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ABSTRACT
The utilization of drone technology thrives in diverse domains, including aviation,
military operations, and logistics. The pervasive adoption of this technology aims to
enhance efficiency while mitigating hazards and expenditures. In complex contexts, the
governing parameters of uncrewed aerial vehicles (UAV) require real-time adjustments
for flight safety and efficacy. To improve the attitude estimation accuracy, this
article introduces a ATT-Bi-LSTM framework for optimizing UAVs through adaptive
parameter control, which integrates the state information gleaned from communication
signals. The ATT-Bi-LSTM achieves data feature extraction by means of a two-layer
Bidirectional Long Short-Term Memory (BI-LSTM) at its inception to enhance the
feature. Subsequently, it harnesses the attention mechanism to amplify the LSTM
network’s output, thereby enabling the optimal control of UAV positioning. During
the empirical phase, we employ optical system data for the comparative validation of
the model. The outcomes underscore the commendable performance of the proposed
framework in this study, particularly with regard to the three pivotal position indicators:
yaw, pitch, and roll. In the comparison of indicators such as RMSR and MAE, the
proposed model has the lowest error, which provides algorithm support and important
reference for future UAV optimization control research.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Data Science, Neural Networks
Keywords LSTM, BI-LSTM, Attention mechanism, UAV control, Attitude estimation

INTRODUCTION
The rapid evolution and ubiquitous integration of drone technology stand as conspicuous
hallmarks within the modern technological landscape. In tandem with the relentless
march of progress, drones have transcended their origins in the military sphere and
now find extensive application in civilian and commercial domains. Presently, drone
technology exerts a profound influence across diverse sectors, ranging from agriculture,
aerial photography, environmental surveillance, and rescue missions to logistics and
scientific investigation. Drones furnish an economically prudent and efficacious means
to execute tasks, thereby facilitating the profligate consumption of human resources
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and time (Fan, Li & Zhang, 2020). Furthermore, these aerial marvels demonstrate their
exceptional utility by venturing into perilous or otherwise inaccessible regions, where
they proficiently undertake a plethora of tasks, encompassing search and rescue missions,
natural disaster monitoring, and epidemic detection. In a complementary vein, drone
technology assumes a pivotal role in the agricultural arena, elevating crop management
efficiency through the judicious employment of intelligent sensors and cutting-edge
image processing technology. Consequently, farmers stand better equipped to administer
their arable lands and augment crop yields (Shi et al., 2022). Hence, the attainment of
streamlined and precision-centric drone control emerges as an indispensable cornerstone
in the expansion of the drone industry.

The role of communication data in drone control is pivotal. Effective surveillance of
communication information during drone operations holds paramount significance in
the evaluation of drone flight stability. The advancement of real-time communication
technology has, in tandem, propelled the swift evolution of drones. Deep learning
techniques are harnessed for the implementation of visual simultaneous localization
and mapping (SLAM), endowing drones with the capability to construct real-time
environmental maps and ascertain their positions, thereby facilitating more judicious
flight path planning. Moreover, deep reinforcement learning methods assume a pivotal
role in autonomous control, enabling drones to deftly adapt to dynamic environmental
fluctuations and navigate the vagaries of uncertain flight missions (Zeng & Zhang, 2017).

Consequently, they become integral in contexts like search and rescue operations,
security monitoring, and military missions. Within this sphere, a succession of improved
YOLOmethods and novel network architectures have burgeoned, ushering in a burgeoning
wave of research from theUAVperspective. The reliability and efficiency of communication
data are non-negotiable for the success of drone control. The expeditious progress
of deep learning has wrought a profound transformation in the realm of drone pose
control (Wu, Zeng & Zhang, 2018). Neural network controllers stand to augment flight
performance, particularly in the face of inclement weather conditions, through the
simulation of flight data. Deep learning applications within the autonomous driving system
bolster UAV flight stability, enhancing its resilience in the face of risks and unforeseen
exigencies. Subsequently, via the employment of deep reinforcement learning methods,
Drone Reinforcement Learning (DRL) techniques acquire flight strategies through their
interactions with the environment. They utilize deep neural networks to articulate value
functions and strategies. Established DRL algorithms like Deep Q Network (DQN) and
Deep Deterministic Policy Gradient (DDPG) have found application in UAV control
endeavors (Carrio et al., 2017).

Hence, considering the current landscape of deep learning research, this study delves
into the realm of UAV position control and optimization. It proffers a UAV position
optimization model predicated on deep learning networks, with the overarching objective
of attaining the acme of UAV position control. The precise contributions of this article are
delineated as follows:

1. By incorporating communication data during UAV operations, we establish
communication strength information and amalgamate it with traditional inertia data,
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culminating in the convergence of multiple data sources to enhance the precision of UAV
position estimation and optimization.

2. Drawing upon communication attributes and positional characteristics, we
constructed the ATT-Bi-LSTM model, adeptly deploying the BI-LSTM network in
conjunction with an Attention mechanism to accomplish optimal position estimation
in the offline state of UAV positioning.

3. In the process of model validation, through rigorous comparison with data adhering
to the gold standard generated under the aegis of optical systems, our model consistently
outperforms both traditional control methodologies and position optimization techniques
grounded in machine learning. This pronounced superiority of our model augments its
utility in conferring both enhanced precision in UAV control and subsequent analytical
undertakings.

In the rest of this article, the related work is presented in Section ‘Related works’. Section
‘ResearchMethod’ gives the establishment process of the ATT-Bi-LSTMmodel. Experiment
results and related analysis is provided in Section ‘Experiment details’, ‘Discussion’
concludes.

RELATED WORKS
Based on the current application status and parameter control issues of drones, this article
conducted a literature review on relevant literature. This article mainly studies the classic
control methods and their improvements for uncrewed aerial vehicles, and focuses on the
current control research in the field of deep learning.

The attitude control for the UAV
In contrast to various other UAV types, quadrotor UAVs boast a host of advantages,
notably their compact structure, operational versatility, and a diminished threat to both
nearby personnel and equipment. However, they also exhibit distinctive traits such as
underactuation, strong coupling, nonlinearity, and susceptibility to external disturbances.
As a result, the investigation into control algorithms for quadrotor UAVs has garnered
substantial attention from scholars worldwide. Commencing with the classical PID control
method, researchers have introduced a spectrum of advanced control algorithms, each
aimed at enhancing system stability and robustness. In the initial phases of quadrotor
UAV research, the PID controller devised by Salih & Moghavvemi (2010) was pivotal
in achieving control over positional attitude. An appealing feature of this approach is
its freedom from necessitating the development of a dynamic model or precise UAV
parameters. To enhance control efficacy, PID is frequently amalgamated and refined in
conjunction with advanced control algorithms. Efe (2011) innovatively designed a PID
controller and harnessed neural networks to mitigate perturbations, resulting in stable
control over UAV position and attitude. Chowdhary, Wu & Cutler (2012) introduced an
adaptive control algorithm with online learning capabilities, which obviates the need for
laborious PID parameter adjustments. This approach capitalizes on historical and real-time
data to expedite system error convergence without continuous excitation. To ascertain
the tracking capabilities of quadrotor UAVs under significant perturbations, Das, Lewis
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& Subbarao (2009) devised a backstepping controller augmented with an integral term.
Experimental findings substantiate the controller’s capacity to eliminate steady-state errors
and bolster overall robustness. Furthermore, Mohd-Basri, Husain & Danapalasingam
(2015) employed a radial basis function to estimate uncertain perturbations and designed
an adaptive backstepping controller capable of robust performance in the presence of
unknown disturbances. Du, Zhu &Wen (2017) employed the backstepping technique
for UAV formation control, resolving the finite-time convergence of error states to the
origin through the application of chi-square system theory and Lyapunov stability theory.
Ma, Qin & Salsbury (2014) conducted a comprehensive analysis and design of the flight
controller, leveraging Model Predictive Control (MPC) to suppress active interference
in attitude control. Alexis et al. (2016) devised robust MPC controllers for two distinct
rotor UAV architectures, optimizing the performance metric while integrating model
dynamics and input state constraints, thereby minimizing deviations in the presence of
severe disturbances. Model Predictive Control, in particular, finds application in UAV
trajectory planning. Sun et al. (2018) proposed an MPC-based trajectory planning method
for effective obstacle avoidance when suspending a payload from a quadcopter UAV. They
formulated a cost function considering load swing angle and obstacle-UAV distance to
generate an optimal trajectory that satisfies the prescribed requirements.

Deep learning based UAV optimization research
Guo et al. (2019) employed the DQN algorithm for path planning of UAV lift-off platforms,
aiming to maximize data transfer rates. However, this algorithm is solely applicable to tasks
with discrete action spaces and is plagued by the issue of overvaluing the value function,
which can skew the learning of path planning strategies by intelligent agents. In response,
Wang et al. (2019) harnessed the Double DQN algorithm (Wang et al., 2019) to optimize
the flight trajectory of UAV platforms, with the objective of maximizing the downlink rate
while ensuring coverage of all ground-based users. The Double DQN algorithm mitigates
the problem of overestimation inherent in the DQN value function, although it still falls
short in its applicability to tasks with continuous action spaces. In contrast, Liu et al. (2015)
leveraged the DDPG algorithm to successfully implement deep reinforcement learning in
continuous action space for path planning tasks.

Furthermore, as deep learning continues to exert a profound influence on research
in the field, researchers have increasingly optimized UAV image data for surveillance
and target studies. UAV aerial images are predominantly available in the form of visible
light and infrared imagery, yet there remains a scarcity of public datasets for visible light,
and infrared datasets are even rarer. Notable among the visible light UAV image datasets
are VisDrone (Ullah et al., 2019) and UAVDT (Hourani, Kandeepan & Lardner, 2014).
Given the distinctive characteristics of target clustering within UAV images, Yi, Wang
& Meng (2013) devised a multi-stage cluster detection network, ClusDet, building upon
the R-CNN enhancement algorithm. ClusDet leverages region clustering, slice detection,
and scale adaptation to enhance the operational speed and the detection rate of small
targets within high-resolution UAV imagery. Duan et al. (2019) introduced the CenterNet
approach, which conceptualizes positioning as a task of center point detection and its
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offset. It employs predicted foci for regression to extract the actual position information
from the offset parameters of the center regression. This method markedly bolsters the
detection rate of small targets, although it does introduce higher resolution output, thereby
affecting inference latency.

From the preceding research, a notable gap emerges in the focus on UAV control
optimization. While existing studies predominantly emphasize attitude optimization by
enhancing classical controllers, there is a distinct lack of attention to optimizing other
critical facets of UAV functionality, including path planning and target detection. Deep
learning techniques, renowned for their feature extraction capabilities from unknown
data, play a pivotal role in addressing this gap. This study strategically addresses the
underexplored realm of UAV parameter optimization and attitude control. By leveraging
deep learning methodologies, we not only achieve optimal position control but also elevate
UAV control to its zenith by introducing additional information. This highlights a crucial
area of consideration and underscores the need for a comprehensive exploration of various
dimensions in UAV optimization research.

RESEARCH METHOD
After explaining the current research status, in this chapter, we will explain the methods
and provide a detailed introduction to the construction details and related principles of
each module, mainly including traditional PID prediction methods, BI-LSTM network
methods, and self attention module enhancement.

PID control
The proportional-integral-derivative (PID) controller represents a prevalent feedback
control mechanism extensively applied in the field of control engineering. Its primary
objective is to adjust the system’s output to closely match a desired reference value. The
PID controller comprises three integral components: the proportional (P), integral (I),
and differential (D) parts, each with distinct roles in managing the error’s magnitude,
its accumulation, and the rate of change, respectively (Houthooft et al., 2017). These
components are computed as demonstrated in Eqs. (1) through (3):

P(t)=Kp ·e(t) (1)

I(t)=Ki ·

∫ t

0
e(τ )dτ (2)

D(t)=Kd ·
de(t)
dt

(3)

where P(t) is the output of the proportional part. Kp is the proportional gain, and Ki

is the integral gain, and Kd is the differential gain, and these three gains are used to
regulate the corresponding output section respectively. e(t) is the error at the current
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moment, usually defined as the difference between the desired value and the actual value.
e(t)= r(t)−y(t),

∫ t
0 e(τ )dτ is the integral of the error, and de(t)

dt denotes the rate of change
of the error over time. PID control can be effectively employed to stabilize the attitude
of a vehicle, encompassing pitch, roll, and yaw. By continuously assessing the disparity
between the vehicle’s attitude angle and the desired reference, the PID controller can
finely modulate the control of rudder surfaces or motor outputs, ensuring that the vehicle
maintains the desired attitude. This process involves the optimal integration of error by
considering various types of errors over different time intervals. These preliminary control
algorithms prove highly rational and essential for real-time UAV control, establishing a
solid foundation for the precise management of UAV flight dynamics.

Bi-LSTM networks
Long short-term memory (LSTM) stands as a variant of recurrent neural networks
(RNNs) explicitly engineered to address the longstanding challenge of managing long-term
dependencies in RNNs. LSTM excels particularly in the domain of handling sequential
data. Distinguished from conventional RNNs, the LSTM unit primarily optimizes data for
long-term control by means of the ‘‘forgetting the gate’’ mechanism, the implementation
of which is delineated in Eq. (4) (Johnson & Moradi, 2005; Shi, Wang & Zhao, 2022):

ft= σ
(
Wf ·

[
ht−1,xt

]
+bf

)
(4)

where Wf is the weight matrix. ht−1 is the hidden state of the previous time step. xt is the
input of the current time step. The hidden state can then be calculated by Eq. (5),

ht= ot · tanh(Ct) (5)

where Ct is the state of the cell at t. It is related to the computation of the forgetting gate,
which can be calculated by Eq. (6):

Ct= ft ·Ct−1+ it · tanh
(
Wc ·

[
ht−1,xt

]
+bc

)
(6)

After completing the above calculation of the relevant state quantities, the output of
each cell can be obtained:

ot= σ
(
Wo ·

[
ht−1,xt

]
+bo

)
(7)

The comprehensive overview of the LSTM standalone cell is depicted in Fig. 1, where
we also introduce and elucidate the BI-LSTM method. Recognizing the significance of
integrating information from different time periods into the position update process
during position optimization, this article advocates the utilization of the BI-LSTMmethod
for in-depth analysis.

BI-LSTM represents an extension of LSTM that enhances the model’s ability to consider
not only historical data but also anticipate future information when handling sequential
data. In the standard LSTM, input sequence information is processed from left to right,
while BI-LSTM processes both left-to-right and right-to-left data. This approach equips
the model to grasp the entire sequence comprehensively, enabling it to assimilate not only
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Figure 1 The Bi-LSTM network framework and the LSTM cell.
Full-size DOI: 10.7717/peerjcs.1920/fig-1

past data but also make predictions regarding future information. The computational
procedures for BI-LSTM are elucidated in Eqs. (8) through (9):

Eht = ELSTM(xt,ht−1)= σ
(
W ·

[
ht−1,xt

]
+b

)
(8)

←−
ht =
←−−−
LSTM

(
xt,
←−−
ht+1

)
= σ

(
W ·

[
←−−
ht+1,xt

]
+b

)
(9)

where ht is the time step t of the hidden state, and Eht is the output of forward LSTM, and
←−
ht is the output of the inverse LSTM,the two merged outputs in the sequence process is
shown in Fig. 1 (Shi, Wang & Zhao, 2022).

Attention mechanism based network as well as parameter control
To facilitate a more comprehensive analysis of the correlation within positional data and to
achieve optimal positional control, this study enhances the attentionmechanism within the
framework of the Bi-LSTM network. The attention mechanism is a fundamental concept
in deep learning that empowers a neural network model to assign varying attention weights
to distinct segments of input when processing sequential data. This refinement enables
more effective processing of critical information. Typically, attention mechanism consists
of three main components: query (Q), key (K), and value (V) (Lei et al., 2023). Q is a vector
utilized to pinpoint the location or the information that requires attention, serving as
the foundation for calculating the attention weights, typically derived from the preceding
layer of the model. K represents the characteristics of the source data, while V corresponds
to the value associated with the key. The operational flow of the attention mechanism is
elucidated in Fig. 2 (Lei et al., 2023).

Attention mechanism is mainly to calculate the attention score, which is shown in
Eq. (10):

Attention Scores=Q∗KT (10)

where Q is the query vector and K is the transpose of the key vector. After completing
the establishment of the attention mechanism, the overall network model established is
presented as follows:
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Figure 3 The overall structure for the proposed ATT-Bi-LSTM network.
Full-size DOI: 10.7717/peerjcs.1920/fig-3

Within the constructed model, the initial input consists of processed UAV position data,
which subsequently undergoes processing via a two-layer BI-LSTM network in Fig. 3. This
phase entails the data’s feature extraction through truth-value comparisons. Ultimately,
the final step integrates the Attention mechanism to yield the optimized position output.

EXPERIMENT DETAILS
After building the ATT-Bi-LSTM model, it is necessary to evaluate the effectiveness of
the model and complete application analysis. Therefore, we have introduced the selected
dataset and provided detailed evaluation indicators and training processes for the model.
The above content will be introduced and explained in detail in this chapter.
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Datasets
The wireless signal strength of uncrewed aerial vehicles (UAVs) is contingent upon a
multitude of factors, including transmission power (Wang, Huang & Zhu, 2016), path
loss (Jang & Lee, 2003), antenna gain (Phillips, Sicker & Grunwald, 2012), and reception
sensitivity (Klein & Degnan, 1974). Within this context, transmission power determines the
power level of the signal dispatched by the UAV, path loss quantifies the reduction in signal
power due to distance and environmental influences during signal propagation, antenna
gain characterizes the performance of a wireless communication antenna concerning an
ideal point source antenna, and reception sensitivity denotes the minimum signal power
level that the receiving device can detect and decode.

This article computes the signal strength by taking these four factors into account, as
demonstrated in Eq. (11) (Liu et al., 2015).

Received Power=Transmit Power-Path Loss +Antenna Gain-Free Space Loss. (11)

In this equation Path Loss denotes the path loss, Antenna Gain denotes the antenna gain,
and Free Space Loss can be calculated by the free space propagation equation:

FSL(dB)= 20 · lg(
4πd
λ

) (12)

where FSL denotes free space loss, d is distance and λ is wavelength, this equation considers
the relationship between wavelength and distance of the propagating signal.

In the current research on UAV attitudes, the data primarily originates from video
image data captured during target monitoring, as exemplified by datasets such as the
UAV123 Dataset (Zhang et al., 2019) and VisDrone Dataset (Mueller, Smith & Ghanem,
2016). Nonetheless, these datasets may not fully suffice to meet the study’s requirements.
Additionally, when examining communication relationships, publicly available datasets
may also fall short of the requirements. To address this, this study draws inspiration
from Han, Hu & Zhou (2019), which employed an optical verification system to establish
a relevant data model. The data collection primarily centers on three types of attitude
information of the UAV, namely yaw, pitch, and roll, while also recording communication
strength data throughout the entire course of UAV motion. This data serves as the
foundation for subsequent model training. In the initial phase of test validation, the PID
method, as discussed in Section ‘PID control’, is employed to realize UAV control and
collect pertinent data. Subsequently, in offline simulations, neural network methods are
employed to validate attitude and perform data analysis.

Experiment details
To evaluate the proposed model, the index for the method comparison in this article
including the RMSE, MAE, MdAE, MdAPE, which is shown as follows (Han, Hu & Zhou,
2019).

RMSE=

√√√√1
n

n∑
i=1

(Actuali−Predictedi)2 (13)
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MAE=
1
n

n∑
i=1

|Actuali−Predictedi| (14)

MdAE=median(|Actuali−Predictedi|). (15)

In the above equations, median denotes the median, Actuali denotes the first i observation,
Pi denotes the first observed value, In addition to these three indexes, we also evaluated
the model using the Median Absolute Percentage Error (MdAPE), which is calculated as
follows.

MdAPE=median
(
|Actuali−Predictedi|

Actuali
×100

)
. (16)

Based on the established evaluation indexes and combined with the overall network
model established in the ‘Research method’ section for model training and evaluation, the
overall algorithmic is as follows:

Algorithm 1: Training process of ATT-Bi-LSTM for parameters optimization
Input: Attitude, position and communication information for the UAV
Initialization.
Define the ATT-Bi-LSTM.
Define the training information including: initial parameters, optimizer and max
training epochs.
Feature extraction.
Using the original data of the Attitude, position and communication information.
Model training: Epochs initialization.
while epoch<set preset epoch do
Sample data from Input.
Feed data to ATT-Bi-LSTM network.
Model updates.

End
Parameters Fine tuning
while epoch<preset epoch do
Feed validation data to ATT-Bi-LSTM network.
Loss and gradients calculation.
Compute RMSE, MAE, MdAE, MdAPE
Save the optimal model

end
Output: Trained ATT-Bi-LSTM network

The method comparison
Drawing from the dataset and related data that have been established, this article conducted
practical tests. During the model validation process, we also engaged in a comparative
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Figure 4 Performance comparison with other parameters optimizationmethods on yaw.
Full-size DOI: 10.7717/peerjcs.1920/fig-4
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Figure 5 Performance comparison with other parameters optimizationmethods on pitch.
Full-size DOI: 10.7717/peerjcs.1920/fig-5

analysis of various methods, using the established dataset for this purpose. The comparison
encompassed several commonly usedmethods in the realmofUAVposture study, including
PID, ADRC (Willmott & Matsuura, 2005), as well as classic machine learning methods like
BPNN, SVM, and LSTM, along with more established deep learning methods such as
CNN, to assess their performance and suitability. BPNN is an artificial neural network
based on backpropagation algorithm, mainly used for regression tasks. Its characteristics
include strong nonlinear modeling ability, suitable for fitting complex relationships, but
requiring a large amount of data for training and easy overfitting. The application of SVM
in regression is based on the support vector regression (SVR) model, which constructs an
optimal hyperplane to fit the data. Its characteristics include effectively handling complex
relationships in high-dimensional spaces, having good robustness against outliers, but may
face significant computational challenges when dealing with large-scale data.

Experiment results and analysis
In this article, our primary focus centers on the assessment of three key indicators: yaw,
pitch, and roll. The outcomes of our analysis are visually presented in Figs. 4–6 and are
detailed in Tables 1–3.

Upon evaluating the yaw indicators, it is evident that the proposed method excels across
all four indicators. Particularly noteworthy is its remarkable performance in terms of
root mean square error (RMSE), which surpasses the performance of traditional machine
learning methods and individual CNN feature extraction methods. This underscores the
pivotal role played by the double-layer BI-LSTM in both feature extraction and model
optimization. Furthermore, the favorable results for MdAEr and MdAPE underscore the
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Figure 6 Performance comparison with other parameters optimizationmethods on roll.
Full-size DOI: 10.7717/peerjcs.1920/fig-6

Table 1 Performance comparison with other parameters optimizationmethods on yaw.

Method RMSE MAE MdAE (%) MdAPE (%)

PID 27.18 13.87 4.91 12.93
ADRC 22.34 15.39 4.82 13.17
BPNN 38.79 20.63 5.63 16.29
SVM 37.54 17.58 4.17 12.58
CNN 25.67 16.39 2.85 10.27
OURs 21.14 11.27 2.31 6.71

Table 2 Performance comparison with other parameters optimizationmethods on pitch.

Method RMSE MAE MdAE (%) MdAPE (%)

PID 23.86 14.24 5.29 14.57
ADRC 21.67 13.25 3.67 13.28
BPNN 36.07 17.39 6.37 11.29
SVM 30.29 19.38 5.28 10.57
CNN 25.43 16.37 4.97 9.28
OURs 19.84 11.22 1.92 5.89

comprehensive performance advantage offered by this method. Yaw, being a challenging
and error-prone aspect of inertial navigation and UAV control, has yielded highly
satisfactory control outcomes.

As those three indicators are very important for the control estimation, we made a
fine analysis about that. In the comparison of the data pertaining to pitch and roll, as
depicted in Figs. 5 and 6, it is discernible that their indicators are notably lower than those
for yaw. All indicators attest to robust prediction performance. A thorough analysis of
the three indicators—yaw, pitch, and roll—reveals that the employed method exhibits
superior pose optimization capabilities, with lower errors compared to actual values
collected by optical systems. This substantiates the method’s efficacy in optimizing pose.
Among these indicators, it is apparent that yaw exhibits the largest error, primarily due
to the sensor’s susceptibility to strong geomagnetic interference and substantial signal
fluctuations, necessitating more comprehensive error correction. In the performance
analysis of the aforementioned methods, it becomes evident that the PID method yields
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Table 3 Performance comparison with other parameters optimizationmethods on roll.

Method RMSE MAE MdAE (%) MdAPE (%)

PID 19.61 13.67 3.14 10.27
ADRC 16.32 12.73 2.96 9.37
BPNN 25.97 11.69 4.87 13.27
SVM 23.63 11.27 2.76 10.23
CNN 17.88 9.72 1.93 8.98
OURs 13.08 8.73 1.54 5.07
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moderate performance across all three indicators, indicating its suitability for preliminary
control during the early stages of this experiment.

Furthermore, this article incorporates the FSL information introduced at the outset
of this chapter into the pose optimization process. By introducing communication
information, the model’s phenotype can be somewhat enhanced. To better validate
the effectiveness of this additional information, the article conducts optimization function
tests on the model with and without this information, with results displayed in Fig. 7.

As Fig. 7 illustrates, the overall estimation value in this study exhibits amore pronounced
improvement after the addition of communication information. Consequently, in future
UAV position control, introducing more communication information will enhance the
effectiveness of position optimization.

Regarding the deep model, the data input size exerts a discernible impact on its
performance. In this article, subsequent to conducting comparisons of multiple methods,
we also executed batch size comparison experiments for the proposed method across
various datasets. The results are presented in Fig. 8.

In our experimentation involving diverse batch sizes, a comprehensive analysis was
conducted across a spectrum of batch sizes, including 2, 4, 8, and up to 64, with
corresponding boxplots constructed to provide a visual representation of the results. The
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findings, as depicted in Fig. 8, reveal a remarkable consistency in the model’s performance
across the range of batch sizes, showcasing minimal deviation. This robust behavior under
varying batch sizes is a noteworthy observation, highlighting the model’s stability and
adaptability to different input scales. Furthermore, the ATT-Bi-LSTM model consistently
outperforms alternative models, demonstrating its superior optimization performance
across the entire batch size spectrum. The model’s ability to maintain high-quality results
across different batch sizes underscores its reliability and efficacy, reinforcing its suitability
for diverse scenarios and datasets.

DISCUSSION
This article addresses the control challenges of uncrewed aerial vehicles in complex
environments and introduces an offline BI-LSTM network with an attention mechanism,
achieving UAV optimization control and attitude optimization by fusing communication
information. In the model verification and comparison process, we utilized the classic PID
algorithm as the initial benchmark and subsequently refined and optimized pose control
using improved PID and BPNN methods (Zhou et al., 2020). The study also conducted a
detailed analysis and comparison with the more traditional ADRC method (Willmott &
Matsuura, 2005). TheADRCmethod, which incorporates internal and external loop control
and employs nonlinear states, offers certain advantages in optimal control. However, this
method is hampered by its numerous parameters and challenges in tuning. In real-time
applications, ADRC is advantageous for real-time attitude control due to its rapid response
and theoretical foundation in pure mathematical methods. The proposed method, along
with other machine learning techniques, significantly reduced RMSE and other errors
during subsequent pose optimization, indicating the potential for deep learning methods
like BPNN, CNN, and LSTM in the realm of uncrewed aerial vehicles. As edge computing
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and micro-processing capabilities continue to improve, a broader array of methods can be
applied to advance UAV research, yielding enhanced control outcomes.

Future research into UAV optimization using deep learning methods will introduce
DRL (Chen, Liu & Xiong, 2019) to facilitate the learning of flight strategies through
interactions with the environment. UAVs can refine their decision-making processes
through experiential learning. For instance, flight strategy optimization can be realized
using techniques such as deep Q-network, deep deterministic policy gradient (DDPG),
and proximal policy optimization (PPO). Furthermore, the integration of classic object
detection methods like YOLO and Faster R-CNN expands their utility. Moreover, as
chips become more power-efficient and higher-performing, the reception of satellite
information allows for more precise data analysis. These evolving deep learning methods
are continually advancing the field of UAV control and navigation, bestowing UAVs with
heightened levels of autonomy and intelligence, enabling them to execute more intricate
and diverse tasks across a multitude of application domains. Deep learningmethods play an
important role in the future development of uncrewed aerial vehicles. Firstly, deep learning
technology can be used for the perception and decision-making of drones, enhancing
their environmental perception capabilities. Through deep learning algorithms, drones
can achieve more accurate target detection, recognition, and tracking, enhancing their
autonomous navigation capabilities in complex environments. Secondly, deep learning
plays a crucial role in the autonomous flight and path planning of drones, enabling them to
complete various tasks more flexibly and efficiently, such as search and rescue, monitoring,
and cruising. In addition, deep learning can also be used to enhance the adaptability
and learning ability of drones, enabling them to dynamically adjust strategies according
to different environments and tasks. Overall, the application of deep learning methods
will drive the development of drone technology, making it more intelligent, flexible, and
adaptable in the future.

Real-time adjustments of UAV parameters are crucial for ensuring flight safety and
optimizing efficacy in diverse scenarios.Dynamic environmental conditions, such as sudden
weather changes, demand real-time parameter modifications to maintain stability and safe
navigation. In complex terrains or urban landscapes, the ability to adapt UAV parameters in
real-time is essential for avoiding obstacles and ensuring successful navigation. Surveillance
and reconnaissance missions benefit from dynamic parameter adjustments when tracking
moving targets, while emergency situations and collaborative UAV operations require rapid
tuning for effective response and coordination. Overall, real-time parameter adjustments
play a pivotal role in enhancing the adaptability and performance of UAVs across a range
of scenarios.
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CONCLUSION
This study presents an optimization model for UAV position control that leverages
ATT-Bi-LSTM for accurate attitude estimation, achieving optimal control and attitude
estimation during UAV motion. The model’s estimation results undergo testing against
optical system position errors, and a comparative analysis is carried out using metrics
such as RMSE and MAE to meet practical requirements. The experimental findings
highlight the significant impact of the proposed network, surpassing the performance of
traditional control and machine learning-based position optimization methods. Notably,
the incorporation of communication information substantially improves the model’s
position estimation accuracy, resulting in an impressive average 15% reduction in RMSE
across yaw, pitch, and roll indices. This notable enhancement enhances the efficiency and
accuracy of the model’s estimation, emphasizing its crucial role as a valuable reference and
theoretical foundation for future research in UAV control and position estimation.

Although this article has achieved good results in the current pose optimization problem,
this type of problem is optimized based on the obtained data. In tasks with real-time
requirements, we need to further improve their methods. In future work, we anticipate
expanding the diversity of data processing in the current model by incorporating more
UAV self-contained information, such as barometric pressure and image data, to enhance
UAV control accuracy and broaden its application scope. Although the ATT-Bi-LSTM
model utilized in this study exhibits robust estimation and optimization capabilities, further
exploration is required to streamline the model’s complexity. Furthermore, as UAVs may
vary in the number and type of sensors they carry, adapting optimization approaches to
the specific information they carry remains a focal point for future research.
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