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ABSTRACT
Background. Improvement on the updating equation of an algorithm is among the
most improving techniques. Due to the lack of search ability, high computational
complexity and poor operability of equilibrium optimizer (EO) in solving complex
optimization problems, an improved EO is proposed in this article, namely the multi-
strategy on updating synthetized EO (MS-EO).
Method. Firstly, a simplified updating strategy is adopted in EO to improve operability
and reduce computational complexity. Secondly, an information sharing strategy
updates the concentrations in the early iterative stage using a dynamic tuning strategy in
the simplified EO to form a simplified sharing EO (SS-EO) and enhance the exploration
ability. Thirdly, a migration strategy and a golden section strategy are used for a golden
particle updating to construct a Golden SS-EO (GS-EO) and improve the search ability.
Finally, an elite learning strategy is implemented for the worst particle updating in the
late stage to form MS-EO and strengthen the exploitation ability. The strategies are
embedded into EO to balance between exploration and exploitation by giving full play
to their respective advantages.
Result and Finding. Experimental results on the complex functions fromCEC2013 and
CEC2017 test sets demonstrate that MS-EO outperforms EO and quite a few state-of-
the-art algorithms in search ability, running speed and operability. The experimental
results of feature selection on several datasets show that MS-EO also provides more
advantages.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation
Keywords Meta-heuristic algorithm, Equilibrium optimizer, Multi-strategy, Exploration,
Exploitation, Feature selection

INTRODUCTION
Traditional mathematical methods have strict requirements for optimization problems
(OPs) (Hashim et al., 2019). They cannot get good results in solving most OPs. Inspired
by natural phenomena and biological behavior (Ghasemi et al., 2023a), researchers have
proposed many meta-heuristic algorithms (MAs) to solve OPs better. They include genetic
algorithm (GA) (Zhou et al., 2021), simulated annealing (SA) (Kirkpatrick, Gelatt & Vecchi,
1983), particle swarm optimization (PSO) (Chen & Lin, 2009), differential evolution (DE)

How to cite this article Sun Q, Zhang X, Jin R, Zhang X, Ma Y. 2024. Multi-strategy synthetized equilibrium optimizer and application.
PeerJ Comput. Sci. 10:e1760 http://doi.org/10.7717/peerj-cs.1760

https://peerj.com/computer-science
mailto:jinruixia@126.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1760
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.1760


(Mohamed, Hadi & Jambi, 2019), Shuffled Frog Leaping algorithm (SFLA) (Houssein et
al., 2021), Artificial Bee Colony (ABC) (Altay & Varol Altay, 2023), biogeography-based
optimization (BBO) (Simon, 2008), Cuckoo Search (CS) (Gandomi, Yang & Alavi, 2013),
Grey Wolf Optimizer (GWO) (Mirjalili, Mirjalili & Lewis, 2014), etc. MAs are applied in
many fields, such as feature selection (Ghasemi et al., 2023b), economic dispatch (Ayedi,
2023) due to their simple structure, easy application, and no derivative information on
OPs. However, more and more OPs need solving urgently as modern society evolves and
the OPs are more and more complex (Liu et al., 2021; Ghasemi et al., 2023c). It is very
necessary to develop an MA with higher efficiency, stronger universality, and scalability.
Therefore, improved MAs are constantly being proposed.

The equilibrium optimizer (EO) was proposed by Faramarzi et al. (2020), and it is a
new physics-based MA. EO simulates the dynamic mass balance on a control volume,
that is, the conservation of mass entering, leaving, and generating. It has a unique search
mechanism that updates the population by learning from the elite particles. Compared
with some classical MAs such as GA, PSO, and DE, this search mechanism enables EO to
obtain better performance (Faramarzi et al., 2020) in solving some classic OPs.

The improvement on an MA generally includes the modification of the structure, the
improvement of the updating equation, and the adjustment of the parameters, etc. The
updating equation is the core part of an algorithm. Depending on the way in which they
are improved, they can simply be classified into three types.

The first is the modification of the original updating equation. According to different
modificationmethods, it can be divided into two sub-types. (1) Simplification. Themethod
simplifies the original updating equation by discarding some components (Zhang et al.,
2020a), it can reduce the computational complexity or improve the operability, but it may
degenerate the performance. (2) Modification. This method alters the original updating
equation to improve the performance (Long et al., 2018), but it may increase the parameters
and the computational load due to the high complexity of the modified updating equation.
The second is the addition of the updating equation. It means adding some new updating
ways to the original algorithm to make up for some defects. According to different addition
methods, it can be divided into 3 sub-types. (1) Individual-based addition. The method
adds a new updating equation for an individual in the population, while other individuals
keep the original updating method unchanged. (2) Subgroup-based addition. The method
divides the population into multiple subgroups. All the agents of at least one subgroup
are updated using the original updating equation while the other subgroups are updated
separately using the added updating equations. (3) Iteration-based addition. The method
adds a new updating equation in some iterations. Individual-based addition and subgroup-
based addition can increase the possibilities of generating new solutions to more degrees
and obtain more population diversity. The third is hybrid improved update methods. This
means using multiple improved updating methods (Asilian Bidgoli, Ebrahimpour-Komleh
& Rahnamayan, 2020).

Some scholars have proposed some EO variants and applied EO or its variants to some
fields.Gupta et al. (2020) proposed an EO with a mutation strategy. It made the population
maintain sufficient diversity and enhanced the global search ability of EO. Wunnava et al.
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(2020) applied an adaptive EO (A-EO) to multilevel thresholding image segmentation. A-
EO solved the problem that search agents were randomly scattered to nonperformer search
agents in EO. Biller et al. (2016) proposed an improved EO through linear classification
reduction diversity technique and local minima elimination method, while the variant of
EO proposed by Ghasemi et al. (2023a), Ghasemi et al. (2023b) and Ghasemi et al. (2023c)
used different probabilities to select equilibrium candidate solutions. They were applied
to photovoltaic parameter estimation, and effectively improved the optimization accuracy
and reliability. These EO variants have improved the optimization performance of EO to
different degrees. Although they all verify the performances of the classical functions, there
are no reports on verifying the variants of EO on CEC2013 and CEC2017 test sets.

As mentioned above, modification and addition have their own shortcomings and
advantages. A hybridization of the two can compensate for their respective shortcomings,
and an ingenious combination of several strategies can allow individuals to work closely
together to balance exploration and exploitation. Thus, the main purpose of this article
is to propose many strategies based on updating equations and discuss how they can be
integrated to improve the overall performance of EO and solve some of its drawbacks.
Inspired by the above description, this article proposes a multi-strategy synthetic EO
(MS-EO). The graphical abstract of this article is shown in Fig. 1. The contributions of this
article are as follows:
• A simplified updating strategy is applied to EO to form a simplified EO (SEO) by
simplifying the original updating equation to improve the operability and reduce the
computational complexity.
• An information-sharing strategy is added as an updating way to SEO and two updating
ways alternate in different iterations to improve the global search ability.
• A migration strategy is used to update a golden particle to get a stronger search ability.
• An elite learning strategy is implemented for the worst particle updating in the late
iteration stage to enhance the local search ability.

The organization of this article is structured in the following order: the related work,
the proposed algorithm (MS-EO) , the experimental results and analysis, the application
of MS-EO to feature selection, conclusion and future work.

Related work
EO is inspired by the law of dynamic mass balance. Its mathematical updating model is as
follows:

Ci=Ce+ (Ci−Ce)⊗F+G/(λ×V )⊗ (1−F ) (1)

where Ci represents the concentration of the i-th particle. Ce is the concentration of the
elite particle selected randomly from the elite group. F is an exponential term,G represents
the generation rate, and λ is the turnover rate and is often taken as a random vector with
each component distributed in [0, 1]. V is the volume and is usually regarded as a unit. +
means term by term multiplication. i ∈[1, N ], and N is the population size.

In order to maintain the diversity of the population and the direction of evolution, in
the iterative process, some of the best individuals in the current population will form the
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Figure 1 The structure diagram summarizes four strategies of MS-EO (simplified updating strategy,
information sharing strategy, golden particle migrate strategy and elite learning strategy), experimen-
tal setting and application.

Full-size DOI: 10.7717/peerjcs.1760/fig-1

elite group to pass to the next generation. In this article, the elite group is composed of five
elite particles, which are as follows:

Ce ∈Cα,Cβ,Cδ,Cγ ,Cϕ. (2)

The first four are the best-so-far particles’ concentrations in the current population,
the first Cα , the second Cβ , the third Cδ and the fourth Cγ best one, respectively. The last
particle Cϕ is the arithmetic mean of the four best particles’ concentrations.

The exponential term F is expressed as:

F = a1× sign(r−0.5)⊗[e−ε×λ
−1] (3)

where a1 is a tuning parameter, sign is a sign function, and r is a random vector in [0, 1]
like λ.ε is a dynamic tuning parameter and its expression is as follows:

ε= (1− t/T )(a2×t/T ) (4)

where t is the current iteration number, T represents the maximum iteration number, and
a2 is also a parameter. F is also a dynamic random parameter vector and its component
value is shown in Fig. 2. Fig. 2 only illustrates the value changes on the six components of
F with T equal to 1,000. From Fig. 2, the red line represents the value change of F with
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Figure 2 Values of F with t.
Full-size DOI: 10.7717/peerjcs.1760/fig-2

D= 3. The value of the 3-rd dimension of F changes both randomly and dynamically, and
it fluctuates in a large range in the early stage; then it gradually shrinks to 0 as the iteration
number increases. Correspondingly, 1- F fluctuates between [−0.5, 2.5] and eventually
shrinks to 1 with the iteration increase.

Generation rate G can be calculated as:

G=G0⊗F (5)

G0=RG× (Ce−λ⊗Ci) (6)

RG=

{
0.5r1 r2≥ PG
0 r2< PG

(7)

whereRG is the generation rate control parameter and is determined by PG. PG is Generation
Probability and a parameter. r1 and r2 are random numbers in [0, 1]. From Eqs. (5), (6)
and (7), G is a zero vector when r2 is less than PG.

From Eq. (1), the first term on the right of the equation is the concentration of the
elite particle, and the second term is the difference between the elite particle’s and the i-th
particle’s concentration. The third term is the generation item. Its pseudo-code is shown
in Algorithm1 EO. From the above description, EO has the following good features. (1)
Unique search mechanism: Each particle’s concentration is updated in a unique updating
way including the elite particle selected randomly from an elite group. (2) High degree of
information guidance: The three items on the right of Eq. (1) all contain elites guiding each
particle. (3) Strong local search ability: The guidance of the elite particles makes EO evolve
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in a good direction throughout the iteration process. Each component value of F is small
in the late iteration stage. The difference between the elite particle and other particles is
small, and the value of G is small. Meanwhile, the second term on the right side of Eq. (1)
takes up less weight. Moreover, the particle is closer to the elite particle when RG is 0. These
help EO search more accurately. (4) Global search ability. Each component value of F and
the difference between the elite particles and other particles are large in the early search
stage. Each component value of G is also large when λ randomly takes a small value and
RG is not 0. At this time, the value of the third term is also larger, which helps the current
particles search the entire search space.

However, there are some shortcomings when EO is used to solve complex OPs. (1)
From Eq. (1), the particles in EO learn from the elite particles, and the generation term
contributes to the accurate search. This will make EO easy to fall into local optima and
have poor exploration ability. (2) From Eq. (1), the particles in the population only
communicate with elite particles. This results in a low degree of information sharing and
poor diversity in the population. Moreover, EO only learns from elite particles and is
also monotonous, which has no other way of guiding and is not conducive to the further
evolution of the population. It leads to insufficient search ability. (3) The computational
load of the exponential function is higher. Moreover, λ is a random vector. It calculates
the exponential term F more complicated. (4) EO has many parameters, such as λ, F , r1,
r2, r , V, a1, a2 and PG. Although the parameters increase the flexibility of EO, it leads to
poor operability of EO.

MATERIALS & METHODS
As mentioned in the previous section, EO has a number of advantages when it comes
to solving classic OPs (Faramarzi et al., 2020). However, there are still drawbacks when
solving complex OPs. Therefore, this article proposes a Multi-strategy Synthetized EO
(MS-EO) to cope with the above problems of EO.

Simplified updating strategy
In order to reduce the computational complexity and improve the operability of EO, a
simplified updating strategy is used in EO to form a simplified EO (SEO). Its expression is
as follows:

Ci=Ce+ (Ci−Ce)⊗F+0.5× r1× (Ce−Ci)⊗F/(1−F ) (8)

F = 2× sign(r−0.5)×[e−ε−1] (9)

ε= (1− t/T )(t/T ). (10)

Figure 3 shows the values of simplified F .
From Eqs. (8), (9) and (10) and compared with EO, the simplified updating strategy has
the following differences:

(1) The simplified updating strategy removes the parameters λ. Each component value
of F in Fig. 3 is more regular and the curves are smoother compared with Fig. 2. Therefore,
the simplified updating strategy reduces the computational complexity of EO.
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Figure 3 Values of simplified F with t.
Full-size DOI: 10.7717/peerjcs.1760/fig-3

(2) The generation term in Eq. (8) does not have a value of 0 compared with Eq. (1).
The computational load descends to a certain extent.

(3) From Eq. (8), the simplified updating equation highlights the elite particles even
more and also highlights the exploitation.

In summary, the simplified updating strategy is the modification of the updating
equation. It can effectively reduce the computational complexity of EO and improve its
operability. However, the simplified updating strategy does not change the overall search
pattern of EO. Therefore, it still has insufficient search ability.

Information sharing strategy
Whether the information of individuals in the population is fully utilized or not is crucial
to the search ability of a population-based MA. The performance of the MA will be
significantly improved if the information can be fully utilized in the search process (Zhang
& Yang, 2021). In order to enhance the information sharing and the global search ability
of EO, this article introduces an information sharing strategy. The mathematical model of
the information sharing strategy is as follows:

η=Ca−Cb (11)

Ci=Ci+ fr×η (12)

fr = 0.5× (sin(2π×0.25× t )× t/T+1) (13)
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Figure 4 Flowchart of SS-EO.
Full-size DOI: 10.7717/peerjcs.1760/fig-4

where Ca and Cb are the concentration of two particles selected randomly from the current
population, i 6=a 6=b and inspired by Zhang et al. (2020b), the scale factor fr adopts the
dynamically adjusted sinusoidal approach.

From Eqs. (11) and (12), a new solution is generated based on the combined action of
three different solutions. η is the difference between two random solutions, which realizes
the information sharing among particles in the population, because all the particles in the
population may be selected with the increase of the iteration number t, it makes full use of
the information of the whole population and helps increase the population diversity.

The simplified updating strategy still maintains the strong exploitation ability of EO. In
order to enhance the global search ability of EO, the information sharing strategy and the
simplified updating strategy are combined by a dynamical adjustment strategy to form a
simplified sharing EO (SS-EO). The flow chart is shown in Fig. 4. According to Eq. (10), ε
is a dynamically adjusted parameter of the simplified strategy that linearly decreases from
1 to 0.

From Fig. 4, the current particle is updated with the simplified updating equation when
r2 is greater than or equal to ε. Otherwise, the current particle uses the information sharing
updating equation to update. In the early iteration stage, the value of ε is larger. Most of the
particles are updated by the information sharing strategy, and a few of them are updated
in a simplified way. The value of ε is small in the late iteration stage. Most of the particles
are updated by the simplified updating way with strong exploitation ability, and a small
number of particles are updated by the information sharing strategy.
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Golden particle migration strategy
The golden section is a proportional relationship inmathematics. It enables us to reasonably
arrange fewer test times. The migration operator in BBO (Zhang et al., 2019) is to share
the characteristics of good individuals with poor individuals. It can effectively improve
the search ability of poor individuals, so as to enhance the search ability of the whole
population. Inspired by the above and in order to stimulate and enhance the search ability,
a golden particle migration strategy is introduced SS-EO to form a golden SS-EO (GS-EO).
The mathematical model of the migration strategy is as follows:

C j
g =C j

q (14)

g = ceil(0.618×N ) (15)

q= ceil((g−1)× rand) (16)

where C represents the j-th value of the concentration of the golden particle, C is the
j-th value of the example particle, q ∈[1, g -1], and j ∈[1, D ]. g is the index of the sorted
particles from the best to the worst according to the fitness values of all the particles. ceil is
round-up function. The illustration of the golden particle migration strategy is shown in
Fig. 5.

From Eqs. (14), (15) and (16), an example pool is composed of the particles that are
better than the golden particle. From Fig. 5, each dimension value of the golden particle
comes from the corresponding dimension value of the example particle selected randomly
from the example pool. The golden particle migration strategy is individual-based addition.
The golden particle requires D example particles. At the same time, each dimension of the
golden particle is derived from its example particle also makes it evolve in a good direction.
The golden particle gradually becomes excellent as the iteration number increases. And
it may be selected as the learning object during the iterative process by the simplified
updating strategy and information sharing strategy to participate in the updating for other
particles. This further stimulates the search for other particles, so as to improve the search
ability of the algorithm.

Elite learning strategy
Educators often raise the grades of poor students by letting excellent students help poor
students, so as to improve the overall grades of the class. Inspired by this and in order to
enhance the local search ability, an elite learning strategy is used for the worst particle in
the late iteration stage to form MS-EO. The mathematical expression of the elite learning
strategy is as follows:

θ=Ce−Cw (17)

Cw =Cw+ fr×θ (18)

where Cw is the concentration of the worst particle in the current population.
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Figure 5 Illustration of the golden particle migration strategy.
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From Eqs. (17) and (18), the worst particle learns from the elite particle to make up for
its shortcomings. And it is used in the late stage. Therefore the elite learning strategy belongs
to individual-based addition and iteration-based addition. In the late iteration stage, the
component value of θ is smaller and the value of fr fluctuates widely. When the value of fr
is small, it is helpful to the local search of the algorithm. It can avoid the algorithm falling
into local optima when the value of fr is large. Moreover, the worst particles learn from
the elite particles. It greatly enhances the exploitation ability of the worst particle, so as to
enhance the search ability of the whole population.

Framework of the proposed algorithm
MS-EO skillfully synthesizes many strategies, such as simplifying, information sharing,
golden particle migration and elite learning, and embeds them into EO according to their
respective characteristics. The flow chart of MS-EO is shown in Fig. 6.
From Fig. 6, the information sharing strategy is mainly used to update the most particles’

concentrations in the early iteration stage. In the late iteration stage, most particles are
mainly updated in a simplified way. For the golden particle, the migration strategy is
adopted to make it originate from the example particles. For the worst particle, the elite
learning strategy is adopted in the late iteration stage to further improve the optimization
level of the whole population.

Complexity analysis
On time complexity, it is assumed that the updating equation of EO requires L0 time unit
to generate a variable of a new solution, while the updating equations of the simplified
updating strategy, information sharing strategy, golden particle migration strategy and
elite learning strategy require L1, L2, L3, and L4 to generate a variable of a new solution,
respectively. According to the described above, the simplified updating strategy removes
some components in EO. Eq. (8) has fewer operations compared with Eq. (1). Thus, Eq.
(8) takes much less time to generate a new solution than Eq. (1). The updating equations
of the remaining three strategies are all simpler than Eq. (1). Therefore, L1, L2, L3, and L4
are much less than L0. MS-EO has lower time complexity.
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Full-size DOI: 10.7717/peerjcs.1760/fig-6

For space complexity, the space to be allocated for EO includes current population,
elite pool and fitness value. MS-EO does not allocate additional storage space. Its space
complexity is the same as that of EO.

RESULTS
Experimental environment and evaluation standard
In order to verify MS-EO, a large number of experiments are performed on the complex
functions from CEC2013 and CEC2017 test sets. Their details can be found in Liang et al.
(2012); Awad et al. (2016). CEC2013 test set includes 28 functions, among which f 1∼f 5 are
unimodal functions, f 6∼f 20 are basic multimodal functions, and f 21∼f 28 are composition
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functions. CEC2017 test set contains four types of functions: unimodal functions (f 1∼f 3),
simple multimodal functions (f 4∼f 10), hybrid functions (f 11∼f 20) and composition
functions (f 21∼f 30). Compared with CEC2013, CEC2017 is more complex, such as more
function types and more shifted functions. All experiments were conducted in MATLAB
(R2014a) environment running on a PC with 3.4 GHz i7-3770 CPU and 8GB RAM. The
statistical analysis software was IBM SPSS Statistics 19.

This article adopts statistics such as mean value (Mean), standard deviation (Std),
ranking (Rank), and average ranking (Ave. Rank) to evaluate the optimization performance
of an algorithm (Zhang et al., 2019). The algorithm with a smaller Mean value has better
performance for a minimum problem in this article. The ranking rule is as follows, On
each function, the less the Mean value obtained by the algorithm is, the higher the ranking
is; if the Mean values by the algorithms are the same, the higher the ranking is and the
less the Std value is; if the Mean and Std values of the algorithms are the same, then the
algorithms rank the same. The best data in the table is bold.

Comparison algorithms and the parameter settings
There is less literature on improvement on EO since it is a newly proposed algorithm.
Therefore, some state-of-the-art algorithms are selected as the comparison algorithms.
These algorithms include TPC-GA (Elsayed, Sarker & Essam, 2013), YY-FA (Wang et al.,
2020), DS-PSO (Zhang et al., 2019), DC-FWA (Wei et al., 2021), DPC-ABC (Cui et al.,
2018), FSS-DA (Han & Zhu, 2020), BHCS (Chen & Yu, 2019), AMop-GA (Lim, Al-Betar &
Khader, 2015), DQL-SFLA (Zhang et al., 2019), Sa-DE (Qin, Huang & Suganthan, 2009),
ME-GWO (Tu, Chen & Liu, 2019), A-EO (Wunnava et al., 2020), HFPSO (Aydilek, 2018),
HBBOG (Zhang et al., 2018), MSS-CS (Long et al., 2018). Their simple description is shown
in Table 1. They not only include some improved algorithms of classic algorithms GA,
PSO, DE and FWA, but also some improved variants of the latest algorithms.

For a fair comparison, the common parameter settings of all the algorithms are the same,
such as the maximum number of function evaluations (Mnfe), the number of independent
runs (Nrun), and D. According to the best recommendation of (Liang et al., 2012; Awad
et al., 2016), Mnfe is set to D ×10000 and Nrun is 51. Different parameter settings of an
algorithm will result in different experimental results, so other parameter settings of the
comparison algorithms are set by the best settings from the corresponding references
shown in Table 1. In addition, all algorithms assume that the experiment is carried out in
an environment without interference from other factors.

Comparison with its incomplete algorithms
In order to demonstrate the contribution of each new strategy of MS-EO, this subsection
compares MS-EO with EO, SS-EO and GS-EO on the 30-dimensional functions from
CEC2013 test set. In order to explain the problem briefly, this subsection selects the
experimental results of three representative functions to illustrate. The three representative
functions are unimodal function (f 3), basic multimodal function (f 7) and composition
function (f 22). Fig. 7 provides a performance graph of MS-EO and incomplete variants
on the 3 representative functions and an average ranking chart on all the functions,
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Table 1 Specific parameter settings of the algorithms.

No. Algorithm Ref. Year Simple description Parameter setting

01 MS-EO 2021 The proposed algorithm CEC2013: N = 100; CEC2017: N = 80.
02 DC-FWA [30] 2021 Dynamic collaborative fireworks

algorithm
Ca= 1, Cr = 0.9, a= r = 0.1.

03 MSS-CS [15] 2021 Multi-strategy serial CS N = 25, α = 0.01, β = 1.5, Pa = 0.25, c = 0.2, PAmax =

0.35, PAmin= 0.25.
04 YY-FA [29] 2020 Yin-yang firefly algorithm with

Cauchy mutation
N = 30, L= 800, β0= 1; βmin= 0.2; α(0)= 0.2; γ = 1.

05 FSS-DA [32] 2020 Fusion with distance-aware se-
lection strategy for dandelion al-
gorithm

N = 5,MS= 5, r = 0.95, e = 1.05.

06 A-EO [18] 2020 Adaptive EO N = 100, V = 1, a1= 2, a2= 1, GP = 0.5.
07 DS-PSO [16] 2019 PSO with single and mean exam-

ple learning strategies
N = 40, c1= 2, Fmin= 0.7.

08 DQL-SFLA [35] 2019 Lévyflight SFLA with differential
perturbation and quasi-Newton
search

N = 20,m= 5.

09 BHCS [33] 2019 Hybrid CS with BBO N = 20, pa= 0.3, α= 1.1, β = 1.7, δ= 1.6, I = E= 1.
10 ME-GWO [37] 2019 Multi-strategy ensemble GWO N = 100, GR= 0.8, SRmax = 1, SRmin = 0.6, DRmax =

0.4, DRmin= 0.
11 EO [14] 2019 Equilibrium optimizer N = 100, V = 1, a1= 2, a2= 1, GP = 0.5.
12 DPC-ABC [31] 2018 Enhanced ABC with dual-

population framework
N = 50, limit = N × D,m= 3.5, minSNCP= 20.

13 HFPSO [38] 2018 Hybrid firefly algorithm with
PSO

N = 100, a= 0.2, B0 = 2, γ = 1, c1 = c2 = 1.49445,
ωi= 0.9, ωf = 0.5.

14 HBBOG [39] 2018 Hybrid BBO with GWO N = 100, I = 1.
15 AMop-GA [34] 2015 Adaptive monogamous pairs GA N = 10,8= 0.01, α= 0.5.
16 TPC-GA [28] 2015 GA with three parents crossing N = 90, γ = 40, ξ = 1.0E−08, PSadd = N ,� = 3×

PSadd.
17 Sa-DE [36] 2009 Self-adaptive DE N = 20, F-N ∈ (0.5, 0.3), CR-N ∈ (CRm, 0.1).

respectively. The parameters settings for MS-EO and the incomplete variants are set to the
same.

From Fig. 7D, the corresponding ranking order is MS-EO, GS-EO, SS-EO and EO on all
the functions. From Figs. 7A, 7B and 7C, the information sharing strategy, the simplified
update strategy and the gold particle migration strategy all improve the performance of EO
to a certain extent, and the adoption of the elite learning strategy for the worst particles
in the late iteration stage can effectively enhance the local search ability of SS-EO, which
indicates that the optimization performance of MS-EO is better than that of GS-EO,
especially on f 7 . It shows that every improvement of MS-EO is effective.

Performance comparison on CEC2013 test set
In order to verify the ability of MS-EO to solve the complex problems, this subsection
compares the results of MS-EO with those of EO and some state-of-the-art comparison
algorithms on CEC2013 test set. The comparison algorithms include TPC-GA, YY-FA,
DS-PSO, DC-FWA, DPC-ABC, FSS-DA, BHCS and AMop-GA. To illustrate intuitively,
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Figure 7 Performance curves and average ranking chart of MS-EO with EO and its incomplete vari-
ants.

Full-size DOI: 10.7717/peerjcs.1760/fig-7

Fig. 8 provides the stacked histogram of ranking for MS-EO and 9 comparison algorithms
on the 30-dimensional functions from CEC2013 test set. Table 2 lists their Friedman test
results. The experimental results of EO and MS-EO are from our experiments, while the
results of the other 8 algorithms are taken from Elsayed, Sarker & Essam (2013),Wang et al.
(2020), Zhang et al. (2019), Wei et al. (2021), Cui et al. (2018), Han & Zhu (2020), Zhang
et al. (2020a), Zhang et al. (2020b) and Lim, Al-Betar & Khader (2015).
In Fig. 8, the height of each color block represents the times obtained by an algorithm in

ranking the x-th. For example, ‘ 1©’ represents ranking the first. The higher the height of the
color block is the more times obtained by the algorithm in ranking first. It is obvious that
these three color blocks (‘ 1©’, ‘ 2©’ and ‘ 3©’) have the highest height in MS-EO. Therefore,
MS-EO has the best optimization performance. From Table 2, on Ave. Rank, the value of
EO is 6.04, ranking the eighth among all the 10 algorithms. MS-EO ranks first with Ave.
Rank of 3.29. It indicates that the improvements proposed in this article greatly enhance
the optimization performance of EO.

Performance comparison on the CEC2017 test set
In order to further verify the ability of MS-EO to solve more complex problems, many
experiments are conducted on the more complex functions from the CEC2017 test set.
Some representative algorithms are selected for comparison. These algorithms include
EO, DQL-SFLA, Sa-DE, ME-GWO, A-EO, HFPSO, HBBOG, DS-PSO and MSS-CS. The
parameters of the algorithms are shown in Table 1. Tables 3 and 4 provide the comparison
results of MS-EO and these representative algorithms on the 30- and 50-dimensional
functions from CEC2017 test set, respectively. Among them, the data of Sa-DE is directly
taken from Tang (2019).

From Table 3, on Ave. Rank, EO is 7.33 and ranks ninth. It is better than HFPSO
(8.60). On unimodal functions, MSS-CS ranks first on f 1, MS-EO ranks the first on f 2
and f 3, and other comparison algorithms obtain no times ranking the first. It means
that MS-EO has strong exploitation ability. DS-PSO obtains four times ranking first on
the multimodal functions. It shows the strong exploration ability of DS-PSO. However,
MS-EO can obtain one time ranking first and four times ranking second on the multimodal
functions. It indicates that MS-EO also has strong exploration ability compared with the
other comparison algorithms. MS-EO won six times and three times ranking first on
the hybrid and composition functions, respectively. However, from the overall ranking,

Sun et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1760 14/32

https://peerj.com
https://doi.org/10.7717/peerjcs.1760/fig-7
http://dx.doi.org/10.7717/peerj-cs.1760


Rank1

Rank2
Rank3
Rank4

Rank5

Rank6

Rank7
Rank8

Rank9
Rank10

Rank1

Rank2
Rank3
Rank4

Rank5

Rank6

Rank7
Rank8

Rank9
Rank10

EO TPC-ABC YY-FA DS-PSO DC-FWA DPC-ABC FSS-DA BHCS AMop-GA MS-EO

R
a
n
k
in

g
 
n
u
mb

e
r

5

10

15

20

25

30

0

Rank1

Rank2
Rank3
Rank4

Rank5

Rank6

Rank7
Rank8

Rank9
Rank10

EO TPC-ABC YY-FA DS-PSO DC-FWA DPC-ABC FSS-DA BHCS AMop-GA MS-EO

R
a
n
k
in

g
 
n
u
mb

e
r

5

10

15

20

25

30

0

①

②

③

④

⑤

⑥

⑦

⑧

⑨

⑩①

①

①

①

①

① ①
② ②

②

②

②

②

③

③

③

③

③

③

③

③

③

④

④

④

④

④
④

④

⑤

⑤

⑤
⑤

⑤

⑤

⑤

⑥

⑥

⑥
⑥

⑥

⑥

⑥

⑥

⑥

⑥

④

⑤

⑦

⑤

④

⑦

⑦

⑦

⑦

⑦

⑦

⑦

⑦

⑧ ⑧

⑧ ⑧

⑧

⑧

⑧

⑧

⑧

⑦
⑨

⑨

⑨

⑨
⑨

⑨

⑨

⑨

⑩

⑩

⑩ ⑩

⑩
⑩ ⑩ ⑩

⑩

Rank1

Rank2
Rank3
Rank4

Rank5

Rank6

Rank7
Rank8

Rank9
Rank10

EO TPC-ABC YY-FA DS-PSO DC-FWA DPC-ABC FSS-DA BHCS AMop-GA MS-EO

R
a
n
k
in

g
 
n
u
mb

e
r

5

10

15

20

25

30

0

①

②

③

④

⑤

⑥

⑦

⑧

⑨

⑩①

①

①

①

①

① ①
② ②

②

②

②

②

③

③

③

③

③

③

③

③

③

④

④

④

④

④
④

④

⑤

⑤

⑤
⑤

⑤

⑤

⑤

⑥

⑥

⑥
⑥

⑥

⑥

⑥

⑥

⑥

⑥

④

⑤

⑦

⑤

④

⑦

⑦

⑦

⑦

⑦

⑦

⑦

⑦

⑧ ⑧

⑧ ⑧

⑧

⑧

⑧

⑧

⑧

⑦
⑨

⑨

⑨

⑨
⑨

⑨

⑨

⑨

⑩

⑩

⑩ ⑩

⑩
⑩ ⑩ ⑩

⑩

Figure 8 Stacked histogram of ranking for MS-EO and the comparison algorithms on the CEC2013
test set (D= 30).

Full-size DOI: 10.7717/peerjcs.1760/fig-8

Table 2 Friedman test results on the CEC2013 test set (D= 30).

Algorithm Ave. rank Rank p-value

EO 6.04 8
TPC-GA 5.61 6
YY-FA 4.79 3
DS-PSO 4.04 2
DC-FWA 7.09 9
DPC-ABC 5.57 5
FSS-DA 5.09 4
BHCS 7.63 10
Amop-GA 5.88 7
MS-EO 3.29 1

4.6868E−07

MS-EO obtains 12 times ranking the first, and eight times ranking the second. Moreover,
on Ave. Rank, the value of MS-EO is 2.77. Therefore, compared with these comparison
algorithms, MS-EO has strong optimization ability on the 30-dimensional functions from
the CEC2017 test set.
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Table 3 Comparison results of MS-EO and nine comparison algorithms on the CEC2017 test set (D= 30).

Fun. Metric EO DQL-SFLA Sa-DE ME-GWO A-EO HFPSO HBBOG DS-PSO MSS-CS MS-EO

Mean 3.3222E−03 7.2935E−01 3.0714E−03 4.5517E−03 4.8353E−03 3.9338E−03 2.2211E−00 1.6209E−03 1.4768E−14 6.3447E−13

Std 4.3491E−03 1.8488E−02 3.5072E−03 1.0677E−03 5.8456E−03 5.3689E−03 2.5455E−00 1.9165E−03 2.7859E−15 1.3821E−12f 1

Rank 7 4 6 9 10 8 3 5 1 2

Mean 1.9754E−09 9.9655E−13 8.6275E−01 2.8884E−08 3.3117E−13 5.3485E−04 3.0644E−05 4.2568E−08 4.1898E−05 4.3161E−09

Std 1.2191E−10 4.0151E−14 4.9357E−00 8.0571E−08 9.6854E−13 3.2847E−05 1.7484E−06 3.0034E−09 1.6051E−06 1.2616E−08f 2

Rank 8 10 2 6 9 3 4 7 5 1

Mean 2.3527E−01 2.3044E−05 3.0045E−02 2.2633E−02 1.2905E−03 1.5595E−07 2.4721E−01 8.0916E−06 1.3736E−02 2.8310E−13

Std 6.7349E−01 2.1837E−05 7.3017E−02 1.7031E−02 1.1722E−03 2.3334E−07 2.7490E−01 1.8234E−05 1.3680E−02 1.9642E−13f 3

Rank 5 4 9 8 10 2 6 3 7 1

Mean 6.9612E−01 1.5634E−00 6.0423E−01 2.4815E−01 9.1893E−01 6.9386E−01 1.2058E−01 1.1973E−02 1.7826E−01 4.8313E−01

Std 2.9970E−01 1.9658E−00 2.9825E−01 2.8995E−01 5.5709E−01 2.1364E−01 2.3310E−01 1.0171E−01 2.7170E−01 2.8941E−01f 4

Rank 8 1 6 4 9 7 2 10 3 5

Mean 5.7667E−01 6.8633E−01 5.6192E−01 5.6912E−01 1.4209E−02 8.5624E−01 4.8262E−01 1.6797E−01 5.4730E−01 3.6135E−01

Std 1.6196E−01 1.9409E−01 1.4216E−01 1.0725E−01 3.3861E−01 1.7427E−01 7.8631E−00 4.7117E−00 1.1402E−01 8.8507E−00f 5

Rank 7 8 5 6 10 9 3 1 4 2

Mean 5.6559E−02 1.5171E−01 8.9317E−02 2.4470E−01 4.0061E−02 1.0170E−00 1.6161E−06 2.1338E−03 8.9878E−04 8.2332E−06

Std 1.2024E−01 3.3472E−00 1.3955E−01 8.1620E−02 5.0597E−02 2.3644E−00 2.2666E−06 1.0733E−02 1.7816E−03 1.1509E−05f 6

Rank 6 10 7 8 5 9 1 4 3 2

Mean 8.8332E−01 1.2197E−02 9.4945E−01 8.9106E−01 8.9058E−01 1.0407E−02 7.8879E−01 4.0294E−01 9.1156E−01 6.4465E−01

Std 1.8194E−01 2.6617E−01 1.9879E−01 1.0935E−01 1.7893E−01 1.9791E−01 6.1638E−00 2.9776E−00 9.2863E−00 1.4880E−01f 7

Rank 4 10 8 6 5 9 3 1 7 2

Mean 5.7110E−01 6.6428E−01 5.3942E−01 5.9398E−01 5.3384E−01 7.2842E−01 5.4157E−01 1.5997E−01 5.8868E−01 3.5646E−01

Std 1.3610E−01 1.4052E−01 1.2792E−01 1.0663E−01 1.3469E−01 1.7967E−01 8.0374E−00 4.3271E−00 8.8901E−00 1.1128E−01f 8

Rank 6 9 4 8 3 10 5 1 7 2

Mean 3.2070E−01 5.5931E−02 8.3556E−01 7.8267E−00 5.9311E−00 3.2733E−01 4.4586E−01 6.0472E−02 6.7240E−00 1.1815E−13

Std 8.1996E−01 1.9193E−02 6.2643E−01 1.1815E−01 1.7346E−01 1.3249E−02 4.2698E−01 1.7766E−01 6.9160E−00 2.2287E−14f 9

Rank 7 10 9 6 4 8 3 2 5 1

Mean 3.1597E−03 3.1971E−03 2.3253E−03 2.4369E−03 3.2479E−03 2.9908E−03 1.9872E−03 1.8489E−03 2.2401E−03 4.0220E−03

Std 5.9970E−02 5.4089E−02 4.9247E−02 4.4542E−02 7.4246E−02 5.9210E−02 3.0062E−02 5.4082E−02 2.8344E−02 7.3440E−02f 10

Rank 7 8 4 5 9 6 2 1 3 10

Mean 5.9497E−01 4.3137E−01 1.0032E−02 2.9612E−01 6.0588E−01 1.1553E−02 3.8609E−01 8.2135E−01 1.9435E−01 1.7248E−01

Std 4.2844E−01 1.5616E−01 4.3101E−01 1.0347E−01 3.1569E−01 3.9628E−01 2.6323E−01 2.9775E−01 6.6436E−00 7.1973E−00f 11

Rank 6 5 9 3 7 10 4 8 2 1

(continued on next page)
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Table 3 (continued)
Fun. Metric EO DQL-SFLA Sa-DE ME-GWO A-EO HFPSO HBBOG DS-PSO MSS-CS MS-EO

Mean 6.6389E−04 2.0443E−03 6.8629E−04 1.5983E−04 3.5529E−05 9.9670E−04 3.8672E−04 1.9817E−04 4.7056E−04 2.8776E−02

Std 4.3631E−04 8.4234E−02 3.8252E−04 4.0434E−03 4.0698E−05 1.0658E−05 2.3412E−04 1.1542E−04 2.0525E−04 1.5623E−02f 12

Rank 7 2 8 3 10 9 5 4 6 1

Mean 2.1679E−04 8.9030E−02 1.1211E−04 2.0450E−02 2.3817E−04 3.0927E−04 3.6491E−03 8.3675E−03 6.9328E−01 3.2490E−01

Std 1.6448E−04 2.5263E−02 1.0535E−04 2.7028E−01 2.0917E−04 2.7301E−04 3.8431E−03 7.4967E−03 1.9798E−01 1.3414E−01f 13

Rank 8 4 7 3 9 10 5 6 2 1

Mean 5.6825E−03 4.4698E−01 4.3238E−03 6.1985E−01 2.0635E−04 6.7377E−03 9.5505E−01 7.8420E−02 4.3572E−01 3.5387E−01

Std 5.0922E−03 7.4124E−00 5.7159E−03 8.6647E−00 1.9593E−04 5.5695E−03 2.0063E−01 6.7967E−02 6.2658E−00 4.2706E−00f 14

Rank 8 3 7 4 10 9 5 6 2 1

Mean 5.5192E−03 1.0898E−02 2.1676E−03 5.1634E−01 5.8095E−03 9.7487E−03 1.1499E−02 2.6350E−03 2.1055E−01 1.3851E−01

Std 5.9116E−03 3.0585E−01 3.0178E−03 1.0713E−01 6.6724E−03 1.2114E−04 3.1105E−01 2.7534E−03 6.0683E−00 5.3627E−00f 15

Rank 8 4 6 3 9 10 5 7 2 1

Mean 6.8440E−02 4.7544E−02 5.6072E−02 4.4823E−02 4.8567E−02 7.7229E−02 4.6637E−02 4.9749E−02 5.0563E−02 6.6557E−02

Std 2.8098E−02 2.3772E−02 2.0850E−02 1.3443E−02 2.3847E−02 2.2590E−02 1.7908E−02 1.6456E−02 1.5740E−02 2.3371E−02f 16

Rank 9 3 7 1 4 10 2 5 6 8

Mean 2.2150E−02 1.5303E−02 8.7684E−01 6.9544E−01 1.3676E−02 2.5591E−02 8.7145E−01 1.5260E−02 8.9996E−01 1.2949E−02

Std 1.7044E−02 6.4439E−01 9.1289E−01 1.7296E−01 7.1383E−01 1.2971E−02 5.0306E−01 5.4151E−01 4.7714E−01 7.9698E−01f 17

Rank 9 8 3 1 6 10 2 7 4 5

Mean 1.2375E−05 6.7577E−01 1.0034E−05 2.0505E−02 2.6997E−05 1.1409E−05 8.0963E−03 4.4368E−04 2.9366E−02 2.4552E−01

Std 8.3515E−04 1.6128E−01 1.1019E−05 4.7536E−01 2.0513E−05 1.1535E−05 6.3692E−03 2.1042E−04 3.8250E−02 1.4356E−00f 18

Rank 9 2 7 3 10 8 5 6 4 1

Mean 7.5536E−03 2.4696E−01 5.9612E−03 2.9977E−01 6.6152E−03 8.6631E−03 6.4050E−01 4.3373E−03 1.4446E−01 1.7041E−01

Std 9.2361E−03 4.1265E−00 7.1112E−03 3.3897E−00 1.0646E−04 1.9974E−04 2.0384E−01 3.5805E−03 2.3613E−00 2.5649E−00f 19

Rank 9 3 7 4 8 10 5 6 1 2

Mean 2.0954E−02 2.2062E−02 1.2989E−02 1.1363E−02 1.6996E−02 2.6516E−02 1.5080E−02 1.7999E−02 1.6235E−02 1.6839E−02

Std 1.2606E−02 6.2726E−01 7.0970E−01 5.2411E−01 1.0179E−02 1.1737E−02 7.7719E−01 3.0863E−01 8.3552E−01 1.0846E−02f 20

Rank 8 9 2 1 6 10 3 7 4 5

Mean 2.4861E−02 2.5401E−02 2.4896E−02 2.5458E−02 2.4845E−02 2.7446E−02 2.1555E−02 2.2234E−02 2.4237E−02 2.3357E−02

Std 1.3100E−01 2.5306E−01 1.3195E−01 3.3247E−01 1.3575E−01 1.9517E−01 6.8417E−01 5.3235E−00 4.8332E−01 1.3000E−01f 21

Rank 6 8 7 9 5 10 1 2 4 3
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Table 3 (continued)
Fun. Metric EO DQL-SFLA Sa-DE ME-GWO A-EO HFPSO HBBOG DS-PSO MSS-CS MS-EO

Mean 1.1194E−03 1.0052E−02 1.0228E−02 1.0022E−02 9.3847E−02 1.4532E−03 1.0010E−02 1.0000E−02 1.0382E−03 1.0000E−02

Std 1.5994E−03 1.2385E−00 3.2279E−00 4.3917E−02 1.4111E−03 1.8286E−03 4.8158E−01 1.9609E−13 1.2396E−03 5.3353E−13f 22

Rank 9 5 6 4 7 10 3 1 8 2

Mean 4.0719E−02 4.3546E−02 4.1472E−02 3.8959E−02 4.0008E−02 4.8447E−02 3.4974E−02 3.6743E−02 4.0526E−02 3.8643E−02

Std 1.8730E−01 2.2279E−01 1.8742E−01 6.8787E−01 1.5030E−01 4.4709E−01 1.1018E−02 9.0375E−00 1.6627E−01 2.4054E−01f 23

Rank 7 9 8 4 5 10 1 2 6 3

Mean 4.7031E−02 4.9961E−02 4.8169E−02 4.8972E−02 4.6423E−02 5.6079E−02 4.6378E−02 4.3362E−02 4.8916E−02 4.4400E−02

Std 1.6522E−01 2.0523E−01 2.0610E−01 1.6597E−01 1.4334E−01 5.7847E−01 1.3594E−02 4.9550E−00 4.4886E−01 3.9737E−01f 24

Rank 5 9 6 8 4 10 3 1 7 2

Mean 3.8769E−02 3.8286E−02 4.0124E−02 3.8374E−02 3.8764E−02 3.8818E−02 3.8649E−02 3.8769E−02 3.8583E−02 3.8656E−02

Std 7.9822E−00 1.4018E−01 1.9489E−01 1.8246E−01 8.2423E−00 3.4076E−00 1.0050E−00 4.8364E−01 1.6363E−00 7.0457E−01f 25

Rank 8 1 10 2 6 9 4 7 3 5

Mean 1.5490E−03 1.2519E−03 1.7344E−03 2.5051E−02 1.3867E−03 1.4922E−03 2.7819E−02 4.0567E−02 7.4010E−02 3.1174E−02

Std 2.5666E−02 6.8198E−02 7.1347E−02 4.1112E−01 3.3105E−02 9.6940E−02 1.9359E−02 3.4155E−02 6.7559E−02 1.1411E−02f 26

Rank 9 6 10 1 7 8 2 4 5 3

Mean 5.1702E−02 5.0569E−02 5.4289E−02 5.1286E−02 5.1096E−02 5.3523E−02 5.0897E−02 5.0926E−02 5.0139E−02 5.0058E−02

Std 1.0225E−01 2.5923E−01 1.7086E−01 6.1632E−00 8.0838E−00 2.1095E−01 4.7593E−00 8.1065E−00 9.4424E−00 9.5229E−00f 27

Rank 8 3 10 7 6 9 4 5 2 1

Mean 3.5720E−02 3.2849E−02 3.3257E−02 3.6492E−02 4.0282E−02 3.5331E−02 3.2843E−02 3.9331E−02 3.0608E−02 3.0224E−02

Std 5.9081E−01 5.0025E−01 5.2165E−01 3.2477E−01 2.6602E−01 5.9179E−01 4.1817E−01 5.4248E−01 2.4544E−01 1.4512E−01f 28

Rank 7 4 5 8 10 6 3 9 2 1

Mean 6.3631E−02 7.4492E−02 5.5826E−02 5.4385E−02 5.8903E−02 6.7006E−02 5.1223E−02 4.7663E−02 5.1924E−02 6.4501E−02

Std 1.6299E−02 1.2566E−02 1.0040E−02 5.4241E−01 1.0176E−02 1.4475E−02 5.8019E−01 3.9323E−01 6.6026E−01 8.5013E−01f 29

Rank 7 10 5 4 6 9 2 1 3 8

Mean 1.1907E−04 4.6351E−03 5.0147E−03 3.6855E−03 1.5591E−04 1.8733E−04 5.4617E−03 3.9418E−03 2.6103E−03 2.0742E−03

Std 3.7716E−04 1.5177E−03 1.9712E−03 3.3042E−02 3.3443E−04 3.4470E−04 1.0452E−03 1.4015E−03 3.1169E−02 5.0097E−01f 30

Rank 8 5 6 3 9 10 7 4 2 1

Best/2nd best 0/0 2/2 0/2 4/1 0/0 0/1 3/6 7/3 2/7 12/8

Ave. rank 7.33 5.90 6.53 4.73 7.27 8.60 3.43 4.43 4.00 2.77

Total. rank 9 6 7 5 8 10 2 4 3 1
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The results on the 50-dimensional functions are similar to those on the 30-dimensional
functions. From Table 4, EO still ranks ninth and is only better than HFPSO. On the
unimodal functions,MS-EO, Sa-DE andMSS-CS obtain one time ranking first, respectively.
DS-PSO shows strong optimization ability on the multimodal and composition functions.
However, MS-EO can obtain 6 times ranking first, and 13 times ranking the second.
Moreover, the average ranking of MS-EO is 3.37 and it ranks first. It indicates that
MS-EO also has the best optimization performance on the 50-dimensional function.
Therefore, MS-EO shows stronger competitiveness on CEC2017 test set. In conclusion,
the synthetization of many search strategies into EO is effective and MS-EO has stronger
scalability and universality.

DISCUSSION
Statistical analysis
In order to verify MS-EO, this subsection performs Wilcoxon signed rank test with
Bonferroni-Holm (Zhang et al., 2020a; Zhang et al., 2020b) correction based on the
complex functions (D= 30 and D= 50) from CEC2017 test set (60 cases in sum). The
purpose is to detect whether there is a significant difference between the two samples.
Let H0 be the null hypothesis, that is, there is no significant difference between the two
samples. The significance level (b) is set to 0.05 based on the best recommendation (Derrac
et al., 2011). Table 5 provides Wilcoxon signed rank test results based on Table 3 and 4. R
+ represents the positive rank, which is the total rank of the problems in which MS-EO is
better than the comparison algorithm. R − is the negative rank, which is the total rank of
the problems in which MS-EO is inferior to the comparison algorithm. The corresponding
rank is equally divided into R + and R − when the optimization performance of the two
algorithms is equal. The p-value is calculated from R + and R −. The Bonferroni-Holm
method adjusts b in descending order of p-value. H1, H2, . . . , H k -1 are corresponding
hypotheses. The hypothesis is rejected when b/u< p-value, otherwise it is accepted. n/w/t /l
respectively represent the number of optimization functions is n and the number of
functions that MS-EO is better than, equal to and inferior to the comparison algorithm.

FromTable 5, the p-values ofMS-EO and the comparison algorithms are all less than b/u,
and the corresponding hypothesis is rejected. It shows that there are significant differences
between MS-EO and the comparison algorithms. In particular, the function number that
MS-EO is better than EO is 54. Moreover, the function number that MS-EO outperforms
A-EO is 52. And MS-EO is significantly superior to any of the comparison algorithms on
CEC2017 test set.

Performance index analysis
In order to further evaluateMS-EO, this subsection uses the performance index (Pi)method
(Bharati, 1994) to analyze and verify the optimization performance of MS-EO on CEC2017
test set. Pi is a process of weighing the average error and running time. Bharati (1994)
proposed Pi to compare the relative performance of computational algorithms developed
by her. This index gives a weighted importance to the success rate, the computational time
as well as the number of function evaluations. Hence, it obtains a more accurate solution in
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Table 4 Comparison results of MS-EO and 9 comparison algorithms on CEC2017 test set (D= 50).

Fun. Metric EO DQL-SFLA Sa-DE ME-GWO A-EO HFPSO HBBOG DS-PSO MSS-CS MS-EO

Mean 3.9497E−03 2.3645E−02 2.5647E−03 2.1679E−04 3.2345E−03 8.3789E−03 2.3242E−03 2.9444E−03 4.3894E−01 1.6071E−01

Std 3.5012E−03 4.0670E−02 3.1799E−03 6.0804E−03 2.9248E−03 9.2826E−03 1.9622E−03 3.2922E−03 1.1704E−00 2.6214E−01f 1

Rank 8 3 5 10 7 9 4 6 1 2

Mean 1.6865E−18 4.5120E−40 1.8669E−08 5.6329E−18 2.8428E−37 1.5411E−13 6.1883E−13 1.2602E−16 3.9178E−08 2.7824E−11

Std 8.0116E−18 2.2083E−41 7.9763E−08 2.5500E−19 1.7081E−38 9.7997E−13 3.0523E−14 7.9718E−16 2.1373E−09 9.8063E−11f 2

Rank 7 10 1 8 9 4 5 6 2 3

Mean 3.0331E−03 5.3157E−04 1.8496E−03 8.7143E−03 1.1045E−04 1.8319E−01 6.5936E−02 1.5160E−01 1.1804E−04 7.3399E−07

Std 2.2006E−03 9.6301E−04 1.5425E−03 3.0099E−03 4.0641E−03 5.9204E−01 3.9612E−02 2.2267E−01 3.9556E−03 2.6121E−06f 3

Rank 7 2 6 8 9 4 5 3 10 1

Mean 8.4094E−01 1.6440E−00 1.0533E−02 4.0082E−01 9.1893E−01 8.5343E−01 3.5500E−01 2.3667E−02 4.1554E−01 5.8602E−01

Std 4.5502E−01 3.2924E−00 4.3336E−01 1.8954E−01 5.5709E−01 5.1342E−01 1.8197E−01 3.0583E−01 3.7685E−01 4.5951E−01f 4

Rank 6 1 9 3 8 7 2 10 4 5

Mean 1.4246E−02 1.7195E−02 1.2886E−02 1.4431E−02 1.4209E−02 1.7243E−02 1.2250E−02 3.4453E−01 1.2147E−02 6.4291E−01

Std 2.6116E−01 3.8522E−01 2.3960E−01 2.1124E−01 3.3861E−01 4.1999E−01 1.4479E−01 7.2978E−00 1.4354E−01 1.3900E−01f 5

Rank 7 9 5 8 6 10 4 1 3 2

Mean 6.2979E−01 2.5574E−01 5.3123E−01 2.8298E−01 4.0061E−02 4.4456E−00 1.6757E−05 1.2990E−03 3.6293E−02 8.7264E−04

Std 6.1595E−01 3.4969E−00 5.8275E−01 6.1436E−02 5.0597E−02 5.3650E−00 7.7558E−06 4.3919E−03 2.6546E−02 2.5677E−03f 6

Rank 8 10 7 6 5 9 1 3 4 2

Mean 1.9618E−02 2.8109E−02 2.4910E−02 1.8021E−02 1.9761E−02 2.0517E−02 1.6149E−02 7.3078E−01 1.7873E−02 1.0941E−02

Std 3.5825E−01 4.4069E−01 4.8736E−01 1.8965E−01 3.4547E−01 3.2001E−01 1.6175E−01 4.2607E−00 1.8428E−01 2.2175E−01f 7

Rank 6 10 9 5 7 8 3 1 4 2

Mean 1.4804E−02 1.7152E−02 1.3161E−02 1.4315E−02 1.4544E−02 1.7001E−02 1.2351E−02 3.3985E−01 1.2782E−02 7.1051E−01

Std 2.9406E−01 3.6768E−01 2.0238E−01 1.8978E−01 3.2694E−01 4.5209E−01 1.0765E−01 8.1789E−00 1.5275E−01 1.2857E−01f 8

Rank 8 10 5 6 7 9 3 1 4 2

Mean 3.5029E−02 3.6847E−03 1.1715E−03 1.9019E−02 4.1471E−02 1.7848E−03 7.7708E−01 6.6506E−01 1.3688E−02 4.0703E−01

Std 3.4402E−02 1.0627E−03 6.8168E−02 1.7075E−02 6.5384E−02 2.3011E−03 1.6190E−02 8.1456E−01 9.7692E−01 5.1336E−01f 9

Rank 6 10 8 5 7 9 3 2 4 1

Mean 5.9006E−03 5.7025E−03 4.7308E−03 4.9658E−03 6.1744E−03 5.3414E−03 3.7699E−03 3.2923E−03 4.1579E−03 8.6161E−03

Std 1.0750E−03 7.0335E−02 7.3879E−02 5.5011E−02 1.3183E−03 8.6781E−02 3.7801E−02 6.7006E−02 5.1910E−02 1.1814E−03f 10

Rank 8 7 4 5 9 6 2 1 3 10
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Table 4 (continued)
Fun. Metric EO DQL-SFLA Sa-DE ME-GWO A-EO HFPSO HBBOG DS-PSO MSS-CS MS-EO

Mean 1.3316E−02 1.1819E−02 1.2689E−02 8.1916E−01 1.0644E−02 2.0174E−02 8.3313E−01 1.4696E−02 5.2985E−01 5.8186E−01

Std 5.1688E−01 3.1338E−01 3.5636E−01 1.3432E−01 3.4394E−01 5.7840E−01 1.9916E−01 2.8818E−01 8.7630E−00 1.2567E−01f 11

Rank 8 6 7 3 5 10 4 9 1 2

Mean 8.7900E−05 3.6575E−03 7.4458E−05 1.8657E−05 2.1880E−06 1.4485E−06 2.4647E−05 3.5957E−05 6.9433E−05 3.8587E−03

Std 6.1984E−05 2.2008E−03 4.2569E−05 5.4859E−04 1.3155E−06 1.6009E−06 1.0160E−05 4.3116E−05 5.2763E−05 2.7793E−03f 12

Rank 8 1 7 3 10 9 4 5 6 2

Mean 6.7074E−03 4.1229E−03 2.5361E−03 6.6881E−02 1.1402E−04 2.3795E−04 3.9277E−03 3.1885E−03 2.9060E−02 2.9034E−02

Std 7.1775E−03 1.5509E−03 2.5305E−03 6.7230E−01 9.6853E−03 2.5205E−04 3.1606E−03 4.1387E−03 6.6432E−01 7.7761E−01f 13

Rank 8 7 4 3 9 10 6 5 2 1

Mean 5.3067E−04 1.0180E−02 4.7140E−04 1.5699E−02 9.8291E−04 3.5550E−04 1.1018E−03 1.1224E−04 7.8180E−01 5.5929E−01

Std 4.7326E−04 1.7854E−01 3.1170E−04 1.5088E−01 7.0428E−04 3.1885E−04 8.7558E−02 8.6696E−03 1.5280E−01 1.0455E−01f 14

Rank 9 3 8 4 10 7 5 6 2 1

Mean 1.1676E−04 1.0612E−03 5.6216E−03 1.4626E−02 1.4888E−04 1.1670E−04 1.4184E−03 2.3347E−03 4.7762E−01 8.0362E−01

Std 6.9998E−03 2.7815E−02 4.7469E−03 1.6989E−01 6.0251E−03 1.1079E−04 1.0856E−03 3.6060E−03 7.5151E−00 2.0987E−01f 15

Rank 9 4 7 3 10 8 5 6 1 2

Mean 1.1338E−03 1.1095E−03 1.0043E−03 9.8713E−02 8.9729E−02 1.2701E−03 1.0229E−03 5.3882E−02 1.0910E−03 1.2350E−03

Std 3.6325E−02 2.5247E−02 3.3703E−02 1.7615E−02 3.8012E−02 3.7207E−02 2.3097E−02 1.9238E−02 2.7541E−02 4.2656E−02f 16

Rank 8 7 4 3 2 10 5 1 6 9

Mean 9.6745E−02 8.7269E−02 7.5575E−02 6.0302E−02 7.5640E−02 9.3913E−02 6.6867E−02 4.8637E−02 7.3705E−02 9.9433E−02

Std 3.2913E−02 2.0248E−02 1.8544E−02 1.3535E−02 2.5595E−02 2.6352E−02 1.9071E−02 1.4930E−02 1.3701E−02 2.3241E−02f 17

Rank 9 7 5 2 6 8 3 1 4 10

Mean 3.2525E−05 7.5856E−02 5.5399E−05 1.1763E−03 1.2651E−06 1.5723E−05 3.5663E−04 6.8204E−04 4.8069E−04 4.7008E−01

Std 2.3141E−05 3.3250E−02 4.5699E−05 3.4759E−02 6.5857E−05 1.4307E−05 1.4834E−04 3.3807E−04 2.0031E−04 8.9333E−00f 18

Rank 8 2 9 3 10 7 4 6 5 1

Mean 1.4953E−04 3.0967E−02 1.3390E−04 6.6052E−01 1.8467E−04 2.0446E−04 2.7309E−02 1.3335E−04 3.0133E−01 3.2375E−01

Std 1.0037E−04 1.5039E−02 8.3663E−03 7.4493E−00 1.2442E−04 1.9192E−04 9.4521E−01 6.3554E−03 5.7899E−00 4.3768E−00f 19

Rank 8 5 7 3 9 10 4 6 1 2

Mean 6.8033E−02 6.2983E−02 5.6922E−02 4.6622E−02 4.8302E−02 6.9561E−02 5.4264E−02 2.3626E−02 5.3032E−02 8.0299E−02

Std 2.6705E−02 1.5421E−02 1.4463E−02 1.1561E−02 2.4315E−02 2.9247E−02 1.6817E−02 1.1687E−02 1.8170E−02 2.4906E−02f 20

Rank 8 7 6 2 3 9 5 1 4 10

Mean 3.1090E−02 3.3003E−02 3.1678E−02 3.3814E−02 3.1585E−02 3.7161E−02 3.3013E−02 2.3592E−02 3.2608E−02 2.6429E−02

Std 2.8117E−01 2.3167E−01 2.3411E−01 2.1655E−01 2.3927E−01 3.2744E−01 1.3200E−01 6.5630E−00 1.5987E−01 1.6140E−01f 21

Rank 3 7 5 9 4 10 8 1 6 2
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Table 4 (continued)
Fun. Metric EO DQL-SFLA Sa-DE ME-GWO A-EO HFPSO HBBOG DS-PSO MSS-CS MS-EO

Mean 5.9913E−03 2.3991E−03 4.7690E−03 3.8077E−03 6.4205E−03 6.2153E−03 4.0848E−03 6.5559E−02 4.6340E−03 1.4748E−03

Std 1.5479E−03 3.0495E−03 1.8229E−03 2.5873E−03 1.6431E−03 1.5579E−03 1.2150E−03 1.4155E−03 1.0493E−03 3.3287E−03f 22

Rank 8 3 7 4 10 9 5 1 6 2

Mean 5.4238E−02 6.5156E−02 5.8431E−02 5.8174E−02 5.1925E−02 7.3856E−02 5.5405E−02 4.6855E−02 5.6194E−02 4.8880E−02

Std 3.2819E−01 4.6161E−01 3.8846E−01 2.2401E−01 2.6376E−01 8.0298E−01 5.2356E−01 1.1961E−01 1.8753E−01 1.7623E−01f 23

Rank 4 9 8 7 3 10 5 1 6 2

Mean 6.0057E−02 7.4405E−02 6.7632E−02 7.1514E−02 5.9131E−02 8.5766E−02 7.6565E−02 5.2496E−02 6.7982E−02 5.5065E−02

Std 2.5696E−01 5.8372E−01 4.4248E−01 3.8843E−01 2.5283E−01 1.0176E−02 1.4692E−02 8.6792E−00 3.5212E−01 1.5233E−01f 24

Rank 4 8 5 7 3 10 9 1 6 2

Mean 5.6300E−02 4.5604E−02 5.5431E−02 4.7884E−02 5.5861E−02 5.3195E−02 5.0183E−02 5.7977E−02 5.2177E−02 5.0583E−02

Std 3.6744E−01 2.8919E−01 4.3335E−01 2.3321E−01 3.0101E−01 3.6107E−01 2.9610E−01 1.4104E−01 3.5843E−01 3.5559E−01f 25

Rank 9 1 7 2 8 6 3 10 5 4

Mean 2.7101E−03 2.3459E−03 3.9842E−03 1.3313E−03 2.1844E−03 2.4549E−03 1.7512E−03 4.9789E−02 2.3641E−03 1.5420E−03

Std 5.7969E−02 1.1079E−03 9.2623E−02 1.1968E−03 4.0895E−02 1.2922E−03 1.0885E−03 4.0639E−02 7.0239E−02 5.4648E−02f 26

Rank 9 6 10 2 5 8 4 1 7 3

Mean 6.5759E−02 5.6750E−02 8.8692E−02 6.2301E−02 5.8586E−02 6.8377E−02 5.9493E−02 7.9031E−02 5.9110E−02 5.3873E−02

Std 6.4481E−01 1.4337E−02 9.7798E−01 3.6098E−01 4.2581E−01 1.1189E−02 3.5636E−01 6.7411E−01 4.5603E−01 2.0866E−01f 27

Rank 7 2 10 6 3 8 5 9 4 1

Mean 4.9836E−02 4.5767E−02 4.9924E−02 4.5958E−02 4.9536E−02 4.8912E−02 4.7089E−02 5.4023E−02 4.7078E−02 4.6787E−02

Std 2.6521E−01 1.6478E−01 2.3252E−01 9.5307E−01 2.4678E−01 2.1819E−01 1.8699E−01 3.1154E−01 1.9905E−01 1.8554E−01f 28

Rank 8 1 9 2 7 6 5 10 4 3

Mean 9.3754E−02 1.2909E−03 9.6535E−02 7.3576E−02 7.8757E−02 1.1964E−03 7.3439E−02 6.6524E−02 7.7557E−02 8.6297E−02

Std 3.0896E−02 2.2162E−02 2.6606E−02 1.1266E−02 2.0488E−02 3.2623E−02 1.4813E−02 1.6706E−02 1.6510E−02 2.2128E−02f 29

Rank 7 10 8 3 5 9 2 1 4 6

Mean 1.0765E−06 1.7409E−04 9.2269E−05 7.2462E−05 1.0418E−06 1.4015E−06 6.5634E−05 4.0551E−06 5.8299E−05 6.4818E−05

Std 4.0254E−05 1.2783E−04 1.7675E−05 4.0653E−04 2.6907E−05 6.0428E−05 3.7787E−04 1.1743E−06 3.7944E−03 3.2330E−04f 30

Rank 8 1 6 5 7 9 4 10 2 3

Best/2nd best 0/0 5/3 1/0 0/5 0/1 0/0 1/3 13/1 4/4 6/13

Ave. rank 7.37 5.63 6.60 4.67 6.77 8.27 4.23 4.17 4.03 3.27

Total. rank 9 6 7 5 8 10 4 3 2 1
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Table 5 Wilcoxon signed rank test with Bonferroni-Holm correction on the CEC2017 test set.

u p-value R+ R− b/u Hypothesis n/w/t /l

MS-EO vsHFPSO 9 5.7791E−09 1706 124 5.5556E−03 Reject 60/56/0/4
MS-EO vs EO 8 2.9685E−08 1668 162 6.2500E−03 Reject 60/54/0/6
MS-EO vs A-EO 7 9.8073E−07 1580 250 7.1429E−03 Reject 60/52/0/8
MS-EO vs Sa-DE 6 1.8000E−05 1498 332 8.3333E−03 Reject 60/50/0/10
MS-EO vs DQL-SFLA 5 3.2800E−04 1403 427 1.0000E−02 Reject 60/47/0/13
MS-EO vsHBBOG 4 1.2950E−03 1352 478 1.2500E−02 Reject 60/41/0/19
MS-EO vsME-GWO 3 3.4720E−03 1312 518 1.6667E−02 Reject 60/43/0/17
MS-EO vs DS-PSO 2 1.4463E−02 1239 591 2.5000E−02 Reject 60/37/1/22
MS-EO vsMSS-CS 1 4.2174E−02 1191 639 5.0000E−02 Reject 60/39/0/21

Notes.
The bold values are set uniformly in order to correspond to the characters in Eqs. (1) and (12).

a fixed time if Pi of the algorithm is higher, and its performance is better. The mathematical
model of Pi can be formulated by Eq. (19):

Pi=
1
m

m∑
n=1

(c1σ n
1 + c2σ

n
2 ) (19)

σ n
1 =ME/Em (20)

σ n
2 =MS/Sm (21)

where n ∈[1, m ], and m is the sum of the number of problems. On the n-th problem,
M E and MS are the minimum values of the average error value and average time of all
algorithms, respectively. E m and S m the average error value and average time obtained by
an algorithm on the n-th problem, respectively. c1 is the average error weight and c2 is the
average time weight (c1 + c2 = 1 and c1, c2 ∈[0, 1]).

Figure 9 shows the Pi values of MS-EO and the contrast algorithms under the conditions
of 30-dimensional and 50-dimensional functions in the CEC2017 test set. In addition, m
= 60, the weight (w) is set to the numbers between 0 and 1 in steps of 0.2 according to
the best recommendation from Gupta et al. (2020), c1 = w and c2 = 1-w. From Fig. 9, the
value of Pi of MS-EO is greater than the comparison algorithms at any time. Moreover, the
value of Pi of MS-EO is greater than that of EO and A-EO regardless of on CEC2017 test
set. It shows that MS-EO can get more accurate solutions in a fixed time on CEC2017 test
set. This further indicates that the performance of MS-EO is more stable.

Convergence analysis
To validate the convergence quality of MS-EO, this subsection performs some convergence
tests on the 30-dimensional functions from the CEC2017 test set. Four representative
functions are selected from the CEC2017 test set to illustrate the problem briefly, namely,
unimodal function f 3, multimodal function f 9, hybrid function f 12 and composition
function f 30. Figure 10 illustrates the convergence curves of MS-EO and the comparison
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Figure 10 Convergence curves on the 30-dimensional functions from the CEC2017 test set.
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algorithms. From Fig. 10, the convergence speed of MS-EO is much faster than that of the
comparison algorithms on f 3, f 9 and f 12.

On f 30, the convergence of MS-EO is not as obvious as on the first three functions.
However, MS-EO converges faster than any of the comparison algorithms as the iteration
number increases, and can find a more accurate solution. On f 3 and f 12, the convergence
curve of DQL-SFLA drops suddenly and converges to a smaller solution in the late iteration
stage. It is due to the fact that DQL-SFLA incorporates the quasi-Newton local search in
the late stage, so that it has a faster convergence speed. In addition, the convergence speed
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of MS-EO is dramatically faster than that of EO and A-EO on all four functions. MS-EO
has better convergence performance compared with the comparison algorithms on the
30-dimensional functions from the CEC2017 test set.

Application to feature selection
In order to verify the ability of MS-EO to solve practical problems, this section discusses
MS-EO’s application to feature selection. Feature selection is to find the optimal feature
subset by eliminating irrelevant or redundant features from the original feature set (Hu
et al., 2021). It can be defined as a discrete OP because the solution of feature selection
belongs to binary. Suppose a data set hasN samples andH features. B is the original feature
set. Then feature selection can be regarded as finding h (h < H ) features from B while
minimizing its fitness function to maximize the classification accuracy of a given classifier.
Its search individual X can be expressed as:

X j
i =

{
1 C j

i > 0.5
0 otherwise

(22)

where 1 represents the corresponding feature is selected. Otherwise, it is not selected.
The objective function can be defined as:

fitness=µ1×er+µ2× (|h|/|H |) (23)

where µ1 and µ2 are two weighting coefficients. µ1 ∈[0,1] and µ2= 1−µ1. According
to the best recommendation (Hu et al., 2021), µ1 is set to 0.99, and the corresponding
µ2 is 0.01. er represents the error rate and it is calculated by K -Nearest Neighbor (KNN)
classifier. KNN divides the dataset into training, validation, and testing of equal size to
cross-verify each dataset (Tu, Chen & Liu, 2019). K = 5 in the experiment.

Twelve datasets from UCI machine learning repository (http://archive.ics.uci.edu/ml/
index.php) we selected to test the effectiveness of MS-EO on feature selection. Table 6
provides a brief description of these datasets. k, v and z represent the number of samples,
features and classifications of each dataset, respectively. Among them, the distribution of
D7 (Segmentation dataset) under different features is shown in Fig. 11. From Fig. 11, four
plane graphs are made by selecting two of the 19 features of D7. On Features 1 and 2, these
samples with seven types fill the entire graph. In the remaining three feature plane graphs,
the sample distribution is relatively concentrated because some sample points overlap.

Table 7 shows the comparison results of MS-EO and the comparison algorithms on the
average fitness value of objective function (mean), classification accuracy (accuracy) and
average number of selected features (AND). The common parameters are set as follows:
For fair comparison,Mnfe = 1000 for all the comparison algorithms. For MS-EO, N = 20,
T = 50; For ME-GWO, N = 5, T = 100; For SR-PSO, Sin-DE and WOASA, N = 10, T =
100. The experimental results of SR-PSO, Sin-DE, WOASA and ME-GWO are all taken
from Tu, Chen & Liu (2019).

From Table 7, MS-EO outperforms SR-PSO, Sin-DE and WOASA on all the datasets
in terms of mean fitness. For ME-GWO, MS-EO outperforms it on all the remaining
datasets except D4. The classification accuracy is similar to mean. On accuracy, MS-EO
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Table 6 Brief description of the datasets.

No. Name k v z

D1 Australian 690 14 2
D2 Breast 277 9 2
D3 Hearts 270 12 2
D4 Ionosphere 351 34 2
D5 Kr_vs_kp 3196 36 2
D6 Sonar 208 60 2
D7 Segmentation 210 19 7
D8 Vowel 528 10 2
D9 Wine 178 13 3
D10 Waveform 5000 21 3
D11 Wdbc 569 30 2
D12 Zoo 101 16 7

Figure 11 Distribution graph of the Segmentation dataset (D7) under different features.
Full-size DOI: 10.7717/peerjcs.1760/fig-11

gets 11 times ranking the first, even reaching 100% on D12. MS-EO gets the least number
of features on all 10 data sets. On D4, ME-GWO provides 95.91% classification accuracy
by using 10.6 average features while MS-EO renders 95.68% accuracy with 9.6 average
features. It suggests that MS-EO can effectively reduce the number of features. In order to
highlight the comprehensive performance of MS-EO in solving feature selection problems,
according to Table 7, the comprehensive ranking results of MS-EO and the comparison
algorithms on feature selection are shown in Table 8. From Table 8, the ranking order
of the five algorithms is MS-EO, ME-GWO, WOASA, Sin-DE and SR-PSO according to
the comprehensive ranking results in Table 8. It further proves that MS-EO can solve the
problem of feature selection more effectively.

CONCLUSIONS
In order to cope with some drawbacks of EO in solving complex OPs, this article proposes
a multi-strategy synthetized EO (MS-EO). Firstly, a simplified updating strategy is adopted
by simplifying the original updating equation of EO to reduce the computational load and
enhance the operability of EO. Secondly, an information sharing strategy based on iteration
is added into the simplified EO. Most particles are updated by the strategy in the early
search stage to enhance the global search ability while updated by the simplified EO in the
late search stage ensuring the exploitation ability of EO. Then, a migration strategy is used
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Table 7 Comparison results based onmean, accuracy and AND.

Mean Accuracy AND

SR-PSO Sin-DE WOASA ME-GWO MS-EO SR-PSO Sin-DE WOASA ME-GWO MS-EO SR-PSO Sin-DE WOASA ME-GWO MS-EO

1.9200E−01 1.4800E−01 1.3500E−01 1.2600E−01 1.2274E−01 80.93% 85.39% 86.67% 87.54% 87.83% 4.6 4.8 4.2 3.2 3.1
D1

Rank 5 4 3 2 1 5 4 3 2 1 4 5 3 2 1

2.6400E−01 2.1100E−01 2.0600E−01 2.0400E−01 1.6826E−01 73.81% 78.99% 79.71% 79.86% 83.45% 4.4 4.2 4.4 4.0 4.0
D2

Rank 5 4 3 2 1 5 4 3 2 1 4 3 4 1 1

2.4200E−01 1.8400E−01 1.5700E−01 1.4900E−01 1.4208E−01 76.00% 81.78% 85.19% 85.33% 85.93% 4.8 4.6 4.2 4.0 3.3
D3

Rank 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1

9.9000E−02 5.7000E−02 4.8000E−02 4.4000E−02 4.5574E−02 90.45% 94.55% 95.45% 95.91% 95.68% 16.4 10.8 10.6 10.6 9.60
D4

Rank 5 4 3 1 2 5 4 3 1 2 5 4 2 2 1

2.2100E−01 1.9900E−01 1.8100E−01 1.7700E−01 1.7121E−01 78.20% 80.23% 82.17% 82.53% 83.09% 18.6 16.4 15.2 15.2 13.5
D5

Rank 5 4 3 2 1 5 4 3 2 1 5 4 2 2 1

1.4200E−01 7.2000E−02 4.7000E−02 5.6000E−02 4.4247E−02 86.15% 93.08% 95.67% 94.81% 95.96% 28.2 26.4 23.4 25.6 25.6
D6

Rank 5 4 2 3 1 5 4 2 3 1 5 4 1 2 2

1.1700E−01 8.4900E−02 8.9000E−02 5.5700E−02 5.0808E−02 88.76% 91.81% 91.43% 94.67% 95.14% 9.8 7.0 8.0 5.2 4.9
D7

Rank 5 3 4 2 1 5 3 4 2 1 5 3 4 2 1

8.3000E−02 4.1000E−02 3.2000E−02 2.2000E−02 1.8250E−02 92.27% 96.52% 97.73% 98.48% 98.86% 7.8 7.6 7.4 7.0 7.0
D8

Rank 5 4 3 2 1 5 4 3 2 1 5 4 3 1 1

8.1000E−02 4.8000E−02 2.8000E−02 1.9000E−02 1.5290E−02 92.36% 95.53% 97.51% 98.43% 98.88% 6.6 4.6 4.2 4.0 5.0
D9

Rank 5 4 3 2 1 5 4 3 2 1 5 3 2 1 4

2.4800E−01 2.1500E−01 2.1200E−01 2.1700E−01 2.0721E−01 75.54% 78.98% 79.52% 78.82% 79.75% 18.2 15.0 16.0 16.0 14.1
D10

Rank 5 3 2 4 1 5 3 2 4 1 5 2 3 3 1

8.2000E−02 7.3000E−02 6.1000E−02 5.6000E−02 4.9551E−02 92.21% 92.77% 94.04% 94.53% 95.12% 5.2 5.4 5.2 5.0 3.8
D11

Rank 5 4 3 2 1 5 4 3 2 1 3 4 3 2 1

3.7000E−02 2.3000E−02 2.3000E−02 1.1000E−02 2.8125E−03 96.86% 98.04% 98.04% 99.22% 100% 9.4 6.5 5.6 5.4 4.5
D12

Rank 5 3 3 2 1 5 3 3 2 1 5 4 3 2 1

Count 0 0 0 1 11 0 0 0 1 11 0 0 1 3 10

Ave. rank 5.00 3.75 2.92 2.17 1.08 5.00 3.75 2.92 2.17 1.08 4.67 3.75 2.75 1.83 1.33

Total. rank 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1
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Table 8 Comprehensive ranking results on feature selection.

SR-PSO Sin-DE WOASA ME-GWO MS-EO

Ave. Rank 4.89 3.71 2.86 2.04 1.15
Total. Rank 5 4 3 2 1

for a golden particle to update and to enhance the search ability. Finally, an elite learning
strategy is used for the worst particles in the late search stage to enhance the local search
ability. Experimental results on CEC2013 and CEC2017 test sets demonstrate that MS-EO
is better than EO and any of some state-of-the-art algorithms. MS-EO outperforms EO
on 54 of 60 functions from CEC2017 test set (D= 30 and D= 50). The running time of
MS-EO accounts for 36.22% and 45.45% of EO on the 30- and 50-dimensional functions,
respectively. The value of Pi of MS-EO is also the highest under any condition. On feature
selection,MS-EO has also obtainedmore convincing results. These results on both complex
functions and feature selection show many updating strategies synthesized into EO are
effective and expect to be extended to improvement on other MAs. In the future works, we
will propose new search strategies to further improve the multi-strategy theory for MS-EO
and other MAs. The improved MAs will be dealt with more practical problems.
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