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ABSTRACT
The standard theory of evolution proposes that mutations cause heritable variations,
which are naturally selected, leading to evolution.However, thismutation-led evolution
(MLE) is being questioned by an alternative theory called plasticity-led evolution (PLE).
PLE suggests that an environmental change induces adaptive phenotypes, which are
later genetically accommodated. According to PLE, developmental systems should be
able to respond to environmental changes adaptively. However, developmental systems
are known to be robust against environmental and mutational perturbations. Thus, we
expect a transition from a robust state to a plastic one. To test this hypothesis, we
constructed a gene regulatory network (GRN) model that integrates developmental
processes, hierarchical regulation, and environmental cues. We then simulated its
evolution over different magnitudes of environmental changes. Our findings indicate
that this GRN model exhibits PLE under large environmental changes and MLE
under small environmental changes. Furthermore, we observed that the GRN model
is susceptible to environmental or genetic fluctuations under large environmental
changes but is robust under small environmental changes. This indicates a breakdownof
robustness due to large environmental changes. Before the breakdownof robustness, the
distribution of phenotypes is biased and aligned to the environmental changes, which
would facilitate rapid adaptation should a large environmental change occur. These
observations suggest that the evolutionary transition frommutation-led to plasticity-led
evolution is due to a developmental transition from robust to susceptible regimes over
increasing magnitudes of environmental change. Thus, the GRN model can reconcile
these conflicting theories of evolution.

Subjects Biophysics, Computational Biology, Evolutionary Studies
Keywords EvoDevo, Phenotypic plasticity, Developmental bias, Robustness, Adaptability,
Genetic accommodation, Environmental change, Cryptic genetic variation

INTRODUCTION
The ability to respond to environmental cues by changing the phenotype without
changing the genotype is called phenotypic plasticity (West-Eberhard, 2003; Pfennig, 2021;
Gilbert & Epel, 2009). Plasticity-led evolution (PLE) is a process in which novel adaptive
phenotypes initially induced by a new environment are genetically accommodated over
generations (West-Eberhard, 2003; Levis & Pfennig, 2016; Levis & Pfennig, 2021). PLE is
characterized by environmental induction of adaptive plastic responses and uncovering
of cryptic genetic variation, which are drivers of rapid adaptation (Ehrenreich & Pfennig,
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2016). Therefore, PLE has been proposed to remedy the problem of gradualism implied
by the Modern Evolutionary Synthesis (Laland et al., 2014; Ehrenreich & Pfennig, 2016;
Nishikawa & Kinjo, 2014; Nishikawa & Kinjo, 2018; Pfennig, 2021).

In contrast, mutation-led evolution (MLE) refers to evolution initiated by a mutation
that induces a novel adaptive phenotype (Gilbert & Epel, 2009). Since mutations are
random, an adaptive mutation is expected to appear only after a long time, assuming the
population has not yet gone extinct.While theModern Evolutionary Synthesis is necessarily
a form of MLE, MLE itself encompasses more general concepts, particularly developmental
processes (Gilbert & Epel, 2009; Parsons et al., 2020) and hierarchical regulation (Peter &
Davidson, 2011). This article refers to hierarchically regulated developmental processes
as hierarchical developmental processes. Our previous work shows that, even without
environmental cues, the developmental process is still essential for adaptive evolution
in a plausible time scale (Ng & Kinjo, 2023). In comparison, it has been observed that
quantitative genetics models, not incorporating developmental processes, evolve far more
slowly even with environmental cues (Lande, 2009; Scheiner & Levis, 2021). In this work,
we consider a model for MLE that incorporates hierarchical developmental processes.

In our previous work (Ng & Kinjo, 2023), we proposed a gene regulatory network
(GRN) model that exhibits behaviors compatible with PLE upon large environmental
changes (Levis & Pfennig, 2016). However, this model is highly robust against mutations
and environmental noises in already adapted environments (Wagner, 1996; Espinosa-Soto,
Martin & Wagner, 2011b;Watson et al., 2014;Ng & Kinjo, 2023). How can the same system
be robust in one environment yet exhibit a plastic response to another? This observation
suggests there should be a transition from a robust to a plastic regime, depending on
the magnitude of environmental change. In the following, we show that this transition
manifests as a breakdown of robustness. Furthermore, we demonstrate that the system
exhibits MLE under the robust regime and PLE under the plastic regime, thereby unifying
two conflicting evolutionary schemes as two modes of the same developmental system.

MATERIALS AND METHODS
Here, we briefly describe our evolutionary models based on gene regulatory networks. For
more details, see our previous article (Ng & Kinjo, 2023).

Environment
In plasticity-led evolution, the environment plays two roles: selector and inducer of
phenotypes (West-Eberhard, 2003). We assume that these two roles of the environment are
highly correlated (Ng & Kinjo, 2022; Ng & Kinjo, 2023).

We model the environment-as-selector as a 200-dimensional vector e of±1. This vector
is also the optimal phenotype used to calculate the fitness of each individual’s phenotype
(also modeled as a 200-dimensional vector; see the following subsection). We model the
environment-as-inducer as each individual’s environmental cue e. This vector is obtained
by randomly flipping 5% of the elements of e.

We obtain a novel environment from a given ancestral environment by randomly
flipping a given percentage of the elements of the ancestral environmental vector e. Note
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that a 50% change in the environmental vector is the maximum change that can be
meaningfully achieved in our models. Each element takes +1 or−1 with equal probability.
If we flip 50% of the elements of the environmental vector, then the correlation coefficient
between the vectors before and after the change is 0. If we make a change greater than 50%,
say 90%, then the correlation coefficient is−0.8, which is more significant than the case of
50% change. This implies that the GRN can flip all its state vectors (see below) and find a
90%match to the novel environment without introducing new mutations. In other words,
GRNs are more adapted to a novel environment that is 90% different from the ancestral
environment than one that is 50% different.

Development
In the following, we compare two variants (Ng & Kinjo, 2023) of the gene regulatory
network (GRN) model introduced by Wagner (1996). In these models, the phenotype is
a vector, and the genome is a set of interaction matrices. The first model, the Full model,
incorporating environmental cues, developmental processes, and hierarchical regulation,
exhibits PLE under large environmental changes (Ng & Kinjo, 2023). The environmental
cue serves as the environmental input to the network. The developmental process is
a recursive process that updates the system’s internal state, integrating environmental
and genetic information into the phenotype. The hierarchical regulation reflects the
multilayered nature of biological regulation.

In our developmental GRN models, let p(s) be the phenotype expressed at the s-th stage
of development and p̃(s) (and v(s)) be the exponential moving average (and variance) of
the phenotype. To reflect the hierarchical regulation of GRN elements (such as epigenetic
marks, RNAs, and proteins), we introduce layers of 200-dimensional vectors f (s),g (s), and
h(s) to represent epigenetic marks, gene expression and higher-order complexes (such as
proteins, supramolecular complexes, etc.), respectively. For the Full model, we assume the
following mutually recursive equations:

fi(s)= σf

 200∑
j=1

Gijgj(s−1)+
200∑
j=1

Eij(ej− p̃j(s−1))

,
gi(s)= σg

 200∑
j=1

Fij fj(s)

,
hi(s)= σh

 200∑
j=1

Hijgj(s)+
200∑
j=1

Jijhj(s−1)

, (1)

pi(s)= σp

 200∑
j=1

Pijhj(s)

,
p̃i(s)=αpi(s)+ (1−α)p̃i(s−1),

vi(s)= (1−α){v(s−1)+α[p̃i(s−1)−pi(s)]2}

where E is a matrix that represents environmental regulation of epigenetic marks, F
is a matrix representing epigenetic regulation of gene expression levels, G is a matrix
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representing genetic regulation of epigenetic marks, H is a matrix representing genetic
regulation of higher-order complexes, J is a matrix representing interactions among
higher-order complexes, P is a matrix representing regulation of the phenotype. The
matrix ensemble E,F ,G,H ,J ,P represents the individual’s genome. All matrices are sparse
with a density of 0.02. The activation functions σf ,σg ,σh are based on the inverse tangent
functions, and σp is based on the hyperbolic tangent function. These functions are modified
in the spirit of LeCun (1989). The initial conditions are f (0)= 0, g (0)= 1, h(0)= 0 and
p(0)= 0 where 0 is the zero vector and 1 is a vector where all elements are equal to
1. We recursively compute the state vectors f (s),g (s),h(s),p(s) for s= 1,2,... until the
total phenotypic exponential moving variance

∑
ivi(s)< 10−5 for some s≤ 200 (i.e., the

phenotype has converged) and take p̃i(s) as the adult phenotype. Otherwise, we say that
the phenotype does not converge.

The other model, the NoCue model, is identical to the Full model, except it uses the
following equation for updating fi(s) instead:

fi(s)= σf

 200∑
j=1

Gijgj(s−1)−
200∑
j=1

Eij p̃j(s−1)

. (2)

The NoCue model does not take in environmental cues (ej). As a result, it does not
exhibit phenotypic plasticity and, therefore, serves as a model for MLE.

These models are mathematically equivalent to artificial recurrent neural networks, so
they have generic learning capabilities. In this context, adaptive evolution can be viewed as
a process of learning the environment by changing the genome (network weights) (Watson
& Szathmáry, 2016). Notably, the Full model can adaptively respond to environmental
cues through development.

Modeling evolution
We followed the same procedure as we did in Ng & Kinjo (2023) for simulating evolution
by applying a genetic algorithm (Mitchell, 1998) to a population of 1000 individuals. We
impose the role of the environment-as-selector by evaluating the fitness of each individual
by matching the macro-environment e with the adult phenotype p̃ (assuming that p̃
converges). In other words, the macro-environment e is the optimal phenotype. We also
included the number of developmental steps up to convergence into the fitness calculation
so that individuals with fewer developmental steps are favored. We define the raw fitness
of the ith individual as:

ωi= exp(−(α‖p̃−e‖1+βNstep)) (3)

where ‖p̃−e‖1 is the absolute (L1) distance between the first 40 (out of 200) elements of
the adult phenotype p̃ and the corresponding elements of the macro-environment e, Nstep

is the number of developmental steps until convergence, α= 20 and β = 1
20 . Only 40 traits

(elements of the phenotype vector) are subject to selection, and other 160(= 200−40)
traits are allowed to evolve freely. In this article, we call the value of ‖p̃−e‖1 mismatch.
Individuals whose phenotype p̃(s) does not converge before a pre-specified number (200)
of steps are given a zero fitness. The population in which all individuals have completed
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the developmental process is called the adult population in the following. The normalized
fitness of the ith individual of the adult population is given by

�i=
ωi

maxj{ωj}
(4)

where maxj{ωj} is the maximum raw fitness of the adult population. As such,�i represents
a probability of being selected for reproduction.

To generate offsprings, individuals are randomly sampled from the adult population
with probability �i. Each sampled individual is returned to the population before another
individual is sampled. Selected individuals are paired to become parents. For each pair of
parents, two offsprings are produced by randomly shuffling the corresponding rows of the
genome matrices with a probability of 50% between the parents. The offspring population
is duplicated to make two statistically identical populations of 1000 individuals each. In
both populations, each element of the genome matrices of an offspring is independently
and randomly mutated with a probability of 0.5% in a way that preserves the density
of the genome matrices (Ng & Kinjo, 2023). We then let the two populations develop:
one offspring population in the ‘‘ancestral’’ environment and the other in the ‘‘novel’’
environment. Only the individuals in the ‘‘novel’’ environment are subject to selection.
The population in the ‘‘ancestral’’ environment is used only for comparison and is discarded
after measurement. Adaptive evolution of a population is therefore modeled by repeated
cycles of development, selection, and reproduction under the ‘‘novel’’ environment.

We let the population evolve in a constant environment e for 200 generations. This
duration is called an epoch. Before simulating for another epoch, we change the environment
e by flipping a specified proportion of the elements of this vector. We iterate this procedure
for many epochs. Before the production runs presented in the Results section, we ran 40
epochs of preparatory runs under 40 completely uncorrelated environments to equilibrate
the randomly initialized population and to let the system learn how to respond to
environmental changes (Ng & Kinjo, 2023). In the following, the novel and ancestral
environments refer to the current and last adapted environments, respectively.

Visualizing evolutionary trajectories
To visualize the evolutionary trajectory of a population, we project the phenotype and
genotype of individuals in the population at each generation onto a two-dimensional
genotype-phenotype space (Ng & Kinjo, 2023). First, the phenotype axis is defined as
en−ea
‖en−ea‖22

where en is the first 40 elements of the novel macro-environment, ea is the first
40 elements of the ancestral macro-environment and ‖en−ea‖2 is the Euclidean (L2)
distance between en and ea. We consider only the first 40 out of 200 elements because they
correspond to the traits subject to selection. We project the phenotype p of each individual
as:

p= (p̃−ea) ·
en−ea
‖en−ea‖22

. (5)

This way, the projected phenotypic values p of 0 and 1 correspond to phenotypes perfectly
adapted to the ancestral and novel environments, respectively.
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Next, the genotype axis is defined as follows. Let Gij be the vector made by flattening
and concatenating all the genome matrices of the ith individual of the jth generation.
Let Gj =

1
N
∑N

i=1Gij be the population average genotype vector of the jth generation. The

genotype axis is defined as G200−G1

‖G200−G1‖
2
2

. We project the genotype of the ith individual of the

jth generation onto the genotype axis as:

gij = (Gij−G1) ·
G200−G1∥∥G200−G1

∥∥2
2

. (6)

This way, projected genotypic values gij of 0 and 1 correspond to the average genotypes
before and after one epoch of evolution in a novel environment, respectively.

We call the plot of the projected phenotypic values against the projected genotypic values
the genotype-phenotype plot (Ng & Kinjo, 2023). Adaptive evolution generally proceeds
from the lower left to the upper right on the genotype-phenotype plot.

Singular value decomposition of cross-covariance matrices
We use cross-covariance matrices to study the correlation between selected phenotypes
and environmental noise or genetic variation. We define the Pheno-Cue or Pheno-Geno
cross-covariance matrices as

Cij =
1
N

N∑
k=1

(pik−pi)(xjk−x j) (7)

where pik is the ith trait of the phenotype vector of the k-th individual, pi is the population
average of the ith trait, xjk is the jth environmental factor (for Pheno-Cue) or the jth
element of the vectorized genome (for Pheno-Geno) of the k-th individual and x j is the
corresponding population average value.

We apply singular value decomposition (Yanai, Takeuchi & Takane, 2011) to the cross-
covariance matrix C to obtain orthonormal components as follows (Navarra & Simoncini,
2010):

C =
∑
i

σiuiv>i (8)

where the superscript > indicates transpose. In Eq. (8), ui and vi are the ith left and
right singular vectors, interpreted as the ith principal axis of phenotypic variation (the
left singular vectors) in response to the corresponding principal axis (the right singular
vectors) of environmental noises (or genetic variation); σi is the ith singular value, arranged
in decreasing order, which represents the cross-covariance between the left and right
principal components.

To quantify developmental bias, we used the proportion of the (squared) first singular
value to the total cross-covariance:

σ 2
1∑
iσ

2
i
. (9)
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The alignment between the first principal axis of phenotypic variation and environmental
change is measured by the magnitude of the normalized dot product:

|u1 · (en−ea)|
‖en−ea‖

(10)

where en is the novel environment and ea is the ancestral environment.

RESULTS
In the following, we study evolutionary simulations over various magnitudes of
environmental change. We show that the Full model exhibits characteristics consistent
with plasticity- or mutation-led evolution when the environmental change is large or
small, respectively. We then demonstrate that a breakdown in robustness due to large
environmental changes induces adaptive plastic responses and uncovers cryptic genetic
variation in the Full model. We show that developmental bias, the skew in phenotype
distribution induced by environmental changes, precedes the onset of PLE and is already
aligned with environmental changes.

The Full model exhibits plasticity-led evolution under large
environmental changes
This subsection briefly summarizes our previous results (Ng & Kinjo, 2023) to introduce
fundamental notions describing PLE and MLE. We simulated evolution under large
environmental changes for ten epochs, flipping 50% of the elements of the environmental
vector at the end of each epoch. We visualized evolutionary trajectories using the genotype-
phenotype plots (Figs. 1A, 1B; see also Video S1) (Ng & Kinjo, 2023). Phenotypic values of 0
and 1 correspond to phenotypes perfectly adapted to the ancestral and novel environments,
respectively. Similarly, genotypic values of 0 and 1 correspond to the average genotypes
adapted to the ancestral and novel environments. Generally, the evolution proceeds from
the lower left corner to the upper right corner of the genotype-phenotype plot.

For the full model (Fig. 1A), phenotypic values are greater in the novel environment
than in the ancestral environment on average, indicating an adaptive plastic response. This
response is also called phenotypic accommodation (West-Eberhard, 2003; West-Eberhard,
2005). The standard deviation in the phenotypic values in the ancestral environment is
minimal, indicating the robustness of adapted phenotypes. The standard deviation in the
phenotypic values in the novel environment is much greater than that in the ancestral
environment in the first generation, indicating an increase in phenotypic variability. Our
previous work shows that this is attributed to the uncovering of cryptic genetic variation
(Ng & Kinjo, 2023). The phenotypic and genotypic values in the novel environment
increase somewhat quickly, indicating rapid genetic accommodation. These features of the
genotype-phenotype plot assert that the Full model exhibits plasticity-led evolution under
large environmental changes.

The NoCue model (Fig. 1B) exhibits neither adaptive plastic response nor uncovering
of cryptic genetic variation (by design). The cluttered distribution of points in the lower
left corner demonstrates that the early adaptation stage of these trajectories is prolonged.
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a

d

b

c

Figure 1 Evolution under large environmental changes. A large environmental change is modeled by
flipping 50% of the ancestral environmental vector e. The genotype-phenotype plot of an arbitrary epoch
of the (A) Full and (B) NoCue model (See also Video S1). Each point (with error bars) represents the pop-
ulation average of genotypic value (horizontal axis) and phenotypic value (vertical axis) after develop-
ment but before selection at each generation. Cyan and purple represent populations in novel and ances-
tral environments, respectively. Projected phenotypic values of 0 and 1 correspond to phenotypes perfectly
adapted to the ancestral and novel environments, respectively. Projected genotypic values of 0 and 1 corre-
spond to the average genotypes before and after one epoch of evolution in the novel environment. Trajec-
tories of (C) mismatch and (D) genetic variance for ten consecutive epochs. These results were reproduced
from our previous work (Ng & Kinjo, 2023).

Full-size DOI: 10.7717/peerj.17102/fig-1

The sparse distribution of points around the center of the plot indicates a rapid change in
genotype once adaptive mutations are found.

We next tracked the trajectories of mismatch (Fig. 1C). Recall that the mismatch
measures the adaptedness using the distance between the phenotype and environment
(see the subsection ‘Evolution’ in ‘Materials and Methods’). The mismatch of the Full
model decreases immediately and rapidly. In contrast, the NoCue model exhibits a delay
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of around 20–30 generations before the mismatch decreases rapidly, a manifestation of
gradualism.

Finally, we checked the trajectories of genetic variance (Fig. 1D). Here, the genetic
variance is computed as the sumof the variance in each element of the genomematrices. For
the Fullmodel, the genetic variance decreases immediately and rapidly to aminimumbefore
gradually increasing again. The initial rapid decrease corresponds to a purifying selection
of uncovered cryptic variations, whereas the later increase indicates the accumulation of
cryptic genetic variation. This behavior contrasts the NoCue model, for which the genetic
variance gradually increases at the start of each epoch before decreasing to a minimum,
after which the genetic variance gradually increases again towards the end of the epoch.
The initial increase in the genetic variance coincides with the initial delay of mismatch
(Fig. 1C), which is attributed to the time taken to find adaptive mutations in the novel
environment. We identify these initial behaviors of the NoCue model as a key signature of
MLE.

The genetic variance of the Full model is consistently less than that of the NoCue model
(Fig. 1D), indicating that the Full model harbors less standing genetic variation than the
NoCue model. Nevertheless, the Full model adapts much more quickly than the NoCue
model. This is because most genetic variation remains latent in the NoCue model due to
the developmental system’s robustness and the absence of environmental cue input.

The Full model exhibits mutation-led evolution under small
environmental changes
We simulated evolution under small environmental changes for ten epochs, flipping 5%
of the elements of the environmental vector at the end of each epoch. The evolutionary
trajectories of the Full and NoCue models (Figs. 2A, 2B) are nearly identical under small
environmental changes. That is, the Full model (Fig. 2A) exhibits neither adaptive plastic
response nor uncovering of cryptic genetic variation. The NoCue model exhibits similar
evolutionary trajectories under small (Fig. 2B) and large (Fig. 1B) environmental changes.
Therefore, under small environmental changes, both the Full and NoCue models exhibit
the characteristics of MLE. This observation is consolidated by the trajectories of mismatch
and genetic variance (Figs. 2C, 2D).

The Full model undergoes a sharp transition from MLE to PLE
We have seen that the Full model exhibits PLE or MLE under large or small environmental
changes. This observation suggests a transition fromMLE to PLE as environmental change
increases. To see how this transition occurs, we examined the mean projected phenotype
(Fig. 3A) in the first generation after environmental changes of different magnitudes. The
mean projected phenotypic value suddenly increases (indicating adaptive plastic response)
at around 30% environmental change. The variance in projected phenotype (Fig. 3B) also
suddenly increases (indicating the uncovering of cryptic genetic variation) around 30%
environmental change.

To further analyze the phenotypic variation under various environmental changes,
we examined the cross-covariance matrix between phenotype and environmental cue
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Figure 2 Evolution under small environmental change. A small environmental change is modeled by
flipping 5% of the ancestral environmental vector e. Genotype-Phenotype plots in an arbitrary epoch of
the (A) Full and (B) NoCue model (See also Video S1). Trajectories of (C) mismatch and (D) genetic vari-
ance for ten different consecutive epochs.

Full-size DOI: 10.7717/peerj.17102/fig-2

(Pheno-Cue cross-covariance) or genetic variation (Pheno-Geno cross-covariance). These
cross-covariance matrices quantify how phenotypic variation is affected by environmental
noise or genetic variation. In particular, we only consider the first singular value of the
Pheno-Cue (Fig. 3C) and Pheno-Geno (Fig. 3D) cross-covariance matrices as it explains
most phenotypic variation. We found that the first singular values also suddenly increase
around 30% environmental change. This observation indicates that the phenotypes
become susceptible to environmental noise or genetic variation, suggesting a breakdown
of environmental and mutational robustness around this point.
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a b

c d

Figure 3 Transition fromMLE to PLE. Some characteristic quantities after development and before se-
lection in the first generation when subject to different magnitudes of environmental change for the Full
model. The boxplots were made from the results of 10 epochs. (A) Average projected phenotype. (B) Vari-
ance in projected phenotype. (C) First singular value of phenotype-environmental cue (Pheno-Cue) cross-
covariance matrix. (D) First singular value of phenotype-genome (Pheno-Geno) cross-covariance matrix.

Full-size DOI: 10.7717/peerj.17102/fig-3

Developmental bias precedes PLE
The cross-covariance matrices introduced in the previous subsection contain various
information about phenotype distribution, particularly the extent of phenotypic diversity
and the skew in phenotype distribution (Noble, Radersma & Uller, 2019). There, we studied
the extent of phenotypic diversity measured by the first singular values. We now study the
skew in phenotype distribution, also called the developmental bias (Uller et al., 2018). In the
previous work, we observed large developmental biases aligned with large environmental
changes, whereas such biases were absent in adapted environments (Ng & Kinjo, 2023).
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To study the transition in developmental bias, we measured the proportion of the first
singular value of the Pheno-Cue (Fig. 4A) and Pheno-Geno (Fig. 4B) cross-covariance
matrices over environmental changes of different magnitudes. There is an increase in both
proportions at around 25% environmental change. Compared to the transition from MLE
to PLE (Fig. 3), this increase in bias is less abrupt and occurs at smaller environmental
changes. Thus, the developmental bias is more susceptible to environmental changes than
the extent of phenotypic diversity. Still, it does not manifest as adaptive plastic responses
or increased phenotypic variance due to the system’s robustness when the environmental
changes are small. When the bias becomes sufficiently large, the system’s robustness breaks
down, as indicated by an abrupt increase in the cross-covariances (Figs. 3C, 3D).

We next examined the orientation of the developmental bias. Specifically, we measured
the alignment between the environmental change and the first phenotype singular vector
of the Pheno-Cue (Fig. 4C) or Pheno-Geno (Fig. 4D) cross-covariance matrices over
different magnitudes of environmental changes. The alignment is small for less than
25% environmental changes. Above 25% environmental change, developmental bias is
well-aligned with environmental change. Thus, the emergent developmental bias facilitates
selection by magnifying the difference between the most and least fit individuals. Note
that the transition in alignment also happens before the increase in phenotypic variance
(see Figs. 3C, 3D). Although plastic responses are invisible at this size of environmental
change, such developmental bias aligned with the environmental change is expected to
facilitate rapid adaptation should a large environmental change occur (Uller et al., 2018;
Noble, Radersma & Uller, 2019).

DISCUSSION
From an evolutionary perspective, the Full model exhibits plasticity-led evolution (PLE)
under large environmental changes and mutation-led evolution (MLE) under small
environmental changes. From a developmental perspective, the Full model is susceptible to
environmental noise and genetic variation under large environmental changes but is robust
under small environmental changes. When the Full model is susceptible to perturbations,
adaptive plastic phenotypes are induced, cryptic genetic variation are uncovered, and
developmental bias is aligned with environmental change, enabling PLE. When it is
robust against environmental and genetic fluctuations, phenotypic variation is suppressed,
cryptic genetic variation accumulates, and developmental bias is minimal, necessitating an
extensive search for favorable mutations to adapt to small environmental changes, which
leads to MLE. Thus, the developmental transition from a robust regime to a susceptible
one underlies the evolutionary transition from MLE to PLE.

The developmental transition from robust to susceptible regimes may be considered
as the switching of an evolutionary capacitor from the ‘‘charging’’ (accumulating cryptic
genetic variation) to ‘‘discharging’’ (purifying uncovered genetic variation) states (Masel,
2013). Indeed, evolutionary capacitance has been suggested to be a generic feature of
the GRNs, which are non-linear multi-body feedback systems with gene-environment
interactions (Bergman & Siegal, 2003). The present work suggests that switching the
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Figure 4 Developemental bias under various environmental changes.Measures in the skew and ori-
entation of phenotypic distribution after development and before selection in the first generation when
subject to different magnitudes of environmental change for the Full model. The boxplots were made
from the results of 10 epochs. Percentage contribution of the first singular value of the Pheno-Cue (A)
and Pheno-Geno (B) cross-covariance matrices. Alignment (normalized dot product) between environ-
mental change and the first phenotype singular vector of the Pheno-Cue (C) and Pheno-Geno (D) cross-
covariance matrices.

Full-size DOI: 10.7717/peerj.17102/fig-4

evolutionary capacitor also switches the evolutionary regimes from MLE to PLE. The
transition from robust to susceptible regimes over environmental changes implies
the existence of a force opposing robustness. According to the Theory of Facilitated
Variation (Gerhart & Kirschner, 2007), robustness and adaptability are (apparently)
competing properties of the developmental process. Here, adaptability means the ability
of the developmental process to respond to environmental changes adaptively. In our
results, adaptability manifests in two ways: (1) adaptive plastic response (Fig. 3) and
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(2) developmental bias favorably aligned with environmental change (Fig. 4). In the
robust regime, the adaptive plastic response is not visible (Fig. 3), but the developmental
bias is already aligned with environmental change (Figs. 4C, 4D). As the magnitude
of environmental change increases, the induced adaptability overwhelms the system’s
robustness, manifests as adaptive plastic responses, and triggers PLE (Fig. 3).

The adaptability of the Full model may appear to be a consequence of its learning
capability, as it is mathematically equivalent to an artificial recurrent neural network
(Watson et al., 2014; Watson & Szathmáry, 2016; Kouvaris et al., 2017; Ng & Kinjo, 2022;
Ng & Kinjo, 2023). Many studies attempted to explain adaptive plastic response in terms of
this learning capability of GRNs (Watson et al., 2014; Watson & Szathmáry, 2016; Kouvaris
et al., 2017; Szilágyi et al., 2020; Ng & Kinjo, 2022). However, these works assume that the
novel environment should be sufficiently similar to one of the past environments to exhibit
adaptive plastic response and do not consider completely new environments that bear
no correlations to any past environments. Thus, the learning theory analogy does not
necessarily apply to our results of the Full model. We next argue that the current learning
theory analogy is incomplete and requires further extension.

According to Parsons et al. (2020), we should distinguish between two kinds of
phenotypic plasticity: active and passive. Active plasticity has been selected through
evolution in specific environments and, therefore, anticipates these environments. That
means the species already know how to respond adaptively if an environmental cue
similar to a past environment is given. Since this response results from selection in the past
environment, it is mostly genetically regulated. In other words, active plasticity is a heritable
trait. Therefore, it is still in the framework of the Modern Evolutionary Synthesis and does
not explain rapid adaptation to entirely new environments. Furthermore, since active
plasticity is a trait selected through evolution, it is expected to be a robust process (Nagata
& Kikuchi, 2020; Kaneko & Kikuchi, 2022). This suggests that the variation in the resulting
phenotypes is suppressed (Riley, Oostra & Plaistow, 2023), hence limiting the efficiency of
genetic accommodation. Many simulation studies, as well as most traditional quantitative
genetics models, exclusively focus on active plasticity (Lande, 2009; Scheiner, Barfield &
Holt, 2020; Espinosa-Soto, Hernández & Posadas-García, 2021; Watson et al., 2014; Nagata
& Kikuchi, 2020; Kaneko & Kikuchi, 2022). Kouvaris et al. (2017) are motivated by how
rapid adaptation in unseen environments is possible, but they still assume significant
structural regularities shared across past and present environments.

On the other hand, passive plasticity means an organism responding passively to a new
environment that it has never experienced in the species’ evolutionary history. As such,
the organisms cannot anticipate the new environment, and the role of environmental
cues (including noise) becomes relatively more significant. Consequently, the process of
the plastic response is not entirely heritable due to the relatively large contribution from
the environmental cues (which is definitely not heritable). Furthermore, passive plasticity
may involve some randomness, resulting in a larger phenotypic variation. Relatively few
simulation studies, including the present work, focus on passive plasticity (Espinosa-
Soto, Martin & Wagner, 2011a; Espinosa-Soto, Martin & Wagner, 2011b; Nishikawa &
Kinjo, 2014; Ng & Kinjo, 2023). Our results show that the randomness appears due to
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uncovered cryptic genetic variation. Still, on average, the plastic response is adaptive,
albeit imperfect (assuming a strong correlation between the environmental cue and the
selective environment). How passive plasticity can be adaptive on average requires further
investigation.

In summary, GRNs’ adaptability can manifest as active and passive plasticity, but the
latter is the key to rapid adaptation to entirely new environments. The current evolution-
learning analogy implicitly assumes active plasticity. To fully understand the mechanisms
of adaptive plastic response, we need to extend learning theory to account for an equivalent
of passive plasticity.

CONCLUSIONS
We have demonstrated that the gene regulatory network (GRN) model incorporating
hierarchical developmental regulation and environmental cues can exhibit plasticity-
led evolution (PLE) or mutation-led evolution (MLE) depending on the magnitude
of environmental changes. The developmental transition between a robust state and a
susceptible state of the developmental GRNdrives the evolutionary transition betweenMLE
and PLE. The GRNmodel presented here may serve as a theoretical basis for understanding
evolution, development, and environmental changes in an integrated manner.
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