Submitted 22 December 2022
Accepted 20 July 2023
Published 14 August 2023

Corresponding author
Feng Zhou, zfycit@ycit.edu.cn

Academic editor
Natalia Kryvinska

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj-cs.1529

© Copyright
2023 Wu et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Reconstructed SqueezeNext with C-
CBAM for offline handwritten Chinese
character recognition

Ruiqi Wu, Feng Zhou, Nan Li, Xian Liuand Rugang Wang

School of Information Technology, Yancheng Institute of Technology, Yancheng, Jiangsu, China

ABSTRACT

Background. Handwritten Chinese character recognition (HCCR) is a difficult prob-
lem in character recognition. Chinese characters are diverse and many of them are very
similar. The HCCR model consumes a large number of computational resources during
runtime, making it difficult to deploy to resource-limited development platforms.
Methods. In order to reduce the computational consumption and improve the
operational efficiency of such models, an improved lightweight HCCR model is
proposed in this article. We reconstructed the basic modules of the SqueezeNext
network so that the model would be compatible with the introduced attention module
and model compression techniques. The proposed Cross-stage Convolutional Block
Attention Module (C-CBAM) redeploys the Spatial Attention Module (SAM) and the
Channel Attention Module (CAM) according to the feature map characteristics of
the deep and shallow layers of the model, targeting enhanced information interaction
between the deep and shallow layers. The reformulated intra-stage convolutional kernel
importance assessment criterion integrates the normalization nature of the weights
and allows for structured pruning in equal proportions for each stage of the model.
The quantization aware training is able to map the 32-bit floating-point weights in the
pruned model to 8-bit fixed-point weights with minor loss.

Results. Pruning with the new convolutional kernel importance evaluation criterion
proposed in this article can achieve a pruning rate of 50.79% with little impact on
the accuracy rate. The various optimization methods can compress the model to 1.06
MB and achieve an accuracy of 97.36% on the CASIA-HWDB dataset. Compared with
the initial model, the volume is reduced by 87.15%, and the accuracy is improved by
1.71%. The model proposed in this article greatly reduces the running time and storage
requirements of the model while maintaining accuracy.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Natural
Language and Speech, Neural Networks
Keywords CNN, Lightweight model, Character recognition, Attention model

INTRODUCTION

The written word is a symbolic system used by humans to communicate, a form of writing
to record ideas and time (Wang et al., 2018a; Wang et al., 2018b). As a unique tool for
recording, preserving, and transmitting knowledge, Chinese characters have played a great
role in the advancement of human civilization in China and the world, and in promoting
the progress and development of Chinese society.

How to cite this article WuR, Zhou F, Li N, Liu X, Wang R. 2023. Reconstructed SqueezeNext with C-CBAM for offline handwritten
Chinese character recognition. Peer] Comput. Sci. 9:¢1529 http://doi.org/10.7717/peerj-cs.1529

https://peerj.com/computer-science
mailto:zfycit@ycit.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1529
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

HCCR is the recognition of already written Chinese characters as characters in the
standard character set (Liu et al., 2022). HCCR tasks can be divided into two types:
online and offline. Online recognition tasks are mainly used in scenarios such as terminal
handwriting input. Online recognition models can record strokes and trajectories, and
the presence of noise is less influential. Compared to online tasks, offline recognition
tasks are a difficult area in character recognition (Yan & Wang, 2017; Jin et al., 2016). At
present, offline handwritten Chinese character recognition technology is mainly used in
areas such as bank cheque recognition, electronic paper archives, handwritten manuscript
recognition, and marking homework in primary and secondary schools (Shen ¢ Messina,
2016). Equipment such as copiers and scanners with text recognition functions can save a
lot of time and greatly improve work efficiency. Online recognition models and recognition
models for printed fonts are numerous. These two types of models are easier to implement
and have higher accuracy rates. Offline recognition models and handwriting recognition
models have to cope with more complex noise and complicated input images and are
therefore relatively slow to develop. The scenarios where offline handwritten character
recognition tasks need to be performed are mostly devices with limited computing resources
such as scanners and sorters.

The model needs to be compressed for better-embedded platform development. By
compressing convolutional neural networks through techniques such as reconstruction
(Howard et al., 2017; Zhang et al., 2018), quantization (Chen et al., 2015), pruning (Han,
Mao & Dally, 2015; Luo et al., 2019; Li et al., 2016), knowledge distillation (Hinton, Vinyals
¢ Dean, 2017), and low-rank decomposition (Denton et al., 2014). These techniques not
only speed up training, convergence, and forward propagation, but also reduce the
computational resources consumed at runtime.

After depth-wise separable convolution was proposed, most lightweight models adopt
this type of convolution, leading to a slowdown in the development of importance
assessment algorithms for ordinary convolution and lightweight architectures such
as SqueezeNet (landola et al., 2016) and SqueezeNext (Gholami et al., 2018). The
implementation of depth-wise separable convolution on hardware platforms does not
perform as well as it does on GPUs. Traditional field-programmable gate array (FPGA)
accelerators are designed with different IP cores for computation acceleration of point-
wise convolution and channel-wise convolution separately. (Wu et al., 2019; Ding et al.,
2019). However, embedded FPGA resources in edge devices are often limited, making
it impractical to support separate hardware designs for channel-wise convolution and
element-wise convolution (Xie et al., 2023).

As research in convolutional neural network technology progresses, the network models
applied to HCCR are also evolving. The number of parameters and the size of the model
are constantly being increased to improve the accuracy of the model’s recognition. The
increase in model performance also brings with it some drawbacks. Models take up a
lot of computing resources and consume a lot of power when they are running. The
increase in the number of parameters also makes training difficult, makes optimization
difficult, and takes up a lot of storage space. This can cause many inconveniences for
deployment on resource-constrained platforms such as mobile and hardware (Hua, 2020).

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 2/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

The compression efficiency for offline handwritten Chinese character recognition models
is insufficient. Fewer developers have adopted lightweight model architectures, and the
compression measures applied to the models, while effective, are not very helpful for
deployment to hardware platforms.

In order to effectively address the problems with the HCCR model, the following targeted
improvements have been made in this article.

e Reconstruction of the structure of the SqueezeNext (hereafter referred to as SqQNxt)
network basic block. Compared to the initial block, the reconstructed block has a
slightly higher volume. Correspondingly, the recognition accuracy of the model has
been improved. The adapted feature fusion approach also gives the conditions for
model compression such as pruning. A high-accuracy lightweight network architecture
containing only ordinary convolution or spatial separable convolution for the task of
offline handwritten Chinese character recognition is constructed.

e Introduction of a cross-stage attention module. This attention module enhances both
shallow and deep semantic information interaction. The internal structure of the
attention module is adapted to the different characteristics of the deep and shallow
feature maps, preserving the spatial information of the shallow tensor and the channel
information of the deep tensor.

e A new criterion for assessing the importance of convolutional kernels is proposed.
L1 and L2 paradigms are introduced and configured with different weights. Pruning
with this criterion can compress the model volume without compromising accuracy.
Combined with quantization, a good overall compression effect can be achieved.

RELATED WORKS

Most of the current research in Chinese character recognition is aimed at improving the
accuracy. Qin, Zheng ¢ Zhang (2020) proposed a model which first performs classification
recognition employing a quadratic discriminant function and determines whether a
deep Boltzmann machine is required for secondary recognition based on the generalized
confidence level. Li et al. (2020) designed a method to enrich feature information through
feature mixing and washing, feature grouping extraction, and re-fusion, which can achieve
a high recognition accuracy. However, the network structure is complex and resource
consumption is high. Melnyk, You ¢ Li (2020) used a “bottleneck layer” and global
weighted output averaging pooling and reduced the parameters by 49% while maintaining
a high recognition accuracy at the same computational cost. Xu (2022) introduced an
attention model to the GoogLeNet and improved classification accuracy to 98.1%.

In order to obtain higher accuracy rates, models are becoming larger and more
redundant. This makes model compression a necessity. Model compression of deep neural
networks can be beneficial for various application scenarios. Pruning and quantization
is one of the more widely used model compression techniques as it is not constrained
by factors such as model structure. After evaluating the importance of neurons, Liu ef al.
(2023) pruned unimportant neurons through Huffman coding compression iteration, and
then quantized weights using K-means++ clustering. This approach reduced the memory

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 3/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

footprint and FLOPs while maintaining accuracy. Zhuo et al. (2023) designed a knowledge
transfer-based data-free post-training quantization method, which achieved high accuracy
even when the model weights and activation values were compressed to six bits. It efficiently
implemented detection tasks. To accelerate the federated learning process on edge devices,
Ren et al. (2023) performed channel pruning and weight quantization on the model to
reduce communication and storage costs.

Parameters can be compressed, both in terms of the number (pruning) and the space
occupied by one parameter (quantization). Current pruning techniques consist mainly
of structured pruning and unstructured pruning. Structured pruning targets channels or
convolutional filters and removes a channel or a convolutional filter directly. Unstructured
pruning (Han et al., 2015) is relatively more fine-grained, targeting connections. While
this approach compresses the model while maintaining accuracy, the resulting sparse
matrix requires the support of special algorithm libraries for deployment to hardware
platforms. The irregular sparsity is difficult to accommodate in general-purpose hardware
architectures and typically requires customized hardware design (Ma et al., 2021). For
example, Song et al. (2022) designed a dedicated accelerator for sparse matrix—vector
multiplication based on high-bandwidth memory, which achieved a memory-centric
processing engine capable of supporting sparse matrix—vector multiplication. However,
it heavily relies on high-bandwidth and large-capacity on-chip memories, making it
challenging to apply to edge computing platforms.

The compression effect of pruning is heavily influenced by the importance of the
evaluation criteria used. Li et al. (2017) proposed measuring importance by the absolute
magnitude of convolutional kernel weights and determining pruning ratios for each layer
in the neural network through sensitivity analysis. He et al. (2019) proposed using the
geometric median of the convolutional kernels at each layer for pruning. The geometric
median is defined as the value that minimizes the distance from the norm of each
convolutional kernel’s weight. The article suggests that the closer the norm value is to
the geometric median, the less important the corresponding convolutional kernel is, and
thus should be pruned, rather than following the principle of smaller norm values implying
lesser importance. Hu et al. (2016) proposed evaluating neurons based on activation layers
and introduced the concept of average percentage of zeros (APoZ). A higher APoZ indicates
that the corresponding neuron is less important. Based on the same idea, Liu et al. (2017)
proposed an importance assessment method based on the output of the batch normalization
(BN) layer. They introduced scaling factors in the channels and obtained sparsity factors
through penalty terms. After determining the pruning ratio, the channels with smaller
scaling factor values will be pruned. Sakai et al. (2022) proposed an automatic pruning rate
derivation method to reduce the inefficient workload of manually assigning pruning rates.
For various types of ResNet models on CIFAR-10 and ImageNet, this method achieved the
highest compression ratios in terms of parameters and FLOPS. The pruning ratio optimizer
(PRO) proposed by Kamima, Inoue ¢» Wada (2022), combined with reconstruction error
aware pruning (REAP), achieves layer-wise pruning effectiveness.

The quantization replaces the high-precision 32-bit weights with low-precision 16-bit or
8-bit ones. This approach not only reduces the storage space required for the model but also

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 4/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

reduces the computing time required to run the model. The quantization can quantize only
the weights (Zhou et al., 2017), or the weights and activation values (Courbariaux et al.,
2016; Wang et al., 2018a; Wang et al., 2018b; Krishnamoorthi, 2018; Cai et al., 2018; Jacob et
al., 2017). Three quantization schemes (uniform quantizer, uniform symmetric quantizer,
and stochastic quantizer) and two quantization algorithms (post training quantization and
quantization aware training) were proposed in the literature (Krishnamoorthi, 2018).

Currently, there are few studies related to lightweight HCCR. The model proposed
by Zho, Tan & Xi (2021) achieved an accuracy of 96.32% on the ICDAR-2013 dataset
and compressed the model from 4.7MB to 3.2MB by using a dynamic network pruning
algorithm to prune the parameters of SqueezeNet (hereafter referred to as SqQNt) and
re-patch important connections. Using MobileNetV3 as the basis, Cheng et al. (2022) used
multi-scale convolutional kernels to improve the accuracy to 96.68% while keeping the
number of parameters low.

Basic module redefinition

The SqueezeNext network is made up of multiple iterations of the basic module. In this
article, multiple basic modules are treated as a stage. Convolutional layers for down-
sampling are interspersed between stages. Therefore, the performance of the basic module
can directly affect the performance of the overall model. In the original model, the Add
function was used for feature fusion. However, the Add function requires not only the
same feature resolution but also the same number of channels of the two sets of feature
tensors to be fused, i.e., the same number of convolution kernels. This limits the number
of model compression methods that can be used to adjust the number of convolutional
kernels, such as pruning. The reconstructed basic module proposed in this article is shown
in Fig. 1.

The proposed basic module in this article uses two bottleneck layers, BottleNeckl and
BottleNeck2, for channel count compression. The two convolutional layers originally
connected in series using K*1 and 1*K convolutional kernels are replaced with parallel
ones. The output of Bottleneck 2 will be passed into these layers at the same time. The
output of these two convolutional layers will be fused with features by concatenating. The
concatenated feature maps will then be concatenated again with the input features. The
number of channels of the tensor obtained by concatenation is large, so it needs to go
through another bottleneck to adjust the number of channels. The feature concatenating
approach increases the number of parameters but retains all the output of the previous
convolutional layers and there is no limit to the number of channels. Conditions are created
for model compression methods such as pruning.

To adapt the SqNxt structure to the handwritten Chinese character dataset, the filter
size of the first convolutional layer in the original network is changed from 7*7 to 3*3 and
the stride is reduced to 1. The backbone undergoes three times resolution compression to
obtain four sets of feature maps with different resolutions. The number of repetitions for
basic modules is two, four, 14, and one. There are 3,755 Chinese characters in the dataset,
so the number of channels needs to be adjusted to avoid a sudden expansion in the number
of channels leading to a large amount of redundant information.

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 5/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

Input - Output
W Feature Feature
U
i H
¢ C
BottleNeckl BottleNeck3
— Concatenate
v
Concatenate)
C/2
BottleNeck2
N\ 0 s

Figure 1 The restructured basic module.

Full-size G4l DOI: 10.7717/peerjcs.1529/fig-1

Enhanced attention module: C-CBAM

Chinese characters are pictographs. Many Chinese characters are so similar that an
additional stroke is all that is needed to form another character. In this article, we introduce
an enhanced attention module C-CBAM in addition to the optimization basic module.
C-CBAM, which is an improved version of CBAM (Woo et al., 2018), consists of two
sub-modules, CAM and SAM.

First, referring to the idea of ECA (Wang et al., 2020), the fully connected layer in CAM
is replaced by Conv1D and the layer used for channel scaling is removed, which reduces
the number of parameters in the CBAM module and improves operational efficiency while
maintaining accuracy. The filter size of the Conv1D layer is calculated in the same way as
ECA, as shown in Eq. (1), where C is the number of input channels.

filter _size = (log, C+1)/2 (1)

With a traditional CBAM attention module, CAM is first applied to the input features
to obtain the channel modulation features and then SAM is applied to obtain the final
output features. However, as SAM is applied to the channel modulation features, the effect
of the SAM is influenced by the CAM. At the shallow end of the model, the number of
feature maps is small and the spatial information of the features is not compressed. The
spatial information at this point is of greater importance to the overall model. Therefore,
the order of the two sub-modules will be the same as the original CBAM, ensuring that
the feature map is spatial modulated before output. In the middle layer of the model, the
two modules are deployed in parallel. The two sets of modulation features are fused and
output. In the deeper layers of the model, the number of channels expands several times,

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 6/24

https://peerj.com
https://doi.org/10.7717/peerjcs.1529/fig-1
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

1. Channel-Refined
Feature

W
GMP W
H Sigmoid
GAP ConvlD A()(P— j—> H
L4
C ﬁ
C
Concatenate
Sigmoid 2.Spatial-Refined
Feature
W L | W
H H
)
c (B) £

Figure 2 The two sub-modules of the enhanced attention module. (A) Sub-module 1: Channel atten-

tion module; (B) Sub-module 2: Spatial attention module.
Full-size] DOT: 10.7717/peerjcs.1529/fig-2

while the spatial information is highly compressed. The channel information at this point
then has a greater impact on the classification accuracy of the Softmax function. Moving
the SAM module in CBAM before the CAM module ensures that the output features are
finally modulated by channel attention. The two sub-modules are shown in Fig. 2.

The attention module is deployed in the method shown in Fig. 3. Where K3 indicates a
convolutional filter size of 3, S1 indicates a stride of 1 and C64 indicates a number of output
channels of 64. Modules 1, 2, and 3 in the dashed box indicate three different structures
of CBAM with CAM in front, CAM and SAM in parallel, and SAM in front respectively.
The output of ConvFirst is used as input to C-CBAM1. The output of the MaxPooling
layer before Block3 is used as input to C-CBAM2. The output of the MaxPooling layer
before Block7 is used as input to C-CBAMS3. This residual connectivity across multiple
basic modules can improve the interaction between shallow and deep information and
services to enhance deep semantic information.

The convolutional layer is initialized with ‘he_normal’. To maintain good classification
accuracy at low precision (16 or 8 bits) and to reduce the impact of subsequent quantization
operations on the accuracy, the activation function used in this article is ReLU. The h-swish
activation function proposed in MobileNetV3 is only advantageous in deep networks so
that ReLU will be able to satisfy the requirements of the network we proposed.

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 7124

https://peerj.com
https://doi.org/10.7717/peerjcs.1529/fig-2
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

[[]MaxPooling (Ky, Ss)

Ccam []sam
> (g
=, 2 < <
G T e | i
e o | e [F
g o S < X
% o~
2

Block 1

9 .ﬁ
2
[S)
2((‘)@0
>
*1 =
[5)>
2 = 2
\c %z % AN
< o, 2o
2 A, Cg¥ o™
o Yo e %
~>

Block 2

S P

Figure 3 Employing the C-CBAM.

Full-size G4l DOI: 10.7717/peerjcs.1529/fig-3

The proposed C-CBAM can enhance detection accuracy, but it does not assist with model

compression. The module has a small number of parameters, which slightly increases the

model’s size and computational requirements.

Pruning

The most straightforward method of model compression is to reduce the number of

parameters, that is the number of convolutional filters. In addition to adjusting the

number of convolutional filters per layer directly, network pruning can also be done

to reduce the number of convolutional filters. Network pruning can be divided into

structured pruning and unstructured pruning. Structured pruning refers to the removal

of the complete convolutional filter. The structured pruning process is shown in Fig. 4.

Unstructured pruning refers to fine-grained pruning, where some weights are removed

from the convolutional filter, but not the entire filter. Unstructured pruning is highly

flexible and can form sparse networks without sacrificing accuracy. However, pruning the

weights can make the matrix too sparse, leading to redundant memory allocations that

affect the operational efficiency of the network, and when deployed with the hardware side,

it relies on algorithm libraries such as cuSPARSE, making it difficult to accelerate parallel

Wu et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1529

8/24

https://peerj.com
https://doi.org/10.7717/peerjcs.1529/fig-3
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

Figure 4 Structured pruning process.
Full-size Gal DOI: 10.7717/peerjcs.1529/fig-4

set to . set to
72eT0 train 26T0 prune

D DO

Figure 5 Asymptotic soft filter pruning process.
Full-size & DOI: 10.7717/peerjcs.1529/fig-5

operations through the circuit. Due to the limitations of unstructured pruning, structured
pruning is used in this article.

The pruning process uses asymptotic soft filter pruning (ASPF). The technique is
characterized by resetting to zero, rather than removing, the filters that satisfy the cropping
criteria during training. These filters will continue to participate in subsequent training.
The number of filters that are set to zero is then gradually expanded. At the end of the
last training epoch, this part of the convolution filter is pruned. Compared to pruning the
convolutional filters directly during training, ASPF gradually focuses the information on
the more important convolutional filters. The ASFP process is illustrated in Fig. 5.

The standard of pruning is an important factor in the effectiveness of pruning. Pruning
operations that are based directly on the magnitude of the sum of the absolute values of
the convolutional kernel weights can cause large fluctuations in accuracy. In this article, we
introduce the L1 and L2 norms in the proposed importance evaluation formula, as shown
in Eq. (2). where o and B are scaling adjustment factors and 6 is the weight.

Ipt=a) Y |04|+8 | DD 0 (2)

i=1 j=1 i=1 j=1

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 9/24

https://peerj.com
https://doi.org/10.7717/peerjcs.1529/fig-4
https://doi.org/10.7717/peerjcs.1529/fig-5
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

When the values of the elements in the matrix change significantly, the fluctuations
in the L1 norm of the matrix are usually larger and the fluctuations in the L2 norm are
smaller. So the L1 and L2 norm of each matrix will be weighted and then summed. When
the L1 norm is too large, the matrix is too sparse or the element values are too small, the
model may be under-fitted and the sparse weights are not conducive to subsequent model
compression means; when the L1 norm is too small, the feature extraction performance of
the weights is reduced and useful information cannot be filtered out. When the L2 norm
is too large, it pulls the weights to a small value, resulting in an underfitting of the model;
when it is too small, it loses the effect of smoothing the curve. Therefore, & and 8 need to
be set within a reasonable range to ensure the validity of the evaluation formula.

As the convolutional kernel weights may vary significantly between the shallow and deep
layers of the model, in order to obtain a standardised wide range of thresholds that are not
affected by outliers, the evaluation formula requires the values of all convolutional kernels
in the full model by counting them. Compared to global thresholding, a multiple-stage
thresholding approach allows a more appropriate threshold to be established based on the
specific distribution of weights in each stage between each downsampled layer, ensuring
that there will not be a case of cropping only one part of the model. In this article, the
Z-score normalisation method is used to indicate the importance of a value in that stage,
as shown in Eq. (3),
_ Ipt'—Ipt

Iptsitage - Ipt (3)

where Ipt and Ipt, represent the mean and standard deviation of all values in a single
stage, respectively. The importance of the convolution kernel is determined by ranking
the Ipt!

tage*

within the stage Iptsitage'

The i-th convolutional kernel corresponds to importance Ipt’ and is ordered
This normalisation method is designed to limit the threshold to a
single stage and to facilitate pruning without affecting the original sorting order of lptsimge.
Half of the values after normalisation are less than zero. During the experiment, not all
convolution kernels corresponding to a less than zero are pruned.

Pruning is carried out according to the following steps and the flow chart is shown in
Fig. 6.

Repeat:
1. The model before this round of pruning is noted as M.
2. Zero the weights in X% of the convolution kernels in the model that meet the clipping

criteria to obtain the M.

3. Compare the accuracy of My and M.

o If Aacc(My— M;) > 1.0%, it means that the accuracy fluctuates too much after the
greedy algorithm has set the weight of that part of the convolution kernel to zero,
and this round of pruning needs to be abandoned.

4. M, is fine-tuned to recover accuracy after several training sessions to obtain M,
5. Compare the accuracy of M and M,.

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 10/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

Mo M; Mz (Mp) M;

—— 7
Yl
|
Set zero I |
e Ll
Il
/

i

+X
New X

Figure 6 Overall pruning process.
Full-size & DOI: 10.7717/peerjcs.1529/fig-6

o If Aacc(My— M;) > 0.6%, it means that the pruning has cut the more important
convolutional kernels and the accuracy fluctuates a lot, and the accuracy cannot be
recovered by training fine-tuning, so this round of pruning needs to be abandoned

6. If Aacc(My—M,;) <1.0% and Aacc(My— M;) < 0.6%, then this pruning has minimal
impact on the accuracy of the model and can be trained to improve accuracy and is in
a position to continue with the next round of pruning. At this point M, is used as M
for the next round of pruning. Due to the soft pruning, the number of parameters and
the structure of the model do not change at this point. At the start of a new pruning
round, an additional X% of the convolution kernels are set to zero on top of step 2.

7. If this pruning round is abandoned at step 3 or 5, the M, model from step 1 needs to
be read and the size of X and the Iptsitage

pruning round with a smaller growth ratio.

criteria adjusted downwards to start the next

Following the above steps for structured pruning allows redundant convolutional kernels
to be quickly screened out and zeroed at the beginning of the pruning. The increment X is
decreasing and the number of convolutional kernels to be zeroed at a time is increasing.
The number of convolutional kernels for cropping is shown in Eq. (4), where k; denotes
the number of pruning rounds at increments of X;.

N

SK = ZkiXi (4)
i=1

Quantization

The main quantization methods for TensorFlow models are post-training quantization and
quantization-aware training. Post-training quantization is used for floating-point models
that have already been trained. Quantization-aware training is the calculation of simulated
low-precision numerical types during the training of the model, which can compensate for
the decrease of accuracy caused by quantization during the training process and speed up

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 11/24

https://peerj.com
https://doi.org/10.7717/peerjcs.1529/fig-6
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

Conv2D Layer

Input 3 3 Output
Feature Conv |BN Acivation Feature
Weights Weights Weights
(32-bit) (8/16-bit) (32-bit)

Figure 7 Simulating low precision processes in CNN.

Full-size Gal DOI: 10.7717/peerjcs.1529/fig-7

forward propagation. It can approximate the accuracy achieved by the float32 model as
closely as possible, enabling deployment on hardware platforms.

To simulate low-precision calculations, a fake-quantization operation needs to be
introduced into the training. The simulated low-precision computational flow is shown in
Fig. 7. After obtaining the feature map of the upper layer input, the weights of the 32-bit
are quantized to low-precision values. The low precision weights will be convolved with
the feature map and then the output of this convolution layer will be obtained by ReLU
activation. At this time, the weights will be inversely quantized to a 32-bit floating point
type.

Fake-quantization nodes are added to the computation process of each layer to count
the minimum and maximum values of float32 data for each weight at training time. The
fake-quantization nodes are not involved in backpropagation, as gradient updates need
to be calculated under the floating-point type. Accurate gradient updates require exact
weights. Between the two convolution layers, there will be an inverse quantization and a
quantization operation adjacent to each other. After the weights are back-quantized back to
the floating point at the output of the upper layer, they are quantized again to low precision
values without any operation. In this case, a lot of computational resources are wasted.
Therefore, when inverse quantization and quantization are adjacent, they can cancel each
other out and no operation is performed on the weights.

As each value in the floating-point type tensor maps one-to-one to a low-precision value,
any further computation using the tensor does not introduce additional losses and can
accurately simulate low-precision computations. The quantized simulation operations need
to be integrated into the training process to be consistent with the quantized computation.

As symmetric quantization is not effective in representing unevenly distributed fractions,
this article uses asymmetric quantization, where the mapping of zeros to floating point
numbers requires an offset. The mapped scale factor P is shown in Eq. (5), where Fp,x and
Fiin denote the maximum value of the 32-bit floating point number counted, respectively,
and Inax and Iy denote the maximum value that can be represented by int8, respectively.

Fmax_Fmin Fmax_Fmin

Imax - Imin 255

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 12/24

https://peerj.com
https://doi.org/10.7717/peerjcs.1529/fig-7
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

Once the proportional relationship is obtained, it can be mapped to the corresponding
int8 integer value based on the 32-bit floating point value, as shown in Eq. (6), where I
denotes an int value, F denotes a float value, and the round() function denotes rounding. Z
represents the integer value to which the floating-point zero value is mapped, as shown in
Eq. (7). When symmetric quantization is used, P I = Fax, the floating-point number
Z corresponds to the integer type zero.

I=round(§+Z) (6)

max

F
Z=round(I_, — b) (7)

Based on the quantization process of individual values, the quantization needs to
be extended to the multiplication and addition operations of the convolution kernel.
Unlike the determinant calculation, the convolution operation involves multiplying the
corresponding positions of the matrix and finally adding all the products to obtain the
final result. The quantization process for multiplying two floating point values is shown in
Eq. (8):

Ps(Iy) — Z3) = P1 (1)) — Z))Po(I, — Z,) (8)

The expression for I;’j is obtained by collation, as shown in Eq. (9):

I =20 - 200 - 20) + 23 (9)
3

In Eq. (9), all values are integers, except for the scale factor (P;P,)/Ps.
Assuming that the size of the convolution kernel is L*L, the single convolution operation
is shown in Eq. (10).

L L

Mrp = Z m;’j= Z mlljm;] (10)
i=0,j=0 i=0,j=0

where My denotes the value obtained from a single convolution operation, m,, m, and

mj3 denote the matrix to be convolved and the resultant matrix respectively, all with 32-bit

floating-point values in the matrix. Bringing Eq. (8) into the matrix yields a fixed-point to

floating-point formula for each value, as shown in Eq. (11).

L L
My= Y P’ =23)= Y Py —Z)Py(ly — 2)) (11)
i=0,j=0 i=0,j=0

Dataset and experimental settings
The dataset was selected from the offline handwritten Chinese character dataset of the
Institute of Automation, Chinese Academy of Sciences (CASIA-HWDB), with 3,755
commonly used characters at the first level of the GB2312 standard. As shown in Fig. &,
some samples from the dataset are depicted, with the text in the image representing “Offline
Handwritten Chinese Character Recognition.”

There are miswriting in the dataset as well as scribbles after the miswriting. In addition,
some of the writing fonts are too shallow and the resolution of the parsed individual

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 13/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

U

Uy

Full-size Gal DOI: 10.7717/peerjcs.1529/fig-8

’ 4 >
r « g -
>
. K aen
. ” \ ”
7 g

Figure 9 The samples need to be processed.
Full-size Gal DOI: 10.7717/peerjcs.1529/fig-9

characters varies, as shown in Fig. 9, so the dataset needs to be pre-processed for
normalization. All samples were binarised and stored using the average grey level of
the full image as the threshold. Samples after preprocessing and normalization are shown
in Fig. 10.

The data from HWDB 1.0 and HWDB 1.1 were mixed and washed to exclude as many
useless samples as possible. Finally, 400 samples of each character were selected for training
and 100 samples for testing. The details are shown in Table 1.

This experiment is based on Tensorflow-GPU version 2.3.0, using a GPU with NVIDIA

RTX2060 6G memory, Intel Core i5-9400@2.9 GHz CPU, and DDR4 2667MHz 16G+16G
memory.

Wu et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1529 14/24

https://peerj.com
https://doi.org/10.7717/peerjcs.1529/fig-8
https://doi.org/10.7717/peerjcs.1529/fig-9
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

IS Lill 5 X3
i\ £5 24 K

Figure 10 Samples after preprocessing and normalization.
Full-size tal DOI: 10.7717/peerjcs.1529/fig-10

Table 1 Dataset details.

Dataset Classification Writers Total Selected
samples samples
Train Test Train Test
HWDB 1.0 3740 336 40 1,246,991 309,684 1,502,000
HWDB 1.1 3755 240 60 897,758 223,991 375,500

RESULTS AND DISCUSSION

To verify the effectiveness of the various improvement strategies proposed, a series of
ablation experiments were carried out. The network models were trained using the
same settings in the framework of experiments on the same platform. The impact of the
proposed improvement modules on the performance of the network model, as well as the
improvement effect of multiple modules acting together, is verified separately in the test
set. The results are shown in Table 2. The Roman numerals I - IV in the table indicate
each of the four proposed improvements: I. basic module redefinition; II. deployment
of an enhanced attention module; III. pruning based on module redefinition; and IV.
quantification.

In the table, Scenario 0 represents the baseline model.

Scenario 1: In addition to the changes to the basic module structure, the number of
convolutional kernels in the structure has also been adjusted. Block 7-20, which has
the highest number of basic modules, has received more parameters. As can be seen
from the data in the table above, the re-architecture of the basic block achieved a very
good optimization. The new module will increase the size of the model by 3.88% and,
accordingly, the accuracy of the recognition has been improved by 0.83%. The specific
changes in the number of parameters between Scenario 0 and Scenario 1 are shown in
Table 3.

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 15/24

https://peerj.com
https://doi.org/10.7717/peerjcs.1529/fig-10
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

Table 2 Ablation study results for proposed strategies.

No. I 1 11 v Acc (%) Model GFLOPs
S1Z¢
(/MB)

0 95.65 8.25 0.033

1 J 96.48 (+0.83) 8.57 0.035

2 J 96.69 (+1.04) 8.35 0.034

3 J J 96.40 (+0.75) 4.06 0.017

4 J 95.59 (—0.06) 2.14 /

5 J J J J 97.36 (+1.71) 1.06 0.017

Table 3 Specific changes in parameters difference between Scenario 0 and Scenario 1.

Layers Scenario 0 Scenario 1 Parameters Reduction

parameters parameters difference rate
(%)

Conv_First 832 832 0 0

Block 1-2 14,752 16,032 1,280 +8.68

DownSample_1 4,224 4,224 0 0

Block 3-6 40,960 80,672 39,712 +96.95

DownSample_2 8,320 8,320 0 0

Block 7-20 534,272 1,168,960 634,688 +118.79

DownSample_3 16,512 16,512 0 0

Block 21 491,008 195,968 —295,040 —60.09

Conv_Last 590,336 295,424 —294,912 —49.96

FC 484,395 484,395 0 0

Total 2,185,611 2,271,339 85,728 +3.92

Scenario 2: C-CBAM improved accuracy by 1.04%, reaching 96.69%. The effectiveness
of this attention module is remarkable. As far as the number of statistical parameters is
concerned, the sum of the number of parameters of the three modules is very small. The
rest of the increase in the number and volume is brought about by the residual connections.
To validate the effectiveness of the proposed attention deployment order, further ablation
experiments were conducted based on the three deployment positions and three different
order arrangements depicted in Fig. 3. The results are shown in Table 4, where I, 11, and I1I
represent the three different deployment positions, and @, @, and @ represent CAM in the
front, CAM and SAM in parallel, and SAM in the front, respectively. From the data in the
table, it can be observed that incorporating attention modules can improve the detection
accuracy of the model to varying degrees. The approach adopted in this article achieves the
optimal results.

Scenario 3: The concatenated feature fusion used in the new basic module ensures that
pruning is feasible. This scenario is therefore based on top of Scenario 1. The specific
changes in the number of parameters between Scenario 0 and Scenario 3 are shown in
Table 5. Again, the fully connected layer still retains a large number of parameters. Block 21

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 16/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

Table 4 Ablation study results on different orderings of attention modules.

No. Position Acc (%)
I 11 III

0 95.65

1 @) @ 96.31 (+0.66)
2 ® ® ® 96.22 (+0.57)
3 ® ® ® 96.38 (+0.73)
4 ® ® ® 96.29 (+0.64)
5 @ ® ® 96.69 (+1.04)

Table 5 Specific changes in parameters difference between Scenario 0 and Scenario 3.

Layers Scenario 0 Scenario 3 Parameters Reduction
parameters parameters difference rate
(%)
Conv_First 832 832 0 0
Block 1-2 14,752 4,751 —10,001 —67.79
DownSample_1 4,224 2,176 —2,048 —48.49
Block 3-6 40,960 18,737 —22,223 —54.26
DownSample_2 8,320 4,096 —4,224 —50.77
Block 7-20 534,272 262,925 —271,347 —50.79
DownSample_3 16,512 8,064 —8,448 —51.16
Block 21 491,008 171,471 —319,537 —65.08
Conv_Last 590,336 276,992 —313,344 —53.08
FC 484,395 484,395 0 0
Total 2,185,611 1,234,439 —951,172 —43.52

and the last layer of convolution have a high reduction rate, also thanks to the optimization
adjustments in Scenario 1.

Scenario 4: The quantization techniques have a much better compression ratio for
model size, reaching 74.01%. Quantification does not produce changes to the number of
parameters. The detection speed is also substantially improved.

Scenario 5: This scenario combines all of the above optimization scenarios. The size of the
model was reduced by 87.15% to a final size of 1.06 MB, and the accuracy was also greatly
improved, reaching 97.74% accuracy on the publicly available dataset CASIA-HWDB.
Both high classification accuracy and high running speed are achieved.

A comparison of the model size and the time required to traverse the test set is shown
in Fig. 11. The speed increase in forward propagation from pruning and quantization is
significant. However, the reduction in traversal time is not as high as the proportional
reduction in the volume of the model. The change in the bit-width of the parameters
reduces the size of the model by nearly three-quarters, but the runtime reduction does not
reach the same proportion. This is because, for high-performance GPUs, even 32 bits can

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 17/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

50

O Model Size
10 4 J Time L

43.6
40.9 41.3
8. 95 8'557 8':|35 - 40
8] L
- 30
6 - 26. 6
23.7 -
4.D06 20
15.5
2':|14 10
1.06 |
0 ; - ; : : 0
0 1 2 3 4 5

Scenario

Time (S)

Model Size (MB)
o~
1

Do
1

Figure 11 Comparison of model size and running times of each scenario.
Full-size Gal DOI: 10.7717/peerjcs.1529/fig-11

Table 6 Comparative analysis of different activation functions’ performance.

Activation Acc (%) Time (s)
Sigmoid 95.33 39.8
Swish 95.58 45.3
H-Swish 95.66 48.2
Leaky-ReLU 95.61 40.1
ReLU 95.65 40.9

achieve high computational speeds relative to 8 and 16-bit operations. The advantages of
quantization can be seen on the GPU, but are not very obvious.

To verify the applicability of activation functions, comparative experiments were
conducted on various activation functions. The results are shown in Table 6. From the
results in the table, it can be observed that when using H-Swish, the model achieves the
highest accuracy, but it also requires the longest time to traverse the dataset. On the other
hand, when using the ReLU function, although the accuracy is reduced by 0.01%, the
required time is significantly reduced. Therefore, considering the practical performance of
each activation function, adopting ReLU as the activation function for the model in this
article is the optimal choice.

Table 7 presents a comparison of results from state-of-the-art offline handwritten
Chinese character recognition models in recent years. In the table, the asterisk (*) denotes
models that have undergone lightweight processing or adopt lightweight architectures.

Wu et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1529 18/24

https://peerj.com
https://doi.org/10.7717/peerjcs.1529/fig-11
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

Table 7 Comparison of different methods.

Method Year Acc Model GFLOPs Parameters
(%) size (Million)
(MB)
HCCR-GoogLeNet 2019 96.3 N/A N/A N/A
Improved GoogLeNet 2020 97.48 N/A N/A N/A
2DPCA+ACNN 2020 93.63 N/A N/A N/A
‘SqueezeNet+DNS 2021 96.32 3.2 1.58 N/A
MSCS+ASA+SCL 2022 97.63 22.9 0.18 6.01
"HCCR-MobileNetV3 2022 96.68 3.87 0.06 5.86
"LW-ViT 2023 95.8 1.95 0.22 0.48
“This study 2023 97.36 1.06 0.017 1.23

Notes.

*Models that have undergone lightweight processing or adopt lightweight architectures.
From Table 7, it can be observed that the model designed in this article achieves the highest
accuracy among the lightweight models. Additionally, compared to other models, it has a
smaller size and requires less computational resources.

CONCLUSIONS

In this article, we proposed a lightweight offline handwritten Chinese character recognition
model. The model is based on the SqueezeNext network, with the basic modules
reconstructed. The reconstructed base module increases the volume of the model slightly
by 3.88% and improves the accuracy of recognition by 0.83%, while creating the conditions
for structured pruning and C-CBAM. On the baseline model, the C-CBAM deployed on the
residual side was able to increase the accuracy of the model to 96.69%. C-CBAM improves
recognition accuracy by 1.04% with a volume increment of 1.21%. Compared with the
network model reconstructed by the base module, structured pruning with the proposed
convolutional kernel importance assessment algorithm in this article would reduce the
recognition accuracy by 0.08%. At the same time, the volume of the model is reduced by
50.79%. Quantizing the weights from 32 bits to eight bits will reduce the model by about
3/4 of the volume as predicted. By combining the above optimizations, the optimal model
was trained to achieve a classification accuracy of 97.36% on CASIA-HWDB with a model
of only 1.06MB. Compared to the initial model, the accuracy has improved by 1.71%,
the model size has been reduced by 87.15%. The overall performance has been greatly
improved.

However, there are areas for improvement in the method proposed in this article. (1)
Due to a large number of samples in the dataset, there are still problematic samples in
the dataset, despite the pre-processing. Such wrong samples do not help to improve the
performance of the model and can even lead to misclassification of the model. This also
leads to difficulties in improving the accuracy of the model.

(2) Platforms such as ZYNQ are fast in parallel computing, but the process of scheduling
and interacting with information on the AXI is time-consuming. While approaches such
as low-rank decomposition can reduce the amount of computation and the number of

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 19/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

parameters, whether they can compensate for the delay caused by multiple information
interactions requires further experimental verification.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This research was funded by the Graduate Research and Innovation Projects of Jiangsu
Province under grant number SJCX21 1517 and SJCX22 1685, the Major Basic Research
Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions
under grant number 19KJA110002, the Natural Science Foundation of China under
grant number No. 61673108 and the Yancheng Institute of Technology High level Talent
Research Initiation Project under grant number XJR2022001. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

Graduate Research and Innovation Projects of Jiangsu Province: SJCX21 1517, SJCX22
1685.

Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher
Education Institutions: 19KJA110002.

Natural Science Foundation of China: 61673108.

Yancheng Institute of Technology High level Talent Research Initiation Project:
XJR2022001.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Ruiqi Wu conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

e Feng Zhou analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

e Nan Li performed the experiments, analyzed the data, authored or reviewed drafts of
the article, and approved the final draft.

e Xian Liu conceived and designed the experiments, performed the experiments,
performed the computation work, authored or reviewed drafts of the article, and
approved the final draft.

e Rugang Wang analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:

Wu et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1529 20/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

Raw data are available at the CASIA Online and Offline Chinese Handwriting Database:
http:/fwww.nlpr.ia.ac.cn/databaseshandwriting/download.html.

Tag files generated for this article are available at Zenodo:

Ruigi Wu. (2022). HCCR. https:/doi.org/10.5281/zenodo.7445439.

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.1529#supplemental-information.

REFERENCES

CaiR, Zhong C, Yu Y, Chen B, Lu Z, Chen Y. 2018. CNN quantization and compres-
sion strategy for edge computing applications. Journal of Computer Applications
38(9):2449-2454 DOI 10.11772/j.issn.1001-9081.2018020477.

Chen W, Tyree S, Tyree S, Weinberger K, Chen Y. 2015. Compressing neural networks
with the hashing trick. In: 32nd international conference on machine learning, vol. 37.
2285-2294.

ChengR, Zhou H, Liu L, He Y. 2022. Offline handwritten Chinese character recog-
nition based on improved MobileNetV3. Intelligent Computer and Applications
12(07):160—164.

Courbariaux M, Hubara I, Soudry D, Yaniv R, Bengio Y. 2016. Binarized neural
networks: training deep neural networks with weights and activations constrained
to 1 or -1. ArXiv preprint. arXiv:1602.02830.

Denton E, Zaremba W, Bruna J, Lecun Y, Fergus R. 2014. Exploiting linear structure
within convolutional networks for efficient evaluation. Neural Information Processing
Systems 27:1269-1277.

Ding W, Huang Z, Huang Z, Tian L, Wang H. 2019. Designing efficient accelerator of
depthwise separable convolutional neural network on FPGA. Journal of Systems
Architecture 97:278-286 DOI 10.1016/].sysarc.2018.12.008.

Gholami A, Kwon K, Wu B, Tai Z, Yue X, Jin P, Zhao S, Keutzer K. 2018. SqueezeNext:
hardware-aware neural network design. ArXiv preprint. arXiv:1803.10615.

Han S, Mao H, Dally W. 2015. Deep compression: compressing deep neural net-
works with pruning, trained quantization and Huffman coding. ArXiv preprint.
arXiv:1510.00149.

Han S, Pool J, Tran J, Dally W. 2015. Learning both weights and connections for efficient
neural network. Neural Information Processing Systems 28:1135—1143.

HeY, Liu P, Wang Z, Hu Z, Yang Y. 2019. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In: Proceedings of the IEEE/CVF
conference on Computer Vision and Pattern Recognition (CVPR), Piscataway: IEEE,
4340—-4349.

Hinton G, Vinyals O, Dean J. 2017. Distilling the knowledge in a neural network. ArXiv
preprint. arXiv:1704.04861.

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 21/24

https://peerj.com
http://www.nlpr.ia.ac.cn/databases/handwriting/download.html
https://doi.org/10.5281/zenodo.7445439
http://dx.doi.org/10.7717/peerj-cs.1529#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1529#supplemental-information
http://dx.doi.org/10.11772/j.issn.1001-9081.2018020477
http://arXiv.org/abs/1602.02830
http://dx.doi.org/10.1016/j.sysarc.2018.12.008
http://arXiv.org/abs/1803.10615
http://arXiv.org/abs/1510.00149
http://arXiv.org/abs/1704.04861
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

Howard A, Zhu M, Chen B, Kalenichenko D. 2017. MobileNets: efficient convolutional
neural networks for mobile vision applications. ArXiv preprint. arXiv:1704.04861.

Hu H, Peng R, Tai Y, Tang C. 2016. Network trimming: a data-driven neuron pruning
approach towards efficient deep architectures. ArXiv preprint. arXiv:1607.03250.

Hua S. 2020. Optimisation of FPGA-based design of lightly weighted handwritten digital
systems. Practical Electronics 16:6—7+37 DOI 10.16589/j.cnki.cn11-3571/tn.2020.16.002.

Iandola F, Han S, Moskewicz M, Ashraf K, Dally W, Keutzer K. 2016. SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. ArXiv
preprint. arXiv:1602.07360.

Jacob B, Kligys S, Chen B, Zhu M, Tang M, Howard A, Adam H, Kalenichenko D. 2017.
Quantization and training of neural networks for efficient integer-arithmetic-only
inference. ArXiv preprint. arXiv:1712.05877.

Jin L, Zhong Z, Yang Z, Yang W, Xie Z, Sun J. 2016. Applications of deep learning
for handwritten Chinese character recognition: a review. Acta Automatica Sinica
42(08):1125-1141 DOI 10.16383/j.aas.2016.c150725.

Kamma K, Inoue S, Wada T. 2022. Pruning ratio optimization with layer-wise pruning
method for accelerating convolutional neural networks. IEICE Transactions on
Information and Systems 105(1):161-169.

Krishnamoorthi R. 2018. Quantizing deep convolutional networks for efficient infer-
ence: a whitepaper. ArXiv preprint. arXiv:1806.08342.

Li G, Zhou H, Ma K, Zhang L. 2020. Feature grouping extraction fusion of deep network
offline handwritten Chinese character recognition. Computer Engineering and
Applications 56(12):163—168.

Li H, Kadav A, Durdanovic I, Samet H, Graf H. 2016. Pruning filters for efficient
ConvNets. ArXiv preprint. arXiv:1608.08710.

Li H, Kadav A, Durdanovic I, Samet H, Graf H. 2017. Pruning filters for efficient
convnets. In: Proceedings of international conference on learning representation.

LiuM, Liu J, Yin L, Kang Z, Ma X. 2023. Martian image classification based on iterative
pruning VGGNet. Chinese Journal of Liquid Crystals and Displays 38(04):507-514
DOI 10.37188/CJLCD.2022-0229.

LiuY, YiX, LiY, Zhang H, Liu Y. 2022. Application of scene text recognition tech-
nology based on deep learning: a survey. Computer Engineering and Applications
58(04):52—63.

LiuZ, LiJ, Shen Z, Huang G, Yan S, Zhang C. 2017. Learning efficient convolutional
networks through network slimming. In: Proceedings of the IEEE international
conference on computer vision, Piscataway: IEEE, 2736-2744.

LuoJ, Zhang H, Zhou H, Xie C. 2019. ThiNet: pruning CNN filters for a thinner net.
IEEE Transactions on Pattern Analysis & Machine Intelligence 41(10):2525-2538
DOI 10.1109/TPAMI.2018.2858232.

MaX,Lin§, Ye S, He Z, Zhang L, Yuan G, Tan S, Li Z, Fan D, Qian X, Lin X, Ma K,
Wang Y. 2021. Non-structured DNN weight pruning—is it beneficial in any plat-
form? IEEE Transactions on Neural Networks and Learning Systems 33(9):4930-4944.

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 22/24

https://peerj.com
http://arXiv.org/abs/1704.04861
http://arXiv.org/abs/1607.03250
http://dx.doi.org/10.16589/j.cnki.cn11-3571/tn.2020.16.002
http://arXiv.org/abs/1602.07360
http://arXiv.org/abs/1712.05877
http://dx.doi.org/10.16383/j.aas.2016.c150725
http://arXiv.org/abs/1806.08342
http://arXiv.org/abs/1608.08710
http://dx.doi.org/10.37188/CJLCD.2022-0229
http://dx.doi.org/10.1109/TPAMI.2018.2858232
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

Melnyk P, You Z, Li K. 2020. A high-performance CNN method for offline handwritten
Chinese character recognition and visualization. Soft Computing 24:7977-7987
DOI 10.1007/s00500-019-04083-3.

Qin Y, Zheng P, Zhang X. 2020. Offline handwritten Chinese character recognition based
on MQDF-DBM model. Computer Engineering and Applications 56(7):141-146.

Ren Z, Fang W, Xu W, Li Z, Hu Y. 2023. Research on lightweight model training
technology of federated learning for railway defect detection. Journal of the China
Railway Society 45(4):77-83.

Sakai Y, Iwakawa A, Tabaru T, Inoue A, Kawaguchi H. 2022. Automatic pruning
rate derivation for structured pruning of deep neural networks. In: 2022 26th
international conference on pattern recognition (ICPR), 2561-2567.

Shen X, Messina R. 2016. A method of synthesizing handwritten Chinese images for
data augmentation. In: 15th international conference on frontiers in handwriting
recognition. DOI 10.1109/ICFHR.2016.30.

Song L, Chi Y, Guo L, CongJ. 2022. Serpens: a high bandwidth memory-based acceler-
ator for general-purpose sparse matrix—vector multiplication. In: Proceedings of the
59th ACM/IEEE design automation conference, Piscataway: IEEE, 211-216.

Wang P, Hu Q, Zhang Y, Zhang C, Liu Y, Cheng J. 2018b. Two-step quantization
for low-bit neural networks. In: IEEE conference on computer vision and pattern
recognition (CVPR). Piscataway: IEEE, 4376-4384.

Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q. 2020. ECA-Net: efficient channel attention
for deep convolutional neural networks. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (CVPR), Piscataway: IEEE, 11534—11542.

Wang R, Sang N, Ding D, Chen J, Ye Q, Gao C, Liu L. 2018a. Text detection
in natural scene image: a survey. Acta Automatica Sinica 44(4):2113-2141
DOI10.16383/j.aas.2018.c170572.

Woo S, Park], Lee JY, Kweon I. 2018. CBAM: convolutional block attention module. In:
Proceedings of the European conference on computer vision (ECCV), 3—19.

WuD, Zhang Y, Jia X, Tian L, Li T, Sui L, Xie D, Shan Y. 2019. A high-performance
CNN processor based on FPGA for MobileNets. In: 2019 29th international confer-
ence on field programmable logic and applications (FPL), 136—143.

Xie K, YiD, LiuY, Liu H, He X, Gong C, Lu Y. 2023. SAF-CNN: a sparse acceleration
framework of convolutional neural network for embedded FPGAs. Journal of
Computer Research and Development 60(5):1053-1072.

Xu Q. 2022. Handwritten Chinese character recognition based on improved convolu-
tional neural networks. Electronic Technology & Software Engineering 09:190-193.

Yan X, Wang L. 2017. Handwritten Chinese character recognition system based
on neural network convolution depth. Computer Engineering and Applications
53(10):246-250.

Zhang X, Zhou X, Lin M, Sun J. 2018. ShuffleNet: an extremely efficient convolutional
neural network for mobile devices. In: IEEE conference on computer vision and pattern
recognition (CVPR). Piscataway: IEEE, 6848—6856.

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 23/24

https://peerj.com
http://dx.doi.org/10.1007/s00500-019-04083-3
http://dx.doi.org/10.1109/ICFHR.2016.30
http://dx.doi.org/10.16383/j.aas.2018.c170572
http://dx.doi.org/10.7717/peerj-cs.1529

PeerJ Computer Science

Zho Y, Tan Q, Xi C. 2021. Offline handwritten Chinese character recognition of
squeezenet and dynamic network surgery. Journal of Chinese Computer Systems
42(03):556-560.

Zhou A, Yao A, Gao Y, Xu L, Chen Y. 2017. Incremental network quantization: towards
lossless cnns with low-precision weights. ArXiv preprint. arXiv:1702.03044.

Zhuo W, Li D, Wang W, Dong J. 2023. Data-free model compression for light-weight
DeepFake detection. Journal of Image and Graphics 28(03):0820-0835.

Wu et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1529 24/24

https://peerj.com
http://arXiv.org/abs/1702.03044
http://dx.doi.org/10.7717/peerj-cs.1529

