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ABSTRACT
Crustacean intersexuality is widespread and often linked to infection by sex-
distorting parasites. However, unlike vertebrate intersexuality, its association with
sexual dysfunction is unclear and remains a matter of debate. The ‘Demon Shrimp,’
Dikerogammarus haemobaphes, an amphipod that has invaded continental water-
ways, has recently become widespread in Britain. Intersexuality has been noted in
D. haemobaphes but not investigated further. We hypothesise that a successful
invasive population should not display a high prevalence of intersexuality if this
condition represents a truly dysfunctional phenotype. In addition, experiments have
indicated that particular parasite burdens in amphipods may facilitate invasions.
The rapid and ongoing invasion of British waterways represents an opportunity
to determine whether these hypotheses are consistent with field observations. This
study investigates the parasites and sexual phenotypes of D. haemobaphes in British
waterways, characterising parasite burdens using molecular screening, and makes
comparisons with the threatened Gammarus pulex natives. We reveal that invasive
and native populations have distinct parasitic profiles, suggesting the loss of G. pulex
may have parasite-mediated eco-system impacts. Furthermore, the parasite burdens
are consistent with those previously proposed to facilitate biological invasions. Our
study also indicates that while no intersexuality occurs in the native G. pulex, approx-
imately 50% of D. haemobaphes males present pronounced intersexuality associated
with infection by the microsporidian Dictyocoela berillonum. This unambiguously
successful invasive population presents, to our knowledge, the highest reported
prevalence of male intersexuality. This is the clearest evidence to date that such
intersexuality does not represent a form of debilitating sexual dysfunction that nega-
tively impacts amphipod populations.

Subjects Ecology, Parasitology, Zoology
Keywords Amphipoda, Crustacea, Invasive species, Intersexuality, Microsporidia

INTRODUCTION
Dikerogammarus haemobaphes (Eichwald, 1841), an effective predatory amphipod from

the Ponto-Caspian (Bacela-Spychalska & Van Der Velde, 2013), has spread through

Europe and is now recognised as an extremely successful invader of British waterways
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(Green Etxabe & Ford, 2014). D. haemobaphes, also known as the ‘demon shrimp,’ invaded

the British Isles more recently than the infamous ‘killer shrimp’ (Dikerogammarus villosus,

Sowinsky, 1894) (Macneil et al., 2010) but is already more widespread (Fig. 1). Amphipods

harbour many parasites that can drastically impact host populations by influencing the

health, behaviour, reproduction and sex determination of their host (Hatcher & Dunn,

2011; Bacela-Spychalska et al., 2012). The invasive D. haemobaphes, therefore, could not

only outcompete and prey on native amphipod species, but also introduce parasites into

their new habitats. Screening parasites in invasive and native amphipod species associated

with a rapid and on-going invasion will test hypotheses that particular parasitic burdens

impact invasion success MacNeil et al., 2003a; Hatcher & Dunn, 2011; Hatcher, Dick &

Dunn, 2014.

Some amphipod-infecting parasites maximise their transmission via the host’s progeny

by converting males into reproductive females (Ford, 2012). Infection by such parasites

results in sex-biased populations (Terry et al., 2004) and, in cases of incomplete conversion,

intersexuality, where individuals present secondary sex characteristics of both genders

(Ford, 2012). Intersex phenotypes are found in a range of animals (Matthiessen & Gibbs,

1998; Harris et al., 2011; Hayes et al., 2002), including crustaceans (Ginsburger-Vogel, 1991;

Bishop, 1974; Ford, 2012), where they are linked to parasitic infection (Li, 2002; Short et

al., 2012a) and environmental conditions (Dunn, Mccabez & Adams, 1996), as well the

direct (Short et al., 2012b) and indirect (Jacobson et al., 2010) influence of contaminant

exposure. In cases of parasitic infection, an incomplete conversion is thought to occur

due to insufficient parasite burden, suboptimal conditions, or effective host responses

(Dunn & Rigaud, 1998; Kelly, Dunn & Hatcher, 2002; Short et al., 2014). Current evidence

suggests that the impact of female intersexuality is subtle (Ford et al., 2003; Kelly, Hatcher &

Dunn, 2004) or effectively non-existent (Glazier, Brown & Ford, 2012), and that the female

intersexuality observed in D. haemobaphes successfully invading Polish waterways (Bacela,

Konopacka & Grabowski, 2009) is consistent with these hypotheses.

Male intersexuality is widespread in amphipods; however, our understanding of its

reproductive consequences is poorly understood relative to vertebrates (Harris et al., 2011).

The extents of morphological and behavioural changes (McCurdy et al., 2008; Yang, Kille

& Ford, 2008) have led to the suggestion (Yang, Kille & Ford, 2008; Ford, 2012) that the

impact of crustacean male intersexuality may be similar to that seen in vertebrates (Harris

et al., 2011). Despite some evidence of intersexuality in invasive D. haemobaphes (Bacela,

Konopacka & Grabowski, 2009), sexual phenotypes in this species have not been studied,

even though notable levels of intersexuality in the unambiguously successful invading

population would reveal considerable insight into the consequences of intersexuality for

wild crustacean populations.

This study investigates the sexual phenotypes and parasites of D. haemobaphes and the

native Gammarus pulex (Linnaeus, 1758) at multiple locations in British waterways to give

insights into this rapidly invading species and expand our understanding of crustacean

intersexuality.
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Figure 1 Recent confirmed reports of D. haemobaphes (green triangles) and D. villosus (red circles) in
UK waterways (EA–unpublished data January 2014; image courtesy of SE Environment Agency).
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METHODS
Specimen characterisation
Amphipods were collected from Wallingford Bridge and Bell Weir, U.K. Amphipods were

categorised into species and phenotypes: males, females, intersex males and intersex

females. Intersex males were identified by genital papillae, between pereonite 7 and

pleonite 1, in conjunction with rudimentary oostegites. Intersex females were identified by

oostegites in conjunction with secondary genital papilla/e. Animals from each phenotype

were measured from antennal joint to telson to obtain body length (ImageJ, v1.4u4)

and comparisons were made using analysis of variance (ANOVA) with the post hoc

Tamhanes-T2 test (SPSS v21).

Scanning electron microscopy
Specimens of D. haemobaphes were taken through transitional steps (100% ethanol

to 100% hexamethyldisilazane, HMDS) then evaporated to dryness. The dry samples

were mounted on SEM stubs, sputter-coated with gold-palladium and examined

using a scanning electron microscope (JSM-606LV; JEOL, Welwyn Garden City, Herts,

UK) operating in high vacuum mode with a secondary electron detector active at an

acceleration voltage of 10 kV. Images were cropped and colourised using Adobe Photoshop

(CS5v12).

PCR screen
DNA was purified from internal animal tissue (excluding gut) or eggs using the DNeasy

Blood and Tissue Kit (Qiagen, North Manchester, UK). Samples were screened using

previously described PCR primers for general parasites (Table 1). PCR reactions were

performed in 25 µl volumes containing 10 ng of DNA as template, 1 U of Taq polymerase

(Promega, Southampton, Hampshire, UK), 5 µl of 5× PCR buffer, 1.25 mM MgCl2 and

0.4 mM of each corresponding primer. Quality of the DNA samples were analysed using

the primers 1073F and 18SR (Table 1) which amplified a 867bp product of the host 18S

ribosomal RNA gene.

Sequence identification
PCR products were analysed using agarose gel electrophoresis containing 1x

GelGreenTM (Cambridge Bioscience, UK) for the presence of bands potentially repre-

senting amplified parasite sequences. Individual bands were isolated and DNA extracted

using the QIAquick Gel Extraction Kit (Qiagen, North Manchester, UK) and sequenced

(Source Bioscience, Cambridge, UK), before a BLAST analysis was performed against

sequences stored in GenBank (NCBI).

RESULTS
Sexual phenotypes
Pronounced male intersex phenotypes were found in D. haemobaphes at both sites, with

most specimens displaying well-developed oostegites with visible setae (Fig. 2). Almost

half the male population presented intersex characteristics at both locations and very
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Table 1 Primers used to conduct parasite screen.

Target Primer Sequence Reference

Microsporidea 16S V1f 5′-CACCAGGTTGATTCTGCCTGAC-3′ Weiss et al., 1994

1342AC 5′-ACGGGCGGTGTGTACAAGGTACAG-3′ Yang et al., 2011

Acanthocephala 18S 537F 5′-GCCGCGGTAATTCCAGCTC-3′ Near, Garey & Nadler, 1998

1133R 5′-CTGGTGTGCCCCTCCGTC-3′

1073F 5′-CGGGGGGAGTATGGTTGC-3′

18SR 5′-TGATCCTTCTGCAGGTTCACCTAC-3′

18SF 5′-AGATTAAGCCATGCATGCGTAAG-3′

549R 5′-GAATTACCGCGGCTGCTGG-3′

Nematode/acanthocephala/apicomplexa Nem18SlongF 5′-CAGGGCAAGTCTGGTGCCAGCAGC-3′ Wood et al., 2013

Nem18SlongR 5′-GACTTTCGTTCTTGATTAATGAA-3′

Paramyxea Para18SF3 5′-CTACGGCGATGGCAGGTC-3′ Short et al., 2012b

Para18SR3 5′-GGGCGGTGTGTACAAAGG-3′

Wolbachia WSPEC-F 5′-CATACCTATTCGAAGGGATAG-3′ Werren & Windsor, 2000

WSPEC-R 5′-AGCTTCGAGTGAAACCAATTC-3′

few cases of female intersexuality were observed (Fig. 3A). G. pulex was only found

in conjunction with D. haemobaphes at one sampling site and no intersex phenotypes

were found (Fig. 3A). Significant differences were found in lengths of D. haemobaphes

phenotypes (F = 3.885, df = 2, p = 0.023) where normal males (14.85 mm ± 3.65, N = 32)

are significantly larger (p = 0.04) than females (13.01 mm ± 2.29, N = 52). However, there

is no significant difference between intersex males (13.57 mm ± 3.10, N = 37) and either

females (p = 0.735) or males (p = 0.328), therefore forming an intermediate size.

Parasite screening
Screening of D. haemobaphes and G. pulex populations revealed evidence of infection by

several parasites (Table 2). All D. haemobaphes females and intersex males were found

infected with D. berillonum, with one female weakly infected (Fig. 3B), as previous defined

(Yang et al., 2011). The majority of males were also infected, although more weak infections

were found (Fig. 3B). This pattern of D. berillonum infection was consistent at both

collection sites and when combined in a Fishers Exact test (two-tailed) reveal a significant

difference in the level of infection between normal and intersex males (p = 0.003 using

strong infections only, p = 0.02, using weak and strong infections). To confirm vertical

transmission, the broods of ten infected females were also tested and all were infected by

D. berillonum. Only one case of weak D. berillonum infection was found in G. pulex

(Fig. 3B).

DISCUSSION
Our screen of invasive and native species associated with an extremely successful,

and ongoing, amphipod invasion reveals parasitic-profiles strikingly consistent with

hypotheses that particular parasitic burdens influence the dynamics of biological invasion

(MacNeil et al., 2003a; Hatcher & Dunn, 2011; Hatcher, Dick & Dunn, 2014). The native
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Figure 2 External sexual phenotypes. (A) Normal female D. haemobaphes with only oostegites (green).
(B) Intersex male D. haemobaphes specimen presenting genital papillae (purple) alongside oostegites
(green) with rudimentary setae. (C) Normal male D. haemobaphes with only genital papillae (purple).

G. pulex are infected with a microsporidian of the genus Pleistophora, which include

behaviour-altering species known to increase the likelihood of predation on native

amphipods and reduce their predatory behaviour when interacting with invaders (MacNeil

et al., 2003a; Fielding et al., 2005). Sequences were also found for an acanthocephalan,

most likely Echinorhynchus truttae. This species can both reduce its host’s predatory

behaviour and increase vulnerability to predation by fish (Fielding et al., 2003; MacNeil

et al., 2003b; Lagrue, Güvenatam & Bollache, 2013). Consequently, the parasite burden

of G. pulex may facilitate invasion of D. haemobaphes through British waterways by

impairing the competitive abilities of the native population, a scenario consistent with

recent experiments and population modelling (MacNeil et al., 2003a; Haddaway et al.,

2012; Hatcher, Dick & Dunn, 2014). In contrast, the invasive D. haemobaphes was almost

ubiquitously infected by the vertically transmitted microsporidian Dictyocoela berillonum.

It is possible the initial invasive population consisted of a small number of infected

individuals and the current infection prevalence represents a parasitic founder-effect.

Alternatively, given that parasite infection is predicted to influence invasion success

(MacNeil et al., 2003a; Fielding et al., 2005; Hatcher, Dick & Dunn, 2014) via trait-mediated

effects, it is possible the high prevalence of D. berillonum occurs due to a subsequent

enhancement in invasive capabilities.

The distinct parasitic profiles of G. pulex and D. haemobaphes may have ecological

impacts. Our results suggest the eradication of native G. pulex would lead to the removal
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Figure 3 Frequency of sexual phenotypes and prevalence of D. berillonum infection. (A) Sexual
phenotypes found in two D. haemobaphes populations and G. pulex. (B) Infection of D. berillonum found
in D. haemobaphes and G. pulex found in both sites (NF, Normal Female; EIF, External Intersex Female;
NM, Normal Male; EIM, External Intersex Male).

of a pleistophoran microsporidian from the ecosystem potentially capable of causing

disease in fish (Lom & Nilsen, 2003) and an acanthocephalan indistinguishable from

E. truttae (Garćıa-Varela & Nadler, 2005). Although E. truttae infection in fish does not

appear to cause morbidity (Dorucu et al., 1995), infected amphipods are more vulnerable

to fish predation due to altered habitat usage (MacNeil et al., 2003b; Lagrue, Güvenatam &

Bollache, 2013). Therefore, the loss of this parasite may alter prey abundance, even if the

overall amphipod biomass is maintained following the displacement of G. pulex.

The sexual phenotype survey revealed that while no intersexuality was evident in

G. pulex, the invasive D. haemobaphes presents striking levels of pronounced male

intersexuality, where males exhibit unambiguous oostegites possessing rudimentary

seta, and their size is not significantly different from males or females. In contrast, the

low levels of female intersexuality in D. haemobaphes were much like those previously

reported in Polish waters (Bacela, Konopacka & Grabowski, 2009). To our knowledge,
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Table 2 A screen of parasites using a subsample of the D. haemobaphes and G. pulex populations revealed infection by a variety of parasites. Strong infection as
defined by previous studies (Yang et al., 2011).

Amphipod Phylum of
isolated
parasite

Number of
strongly infected
animals

Length of
ribosomal
sequence

Primers
used for
amplification

GenBank
accession of
isolated
sequence

Closest identity
using a BLAST

GenBank
accession of
closest match

%
Identity

D. haemobaphes Nematoda 11/60 472bp 537F & 1133R KM486061 Hysterothylacium
deardorffoverstreetorum

JF718550 100%

Microsporidia 51/60 1148bp V1f & 1342AC KM486059 Dictyocoela berillonum KF830272 99.9%

G. pulex Acanthocephala 3/20 547bp 537F & 1133R KM486063 Echinorhynchus gadi
Echinorhynchus truttae

AY830156 98%

Microsporidia 10/20 1135bp V1f & 1342AC KM486060 Pleistrophora hippoglossoideos
Pleistrophora typicalis
Pleistrophora mulleri

EF119339 99.6%

Apicomplexa 10/20 402bp 537F & 1133R KM486064 Mattesia geminate AY334568 90.2%
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this is the highest prevalence of male intersexuality recorded in an amphipod population

(McCurdy et al., 2004; Ford & Fernandes, 2005; Short et al., 2012b; Yang et al., 2011) and

is the first evidence clearly linking D. berillonum with amphipod intersexuality (Terry et

al., 2004; Yang et al., 2011). Other Dictyocoela species have been linked to both abnormal

sexual phenotypes and female-biased sex ratios (Terry et al., 2004; Short et al., 2012a),

however, the lack of female-bias in D. haemobaphes suggests D. berillonum is unable to fully

convert males in to females. This could result from sub-optimal environmental conditions

impacting the efficacy of conversion or the consequence of D. berillonum infecting an

unfamiliar host. Whatever the cause, the D. haemobaphes intersexuality is of interest.

The association between male intersexuality and sexual dysfunction is, despite recent

molecular advances (Short et al., 2014), still poorly understood. The functional impact

of D. haemobaphes intersexuality is unclear but must incur some form of cost, even if the

production of non-functional oostegites on intersexes is merely reducing the resources

available for normal growth and reproduction. It is also possible that intersexuality is

the outward manifestation of more serious sexual dysfunction. Lower sperm counts

have been reported in intersex males of Echinogammarus marinus (Yang, Kille & Ford,

2008) and in Corophium volutator, also females mating with intersex males produce

smaller broods (McCurdy et al., 2004). Furthermore, intersexuality may be associated with

behavioural changes. Gammarid amphipods mate after a period of mate-guarding and a

reduced capacity of intersex males to initiate or maintain this behaviour could also impact

reproductive success. The plausibility of such altered behaviours is made more likely given

numerous behavioural changes observed in C. volutator intersexes (McCurdy et al., 2008).

Investigation of D. haemobaphes reproductive function and behaviour will help determine

the extent of dysfunction associated with the intersexuality.

Although the observed intersexuality will incur some cost, the fact that such high levels

of pronounced intersexuality has not impeded a successful amphipod invasion is the

strongest evidence to date that crustacean male intersexuality is not, in any meaningful

sense, equivalent to vertebrate male intersexuality, which is commonly associated with

serious sexual dysfunction (Jobling et al., 1998; Harris et al., 2011; Kidd et al., 2007).

Furthermore, our findings are consistent with experimentally generated hypotheses that

certain parasitic burdens facilitate biological invasions.
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