms for cloud computing optimization
is increasing rapidly. The number of PSO, ACO, ABC, and FA related journal papers
has been visibility increased. However, it is noticeably that many recently emerging
algorithms were emerged based on the amendment on the original SI algorithms
especially the PSO algorithm.
Conclusions. The major intention of this work is to motivate interested researchers
to develop and innovate new SI-based solutions that can handle complex and multi-
objective computational problems.
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INTRODUCTION
Scheduling and optimization techniques have been applied to cloud environments, leading
to a research area called evolutionary scheduling and optimization and represents the
integration of artificial intelligence (AI) and operational research. Working with a cloud
environment is complex and tedious in that there is a large need for better scheduling and
optimization strategies. Since the computational problems are generally multi-objective in
nature and complex, the traditional scheduling and optimization techniques are considered
inadequate. With the emergence of AI techniques, these AI-based algorithms boosted the
performance of scheduling and optimization approaches. Over the years, it has become
abundantly manifest that these biodiversity of resources strategies are great enhancer
for cloud computing work environments; therefore, they provide a robust, reliable, and
enhanced strategies for better task achievement and workload distribution among the
available cloud resources.

The evolutionary algorithms mimic species evolution based on Darwin’s theory. They
form a cluster of algorithms in which the genetic algorithm (GA) was the first proposed one.
Recently, several SI algorithms have been applied widely to solve complex multi-objective
problems. The ant colony optimization (ACO), for example, has been utilized in weather
routing and in the travelling salesman problem (TSP). The particle swarm optimization
(PSO) algorithm had a large implementation in constrained and unconstrained functional
optimization problems. However, this article aims to review and summarize themost recent
publications of SI techniques. In cloud computing, task scheduling is very important (Zuo
et al., 2015) due to its direct effect in the performance of systems. As task scheduling
problems are considered NP-hard problems, they need to meet user needs and improve
the overall performance of the systems. This work would be of interest to the students
and readers in this domain since SI algorithms lack enough supporting publications
and resources as compared to the well-known methods like neural networks or genetic
algorithms. Moreover, the challenge of identifying the changes of parameter settings in the
mentioned SI methods in this work, and the hybrid associations between the existing SI
approaches, facilitates the way for students and readers in this domain better understand
and build on the existing techniques. Figure 1 presents the reviewed SI-based algorithms
in this work.

This review contributes to the overall deployment of SI based techniques namely PSO,
ABC, ACO, and FA, respectively, in scheduling and optimization problems. As many
researchers had emphasized the importance of hybrid swarms in solving multi-objective
scheduling and optimization problems, this review provided a reference in which it
summarizes the recent hybrid techniques used to solve multi-objective problems. The
review also highlighted the importance of parameter settings in scheduling problems.
Additionally, it elaborated on the basics of SI methods that focused on the implementation
of PSO, ABC, ACO, and FA in cloud environment scenarios. However, this study is
structured into different sections starting with a basic introductory background. This is
followed by a survey methodology which is then followed by sections separately dealing
with SI-based algorithms in details. The algorithms discussed among SI-based are PSO,
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Figure 1 The reviewed SI-based algorithms hierarchy.
Full-size DOI: 10.7717/peerjcs.696/fig-1

ACO, ABC, and FA studies. A future directions of action discusses the probability of
some algorithms to gain prominence in research. Finally, a conclusions section has been
introduced.

SURVEY METHODOLOGY
This review is conducted in several stages. First of all, the particular algorithms to be
investigated were identified. Second, the authors paid attention to the hybrid nature
between the identified SI-algorithms and the commonly parametric settings for problem
solving. The aim of this review was to survey the literature to determine how SI algorithms
were modified and hybridized to improve the performance of scheduling in cloud
computing environment. However, this review scoped the latest publications for the
following algorithms namely (PSO, ACO, ABC, and FA) in scheduling and optimization
problems. Therefore, the last 5 years’ publications for the mentioned algorithms were
almost reviewed with a focus on determining the main parameters that have been changed
or modified to optimize the performance of each SI algorithm in cloud computing
environment. However, this review highlighted the hybrid approach between the reviewed
algorithms. In addition, a summarized and brief applications for the identified algorithms
were conducted. Finally, the review is unbiased since it just highlighted the main modified
parameters in the above-mentioned SI algorithms and their applications in the last five
years. It is noteworthy that other SI methods such as Cuckoo search and Levy flights were
excluded from the current study, thereby decreasing the scope in order to have a detailed
discussion.

Particle Swarm Optimization (PSO)
The PSO represents a well-known metaheuristic optimization technique due to its ease
implementation in unsupervised, and complex problems. It is a reliable technique that has
been used for treating several optimization problems. In fact, it is based on a physical model
in which its transition rules are constructed by mimicking the social collective behavior
observed from flocks of birds and/ or schools of fish (Sengupta, Basak & Peters, 2018). The
PSO initializes a swarm of particles in which they traverse the search space looking for an
optimal global best. In fact, each particle represents a potential solution. Suppose that Xi(t )

be the position of any ith particle at a given time t. Then, its velocity is regulated based on
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Table 1 PSOmetaheuristic algorithm.

1 Initialize particles population in hyperspace
2 While termination criteria not met do
3 Evaluate fitness of individual particles
4 Modify velocities based on previous best and global best
5 End-While

the current position being lower than the global best position (Sengupta, Basak & Peters,
2018). Table 1 illustrates the metaheuristic PSO algorithm.

As the particles search for food sources using original PSO, they may stick in local search.
This may lead to less convergence in the search space. Due to some major shortcomings of
the original PSO algorithm such as stagnation and local optima convergence, several studies
were conducted to overcome such flaws. For these reasons, several researchers proposed
a modified PSO or hybrid PSO computational strategies to enhance the performance
of the original PSO algorithm. Generally, any given optimization problem concerns the
selection of best possible solution that minimizes or maximizes a utility function based
on some constraints. Therefore, SI-based approaches could introduce an acceptable and
reliable solution to scheduling and optimization problems. SI-based solution for any
given optimization problem, can be though as watching a team of players who cooperate
together, share information, and update their positions collectively seeking a goal that
formulates the rapprochement of victory (global best solution). Hence, seeking an efficient
task allocation, a hybrid GA-PSO algorithm was proposed by Manasrah & Ali (2018). The
proposed GA-PSO aimed at the reduction of the following parameters: makespan, cost, and
load balance of cloud computing dependent tasks. However, another study by Ebadifard &
Babamir (2018) presented a static task scheduling approach to improve PSO performance
by utilizing a load balancing method. Another study by Alsaidy, Abbood & Sahib (2020)
tried to improve PSO’s initialization using both ‘‘longest job to fastest processor (LJFP)’’ and
‘‘minimum completion time (MCT)’’ methods. Additionally, Zhou et al. (2018) proposed
a cloud computing model based on energy consumption named M-PSO that is capable
of handling the slow convergence issue and local optimum. Tabrizchi, Kuchaki Rafsanjani
& Balas (2021) proposed a self-adaptive hybrid method named ICA-PSO to handle the
multi-tasking scheduling issue by combining PSO and imperialist competitive algorithm
(ICA) algorithms. Using reverse learning and gene mutation methods, Li et al. (2021)
proposed amodified PSO to improve population diversity. Tominimize the total execution
time, a hybrid scheduling approach named GA-PSO was proposed by Senthil Kumar,
Parthiban & Siva Shankar (2019) using PSO and genetic algorithm (GA). Moreover, to
allocate tasks to a computing resources efficiently, Alkhashai & Omara (2016) presented
two hybrid algorithms named Best-Fit-PSO (BFPSO) and PSO-Tabu Search (PSOTS).
Another modified PSO named LBMPSO was introduced by Pradhan & Bisoy (2020) to
schedule resources in cloud computing environment based on load balancing. Liu et al.
(2019) proposed an adaptive disruption algorithm to enhance global and local search.
Moreover, Farid et al. (2020) presented a survey on PSO to assist researchers and users
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Figure 2 The original PSO algorithm.
Full-size DOI: 10.7717/peerjcs.696/fig-2

determine the most important QoS considerations in cloud computing environments. The
literature claimed that many researchers tried to develop new PSO scheduling strategies to
enhance optimal solution convergence by introducing different load balancing methods.
However, vectors in PSO can be updated using Eqs. (1), (2) below. Figure 2 illustrates the
basic PSO algorithm.

V t+1
ij =wV t

ij+ c1r
t
1

(
pbestij−X t

ij

)
+ c2r t2

(
gbestj−X t

ij

)
.................. (1)

X t+1
ij =X t

ij+V
t+1
ij .................. (2)

Ant Colony Optimization (ACO)
Ant colony optimization algorithm has a great advantage in addressing the combinatorial
optimization problems. Several studies had investigated the scheduling tasks using ant
colony algorithm in cloud computing environment. They normally categorized according
to their targets focus such as scheduling efficiency, system performance, or cost. ACO
represents an intelligent algorithm for path planning (Dai et al., 2019; Jovanovic, Tuba &
Voß, 2016; Wang, Lin & Wang, 2016). It has a strong calculative mechanism (Ahmed et al.,
2020). Generally, it is used for optimization by updating the pheromone trails and orienting
the ants around the search space by which each ant generates a new fitness function to be
used for generating an overall global fitness. The next state in ACO strategy is determined by
the roulette wheel method in which it will be repeated till the goal point has been achieved.
Upon the completion of each iteration, the ants update the pheromone trails along the
length of path planning. In the available literature, the ACO has been applied mostly to
society detection with single objective (Shahabi Sani, Manthouri & Farivar, 2020), while
it has been applied to a multi-objective ACO optimization using decomposition (Mu et
al., 2019). In fact, ant colony inspired researchers in how ants find the best route to food
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Figure 3 The ACODiagram.
Full-size DOI: 10.7717/peerjcs.696/fig-3

source. Updating the pheromone trails is proposed by Ekmekci (2019) using a modified
ACO that memorizes solution costs.

To solve the TSP problem, Tamura, Sakiyama & Arizono (2021) introduced a modified
ACO algorithm using individual memories (IM) named Ant System Using Individual
Memories (ASIM) that aims to optimize ant’s diversity in the search space. Seeking an
optimal solution for ship-weather routing multi-objective optimization problem, Zhang et
al. (2021) introduced an improved ACO algorithm considering several parameters such as
fuel consumption, sailing time, and navigation safety. A unified adaptive ACO algorithm
was proposed by Yuan, Yuan & Huang (2017) related to SNP epistasis with multi-objective
functions detection GWAS datasets. In addition, Senthil Kumar & Venkatesan (2019)
proposed a hybrid genetic-PSO (HGPSO) algorithm to solve the problemof task scheduling.
Another modified PSO algorithm named IPSO was introduced by Yu (2020) to optimize
resource scheduling efficiency. The generated solution around the gbest for each ant can
be expressed as in Eq. (3). The ACO algorithm diagram can be seen in Fig. 3.

Z d
i =N

(
gbest di ,σi

)
............... (3)

Artificial Bee Colony Optimization (ABC)
The ABC represents a meta-heuristic approach for investigating the behavior of bees. A
typical ABC’s applications can be found in several areas such as cloud computing, image
processing, big data analysis, and neural networks. The ABC algorithm represents the most
successful optimization SI algorithms (Aslan & Karaboga, 2020). They introduced a new
ABC strategy for big data optimization using several signal decomposition techniques.
Many studies (Wang et al., 2019) (Dokeroglu, Sevinc & Cosar, 2019) (Ranjan & Krishna,
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2018) integrated both ABS and PSO algorithms seeking some sort of optimization in terms
of updating personal best and global best objective functions. Seeking better random-initial
allocation solutions to the scout bees in the ABC optimization, Beed, Roy & Bhattacharya
(2019) proposed a hybrid PSO-Bees algorithm to solve multi-objective optimization
problems. Another hybrid ABC-Heuristic technique was proposed by Kruekaew &
Kimpan (2020) to improve scheduling solutions in virtual machines in homogeneous
and heterogeneous cloud computing environments. A new added control-mechanism
to the original ABC algorithm was introduced by Aslan (2019) to model the transitions
of the employed-bees into dancing area. Trying to solve ‘‘Job-Shop-Scheduling-Problem
(JSSP)’’ by minimizing the make-span, a new discrete ABC algorithm named DABC
was introduced by Witkowski (2019). As computer-computing speed develops, many SI
techniques are utilized in crowed evacuation research (Zhao et al., 2020). A multi-strategy
ABC algorithm was introduced by Xiang et al. (2019) to enhance the comprehensive
performance of the original ABC algorithm using a neighborhood search method. A study
by Sheoran, Mittal & Gelbukh (2020) used the ABC strategy in the data-flow testing field
to prioritize the definition-use paths. Moreover, a modified ABC algorithm was proposed
by Sharma, Sharma & Sharma (2018) to solve the job-shop scheduling problem (JSSP).
However, food source initialization and food source updating strategy of ABC algorithm
are described in Eqs. (4), (5) below.

Xij =Xmin
i + rand (0,1)

(
Xmax
j −Xmin

j

)
..................... (4)

Vij =Xij+∅
(
Xij−Xki

)
..................... (5)

Firefly Algorithm (FA)
The firefly algorithm (FA) represents a metaheuristic approach that mimics the
flashing behavior of fireflies (Farahlina Johari et al., 2017). It represents an evolutionary
optimization approach. It has been applied to various challenging applications (Xia et al.,
2018). Nayak et al. (2020) conducted an in-depth study about the variants, importance,
and applications of FA in biomedical engineering (BME) fields. However, a comparison
concerns the performance of PSO and firefly algorithm has been presented by Windarto
& Eridani (2020) focusing on parameter estimation of ‘‘Lotka–Volterra’’ type competition
model. Their comparison was based on profit data of rural bank and commercial bank in
Indonesia. Moreover, to enhance the quality of the solution of ‘‘Unrelated parallel machine
scheduling problem (UPMSP)’’, a modified salp swarm algorithm (SSA) based on FA
was proposed by Ewees, Al-qaness & Elaziz (2021) using the operators of FA to enhance
SSA’s exploitation capability for working as a local search. Seeking an optimummachining
parameter such as feed rate, spindle speed, and depth of cut, a hybridized strategy based
on FA and PSO was developed by Farahlina Johari et al. (2017) to achieve an improved
solution for search space exploration. To decrease time complexity of the original FA
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algorithm,Umbarkar, Balande & Seth (2017) proposed a modified FA algorithm that ranks
the fireflies based on a quick sort algorithm instead of bubble sort technique.

To handle the optimal operation of thermal generating unit’s problem, an improved FA
algorithm named improved firefly algorithm (IFA) was proposed byNguyen, Quynh & Van
Dai (2018) to reduce the cost of electricity generation fuel. Another study byMa et al. (2019)
aimed to overcome the problem of FA being fall into slow convergence and local extremum,
by using a reverse learning initialization and Levy perturbation mechanisms based on FA
algorithm. A hybrid optimizer based on PSO and FA entitled ‘‘FAPSO’’ has been proposed
by Xia et al. (2018) to sanction the flies to explore more favorable sub-regions. Another
study by Tighzert, Fonlupt & Mendil (2019) tried to reduce the computational cost and
memory storage of the traditional FA algorithm by introducing a compact firefly approach
that uses aminimum computational cost.Wahid & Ghazali (2019) proposed pattern search
(PS) to terminate the FA to handle the drawback of the standard FA in its ending phase
as it fails to get the optimal value since there is no observed improvement to the quality
of the outcomes. A study by Hussein & Jaber (2020) introduced a modified FA algorithm
to handle unit commitment problems. They claimed that the modified FA algorithm is
more efficient than the classical FA in the selection of generator and error amid load and
generation. To solve several non-linear ‘‘convex’’ optimal power flow (OPF), a hybrid
algorithm consists of FA and PSO named ‘‘HFPSO’’ algorithm was introduced by Khan et
al. (2020). Additionally, Dai, Liang & Zhang (2020) proposed a new FA-based algorithm
to search for the optimal solution for uplift effect in the high-pressure jet grouting (HPJG)
project. Another study (Peng et al., 2018) proposed a hybrid fish swarm algorithm based
on the behavior of Lévy flight and firefly named LFFSA to overcome the problem of local
optimum convergence. Several components (logistic and Gauss, Lévy flight, and adaptive
inertia weight) were utilized by Chou & Ngo (2017) to introduce a modified FA algorithm
(MFA) to optimize the multidimensional structural design. To adjust the parameters of
the proportional integral-derivative (PID) controller in a buck converter, a hybridized
algorithm using FA and PSO named HFPSO was proposed by Ekinci et al. (2019). Figure 4
represents the common modified and hybrid FA algorithms.

V.1 FA Position Update
In FA, the distance between any two fireflies i and j at Xi and Xj can be calculate using

Cartesian distance as per Eq. (6).

rij =
∣∣Xi−Xj

∣∣=
√√√√ d∑

k=1

(Xik−Xjk)2 ..................... (6)

where k represents spatial coordinate component andd represents the number of dimensions.
However, the movement of any firefly i towards an attractive firefly j can be described

as per Eq. (7) below.

Xi=Xi+β0e−γ r2
(
Xj−Xi

)
+α(rand−0.5)..................... (7)

where α randomization parameter and r and is function generator.
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Figure 4 Commonly available FA algorithms.
Full-size DOI: 10.7717/peerjcs.696/fig-4

The future research directions of SI algorithms
This review explored the potential applications of PSO, ABC, ACO, and FA algorithms.
However, there was a little research on multi-objective scheduling and optimization
compared to a single-objective approach. This indeed highlights the importance of utilizing
the swarm algorithms in solving complex multi-objective problems. As many scholars
developed a modified SI algorithm, Table 2 summarizes the modified SI methods and their
applications. It can be utilized to further introduce new modified or hybrid algorithms and
to be used formulti-objective complex problems optimization. PSO algorithm, for instance,
still has a potential for more optimized modifications in which it can be self-adaptive to
handle loss of diversity, and/ or local optima stagnation issues. Moreover, despite the
modifications that carried out on ACO algorithm, still it can be improved for applications
that are more practical. Expert prior knowledge can also be applied to ACO algorithm in
future, which believed to improve efficiency of ACO algorithm. Additionally, ABC can
be applied to parallel computation in run-time by tuning its parameters in which this
could optimize solutions to the NP-Hard combinatorial problems. Path prioritization
represents a promising challenge for ABC algorithm. However, there are several areas in
which FA algorithm can be utilized to cope with. Applying FA’s variations such as Gaussian,
and/ or multi-population in biomedical engineering (BME) and healthcare (HC) areas
can be fruitful research opportunities. Table 3 illustrates the most used parameters for
modification. However, the main challenges in SI-based in scheduling and optimization
problems are multi-objective search, multidimensional numeric problems, fitness function
improvement, local optima escaping, global optima finding. Figure 5 shows a count analysis
for the reviewed articles in this survey.
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Table 2 The modified swarm intelligence methods and their applications.

# Title Authors Problem to be solved The proposed solution

PSO Algorithm
1 Multi-task Scheduling Algorithm

Based on Self-adaptive Hybrid ICA–
PSO Algorithm in Cloud Environment

Tabrizchi, Kuchaki Rafsanjani & Balas (2021) Multi-tasking
scheduling issue

Self-adaptive hybrid PSO
named ICA-PSO

2 A Modified PSO Algorithm for Task
Scheduling Optimization in Cloud
Computing

Zhou et al. (2018) Slow convergence issue
and local optimum

Modified PSO named
‘‘M-PSO’’

3 A Novel Load Balancing Technique
for Cloud Computing Platform Based
on PSO

Pradhan & Bisoy (2020) Load balancing
rescheduling

LBMPSO

4 BF-PSO-TS: Hybrid Heuristic
Algorithms for Optimizing Task
Schedulingon Cloud Computing
Environment

Alkhashai & Omara (2016) Inefficient tasks
allocation

Best-Fit-PSO (BFPSO)
and PSO-Tabu Search
(PSOTS)

5 A PSO-Based Task Scheduling Al-
gorithm Improved Using a Load-
Balancing Technique for the Cloud
Computing Environment

Ebadifard & Babamir (2018) Low performance
of PSO

Static task scheduling
using load balancing

6 A modified particle swarm optimiza-
tion for large-scale numerical opti-
mizations and engineering design
problems

Liu et al. (2019) Large-scale numerical
optimizations and engi-
neering design problems

Cauchy mutation
technique

ACOAlgorithm
7 An Ant Colony Optimization Mem-

orizing Better Solutions (ACO-MBS)
for Traveling Salesman Problem

Ekmekci (2019) Tuning the pheromone
trail

Memorizes the solution
costs and updates the
pheromone trail

8 Mobile Robot Path Planning Based
on Ant Colony AlgorithmWith A*
Heuristic Method

Dai et al. (2019) Low convergence and
deadlock problem

Using of A ∗ algorithm
ubrk and MAX-MIN Ant
system to improve ACO
heuristics.

9 Multi-Objective Ant Colony Opti-
mization Algorithm Based on Decom-
position for Community Detection in
Complex Networks

Mu et al. (2019) Multi-objective
optimization

A modified ACO
algorithm

10 Application of Improved Multi-
Objective Ant ColonyOptimization
Algorithm in Ship Weather Routing

Zhang et al. (2021) Ship-weather routing
optimization problem

Using of modified ACO

11 Ant Colony Optimization Using Com-
mon Social Information and Self-
Memory

Tamura, Sakiyama & Arizono (2021) Traveling salesman
problem (TSP)

ASIM (Modified ACO
algorithm using
individual memories (IM))

ABC Algorithm
12 A genetic Artificial Bee Colony algo-

rithm for signal reconstruction based
big data optimization

Aslan & Karaboga (2020) Big data optimization Using of several signal
decomposition techniques

(continued on next page)
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Table 2 (continued)

# Title Authors Problem to be solved The proposed solution

13 Particle swarm optimization and dis-
crete artificial bee colony algorithms
for solving production scheduling
problems

Witkowski (2019) Job-Shop-Scheduling-
Problem (JSSP)

Discrete ABC algorithm
named DABC

14 FAACOSE: A fast adaptive ant colony
optimization algorithm for detecting
SNP Epistasis

Yuan, Yuan & Huang (2017) SNP epistasis detection A unified adaptive ACO algorithm

15 An improved artificial bee colony
algorithm for pavementresurfacing
problem

Ranjan & Krishna (2018) pavement resurfacing
optimization problem

ABC algorithm for eliminating
thetrigger roughness level
specification beforehand.

16 Beer froth artificial bee colony algo-
rithm for job-shop scheduling prob-
lem

Sharma, Sharma & Sharma (2018) JSSP Modified BeFABC algorithm for
JSSP

FA Algorithm
17 Enhanced Salp Swarm Algorithm

Based on Firefly Algorithm for Un-
related Parallel Machine Scheduling
with Setup Times

Ewees, Al-qaness & Elaziz (2021) UPMSP modified salap algorithm (SSA)
based on FA

18 Unit Commitment Based on Modified
Firefly Algorithm

Hussein & Jaber (2020) Unit commitment
problems

Modified FA algorithm

19 Firefly Optimization Algorithm for
the Prediction of Uplift Due to High-
Pressure Jet Grouting

Dai, Liang & Zhang (2020) HPJG FA algorithm with Stochastic
medium theory (SMT)

20 Modified Firefly Algorithm for Mul-
tidimensional Optimization in Struc-
tural Design Problems

Chou & Ngo (2017) Multidimensional
structural design

A modified FA algorithm (MFA)

21 Hybrid Firefly and Particle Swarm
Optimization Algorithm for PID Con-
troller Design of Buck Converter

Ekinci et al. (2019) Proportional integral-
derivative (PID)
controller adjustment

A hybridized algorithm using
FA and PSO (HFPSO)

Table 3 Most modified swarms’ parameters.

# Parameter Usage

1 PSO (Inertia weight) To control the swarm velocity
2 PSO (Acceleration coefficients) Enhance efficiency and stability
3 ACO (α) To determines the influence of the

pheromone trail
4 ACO (β) To determine heuristic value
5 ABC (Scout bees)
6 ABC (Tabu List size)

To balance exploration vs exploitationTo
balance exploration vs exploitation

7 FA (β0) Initial attractiveness
8 FA (γ) Absorption parameter

CONCLUSIONS
This review focused on the overall deployment of SI-based algorithms (PSO, ABC, ACO,
and FA, respectively) in scheduling and optimization problems. As stated in the literature,
several scholars tried to introduce new SI-based scheduling strategies to optimize search
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Figure 5 Count analysis for the reviewed articles in this survey.
Full-size DOI: 10.7717/peerjcs.696/fig-5

space exploration and exploitation by proposing a variety of parametric-modification
and load balancing schemes. However, many researchers had emphasized the importance
of hybrid swarms in solving multi-objective scheduling and optimization problems. As
task-scheduling represents a major issue in cloud computing environment, many hybrid
techniques were proposed by scholars to improve the performance of traditional SI
algorithms and to allocate the suitable cloud resources to user tasks. However, the reviewed
algorithms in general lose solution quality when their dimensionality increased. It is
noteworthy that parameter settings for one problem do not operate for every problem.
However, the basics of SI methods that target the implementation and illustration of PSO,
ABC, ACO, and FA in cloud environment scenarios have been elaborated in detail. In
addition, some of the most current and noteworthy applications of SI-based techniques
for cloud environment scheduling we are surveyed. The future plan for this work aims to
develop a hybrid SI strategy utilizing the most dominant parameters such as inertia weight,
acceleration coefficients, and Tabu list size.
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