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ABSTRACT
Correctly identifying the strength of selection that parasites impose on hosts is key to
predicting epidemiological and evolutionary outcomes of host-parasite interactions.
However, behavioral changes due to infection can alter the capture probability of
infected hosts and thereby make selection difficult to estimate by standard sampling
techniques. Mark-recapture approaches, which allow researchers to determine if
some groups in a population are less likely to be captured than others, can be used to
identify infection-driven capture biases. If a metric of interest directly compares
infected and uninfected populations, calculated detection probabilities for both
groups may be useful in identifying bias. Here, we use an individual-based simulation
to test whether changes in capture rate due to infection can alter estimates of three
key metrics: 1) reduction in the reproductive success of infected parents relative to
uninfected parents, 2) the relative risk of infection for susceptible genotypes
compared to resistant genotypes, and 3) changes in allele frequencies between
generations. We explore the direction and underlying causes of the biases that
emerge from these simulations. Finally, we argue that short series of mark-recapture
sampling bouts, potentially implemented in under a week, can yield key data on
detection bias due to infection while not adding a significantly higher burden to
disease ecology studies.
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INTRODUCTION
Emerging infectious diseases, driven by climate change, introduced species, and other
anthropogenic disturbances, are a conservation concern for many animal populations
(Lafferty & Gerber, 2002; Smith, Acevedo-Whitehouse & Pedersen, 2009; Morand, 2020).
Pathogens can impose strong fitness consequences on hosts, potentially reducing
population growth and impacting long-term stability (Maslo & Fefferman, 2015; Iverson
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et al., 2016; Campbell et al., 2018). In addition, selection by parasites on hosts can lead to
conservation-relevant evolutionary changes if parasite resistance is heritable (Prugnolle
et al., 2005; Fumagalli et al., 2009; Kariuki & Williams, 2020). For example, a population
that can quickly adapt to a novel disease may require less active management than a
population that cannot (Spielman et al., 2004; Mikheyev et al., 2015). Conversely, strong
selection toward infection-resistant genotypes may lead to reduced population-level
genetic diversity (Jordan et al., 1998; Lenz et al., 2016). However, estimating the strength of
selection or its correlates in wild populations is logistically challenging (Chao, 1989;
McDonald & Amstrup, 2001; Grimm, Gruber & Henle, 2014).

A central challenge in connecting parasite infection to host fitness in natural
populations is that infection can alter capture rates of hosts (Benton & Pritchard, 1990;
McPherson et al., 2012; Garamszegi et al., 2015). Mark-recapture approaches are the state
of the art in accounting for differences in capture likelihood between subgroups within a
focal population. Robust design mark-recapture methods track the capture history, or
patterns of detection and non-detection across sampling bouts, of individual animals over
several consecutive bouts of sampling. For example, if an individual is sampled in bouts
one and three, it can be assumed it was present during bout two but was not captured.
The ratio of successful captures to misses of animals with known characteristics can then
be used to calculate the capture rates for pre-identified subsections of the study population
(Pollock et al., 1990; Nichols, 1992; Willson, Winne & Todd, 2011).

Parasites can impact host capture availability in a variety of ways. Parasites can reduce
escape performance (Benton & Pritchard, 1990; Schall, 1990), causing a reduction of host
activity or increase in risk aversion and thereby a reduction of capture rates (Bass & Weis,
1999; McPherson et al., 2012; Koprivnikar & Penalva, 2015). Conversely, the energetic
demands of parasite infection could drive the host to greater foraging efforts, increasing
availability for capture (Benton & Pritchard, 1990). Some parasites manipulate host
behavior to increase risk of predation (Levri & Lively, 1996; Lagrue et al., 2007), which
could increase capture rates of infected hosts. In addition, simple sampling error can
impact estimates of key outcomes. This is particularly true when sampling from bounded
distributions, when a parameter can vary freely in a specific range of values but not outside
those values. These distributions are common in biology, when parameters are often
constrained to positive values, for example the concentration of a protein (de Franciscis,
Caravagna & d’Onofrio, 2014), the population size of an animal (Cai & Geritz, 2020), or
the frequency of an allele in a population (Kimura, 1957). As such, identifying the ways
that bounded distributions impact downstream analyses is of broad concern in biology, as
well as specific concern in the context of our current work.

Here, we focus on several correlates of pathogen-driven selection that can be measured
in wild host populations. When a biologically plausible resistance allele has been identified,
quantifying changes in allele frequencies between generations can provide strong evidence
of selection occurring (Westerdahl et al., 2004; Thrall et al., 2012). In addition, determining
whether differing rates of infection are associated with different alleles or genotypes can
provide evidence of selection (Langefors et al., 2001; Froeschke & Sommer, 2005; Dionne
et al., 2009; Sin et al., 2014). Demonstrating differential reproductive success based on
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infection state is also critical, as some parasites do not impact lifetime reproductive success
and so cannot drive selection (Schall, 1983; Gustafsson et al., 1994; Zylberberg et al., 2015).
Calculated values of these correlates sampled from natural populations could be impacted
by sampling error and bias.

Our study is motivated by the biology of one frequently studied family of vertebrate
genes that can contribute to parasite resistance, the major histocompatibility complex
(MHC). MHC proteins are responsible for recognizing pathogens and starting the adaptive
immune response cascade (Kaufman, 2018). High MHC diversity can increase fitness by
allowing an animal to mount immune responses to a broader variety of pathogens (Agudo
et al., 2012; Radwan et al., 2012). However, in some systems a specific MHC allele will
confer the strongest fitness benefit (Froeschke & Sommer, 2005; Wroblewski et al., 2015).
Other gene families that are less studied than MHC, but may experience similar switches
between directional and balancing selection due to parasite pressure, include the
immunoglobulin A genes as well as scent and taste receptors, which play a role in
recognizing pathogens in many tissues in the body (Sumiyama, Saitou & Ueda, 2002; Shi
et al., 2003; Seixas et al., 2012; Carey & Lee, 2019; Harmon, Deng & Breslin, 2021).

We use a simulation approach to identify scenarios in which estimates of
parasite-induced selection may lead to spurious conclusions due to sampling biases and
error and discuss how these processes impact the values of our outcomes of interest.
We establish a simulated population based loosely on the ecology of lizard-malaria
systems. In such systems, parasite infection reduces host lifetime reproductive success but
does not shorten host lifespan (Dunlap & Schall, 1995; Eisen, 2001), a common pattern for
sublethal parasites (Dyrcz et al., 2005; Marzal et al., 2005; Hillegass, Waterman & Roth,
2010). We examine both heterozygote-advantage and resistance-allele advantage scenarios.
The heterozygote-advantage simulations are an analog for the MHC-diversity advantage
scenarios discussed above. The resistance-allele simulations model instances in which a
single allele conveys protection against a pathogen. We quantify the impact of random
subsampling and biased detection on our ability to estimate three outcomes of interest: 1)
the fitness impact of infection, 2) the relative risk of infection of different host genotypes,
and 3) changes in allele frequency from our parental generation to offspring generation.

MATERIALS AND METHODS
Simulation framework
We simulated a diploid host population of 5,000 individuals with two alleles at a single
locus in the R v4.4.1 scripting environment (R Core Team, 2021). Genotypes were
generated using binomial random trials with equal probabilities of generating either allele
(Fig. 1). Individuals were exposed to infection using a Bernoulli trial. The individual’s
probability of infection in that trial was determined in part by their genotype. Each
simulation had at least one genotype that conveyed resistance to a pathogen. In the
‘heterozygote’ runs, heterozygotes had lower infection risk, while both homozygous
genotypes had higher infection risk. In the ‘resistance allele’ runs, carriers of a resistance
allele, whether heterozygous or homozygous, had lower infection risk. For each run, we
assigned a value between zero and one that described the degree to which genotype
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predicted infection risk. We varied this value for the simulations focused on allele
frequency change across generations and per-genotype relative risk of infection.
We selected this value to vary because it directly impacted the outcomes of interest, so
perturbing it allowed us to test the reliability of our predictions across different scenarios.

To calculate the final value for an individual’s infection risk, we assigned a value for
infection probability to the genotype. Across all runs, we used 0.8 for the high-risk
genotype and 0.2 for the low-risk genotype. We multiplied the proportion by a “genotype
prediction value” between zero and one that represented the degree to which genotype

Figure 1 Schematic of our simulation setup. Organization of our individual-based simulation.
Full-size DOI: 10.7717/peerj.16910/fig-1

Holmes et al. (2024), PeerJ, DOI 10.7717/peerj.16910 4/22

http://dx.doi.org/10.7717/peerj.16910/fig-1
http://dx.doi.org/10.7717/peerj.16910
https://peerj.com/


predicted infection risk as opposed to infections occurring at random. To represent the
random component of infection risk, we drew a unique value for each individual from a
normal distribution with mean of 0.5 and standard deviation of 0.2. We then multiplied
that value by one minus the genotype prediction value and summed the two components.
The final value was the product of individual genotype risk and the genotype prediction
value added to the product of the inverse of the genotype prediction value and a random
component. We truncated this final value between zero and one. We generated infections
using a binomial random trial with the individual infection risk as the probability of
success.

After infection, pairs of parents were randomly sampled from the population. For all
pairs of parents, we assigned a number of offspring generated using the function ‘rpois’ in
base R. The function requires a value ‘lambda,’ which describes both the expectation and
variance of the function. The base lambda value for all simulations was 10. For each
infected parent in a pair, we multiplied the lambda value by an infection penalty, which
could vary across runs. The penalty took on a value from 0 to 1. For one infected parent, we
would calculate the lambda value by taking half of the offspring (5), multiplying that value
by the infection penalty, then adding the rounded value to the other half of the offspring.
For two infected parents, the full lambda value (10) would be multiplied by the infection
penalty. The parents’ genotypes were randomly subsampled to create gametes for offspring
genotypes. Once offspring had been generated for 2,500 breeding pairs, the offspring pool
was subjected to infection as described above and added to the full population. In our
simulation, reproductive success was impacted directly by infection state but not by the
parents’ genotypes. For our simulation runs focused on measuring reproductive success,
we perturbed the parameter that controlled the expected proportion of offspring lost due
to infection in the parents. We selected values from a uniform distribution between zero
and one for this parameter.

We conducted five sampling events in which we randomly drew a set number of
individuals, in this case 500, from the full population. To test the impact of sample size on
our outcomes, we re-ran the simulations using sample sizes of 50, 100, and 1,000. Drawing
small samples from a large population means that any single individual is unlikely to
recaptured multiple times. However, mark-recapture statistics rely on individuals being
sampled multiple times. To achieve this sampling structure, we used full population sizes
of 500, 1,000, and 5,000 individuals for the 50, 100, and 1,000 sample size simulations, for a
total of four separate population size/sample size combinations. We applied a Cormack-
Joly-Seber model implemented in the R package ‘marked’ to these data to identify whether
differences in capture rates between infected and uninfected individuals could be detected
(Laake, Johnson & Conn, 2013). To generate capture histories for instances in which
capture rates differed between infected and uninfected individuals, we first separated the
infected and uninfected individuals. We found the number of infected individuals we
expected to sample by multiplying the proportion of the population that was infected by
our capture bias value for the run. We then selected individuals to be sampled using a
uniform distribution implemented using the function ‘sample’ in base R. We applied the
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same approach to the non-infected individuals, sampling enough individuals to make up
the final sample size. Finally, we performed control sampling on all individuals with
identical capture values applied.

For recapture events, we did not differentiate between previously captured individuals
and those that were not previously captured. We repeated the capture simulation steps
until we reached our designated number of sampling events, in this case five. We then
applied the CJS model to calculate capture probability for infected and uninfected
individuals in these samples. We tracked genotype frequencies in the parents and
offspring, and infection rates by genotypes in the pooled population. We assumed that the
investigator is able to assign offspring to parents with no error, for example using
parentage assignment analysis with neutral DNA markers (Wang, 2017, 2019).
We describe potential real-world challenges with this assumption in our discussion.

We examined the effects of both random and biased sampling on three quantities of
interest that are used in the disease ecology literature. First, we looked at the impact of
infection on reproductive success, measured by the number of offspring detected from
infected compared to uninfected parents. Second, we looked at the relative risk of infection
in hosts with different genotypes. Relative risk is measured by dividing the proportion of
infected individuals in the high-risk genotype by the proportion of infected individuals in
the low-risk genotype. Relative risk values indicate the relative likelihood that the
individuals in the focal class are infected compared to those outside that group. Finally, we
calculated whether changes in allele frequency between parent and offspring generations
due to differential reproductive success driven by infection could be detected with our
sampling scheme. For each of our three metrics, we obtained values for the full simulated
population (full), an unbiased subsample of the population (control sample), a subsample
in which infected individuals were more likely to be captured (increased capture rate), and
a subsample in which infected individuals were less likely to be captured (decreased
capture rate).

We performed 200 complete runs of the model, including reproduction, infection, and
sampling, for each of our outcomes of interest. Therefore, our three outcomes of interest
are calculated from different sets of model runs. In each run, we performed control
sampling in which all individuals were equally likely to be captured, as a comparison to the
biased sampling outcomes. Our output files paired the biased and unbiased sampling
results, so that the results can be directly compared. We randomly drew 200 values from
two different uniform distributions for a parameter that described the proportional
difference in capture rates between infected and uninfected hosts. One distribution was
between 0.1 and 0.9 (reduced capture rate), and one between 1.1 and 1.9 (increased capture
rate), while our control runs had no difference in capture rate between infected and
uninfected hosts. We recorded the results of these simulations and uploaded the results,
along with the code, on Zenodo (DOI:10.5281/zenodo.8067181). The values of the
statistical tests in the results section are derived from these 200 recorded runs. For the sake
of visual clarity, the figures are based on the first 50 runs in the outputs.
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Statistical tests
For each of our three outcomes of interest, we applied the same set of statistical tests to the
values derived from the full population compared to the control samples, the increased
capture rate samples, and the decreased capture rate samples. For the genotype relative risk
and allele frequency change simulations, we performed separate analyses on the
heterozygote and resistance allele runs. We used a slope test implemented in the R package
‘smatr’ to identify whether the regression of the increased rate, reduced rate, or control
samples measured against the true values had a slope significantly different than one to one
(Warton et al., 2012). The slope test returns an estimated slope of a regression with
confidence intervals and a statistical test of the probability that the slope is equal to a given
test slope. To test for greater variance in the increased and decreased capture rate samples
relative to the values from the full population and control samples, we used a Fligner test
implemented in the R package ‘stats’ (R Core Team, 2021).

Finally, we used two approaches to determine whether the Cormack-Joly-Seber
mark-recapture model correctly identified runs with greater sampling bias imposed by the
differences in capture rates. First, we used the CJS algorithm to calculate the capture
probabilities for the infected and uninfected individuals in each run. We found the
difference between the calculated capture probability values for the infected and uninfected
groups. We then performed a t-test in base R between the control and increased rate
differences and the control and decreased rate differences. This test showed whether the
CJS capture rate values correctly identified altered capture availability between groups in
our simulation runs.

Second, we found the residuals of a linear regression between the values for the
parameter of interest from each of our three captured samples on our full-population
values. We regressed the residuals against the absolute difference in the CJS model capture
probability values for infected vs uninfected hosts. We report raw p-values, but we perform
this type of comparison ten times in this paper, so a true significant p-value should be
considered 0.005 with Bonferroni correction. A positive correlation between the difference
in capture rate and the residuals for the parameters of interest would indicate that capture
bias could impact the parameter. For our simulations focused on the reproductive success
differences between infected and uninfected parents, we found that our sampling impacted
the magnitude but not the proportion of the difference in reproductive success between
parents in different infection categories. We found we could account for this sampling
error by dividing the number of offspring sampled from all parents by the mean number of
offspring from uninfected parents.

RESULTS
Fitness impacts of infection
For each of the 200 runs of our simulation, we calculated the difference in mean number of
offspring for infected and uninfected parents. We used slope tests to detect whether
differences in capture rates between infected and uninfected hosts influenced the accuracy
of the estimation of fitness reductions in infected parents. We first regressed raw values of

Holmes et al. (2024), PeerJ, DOI 10.7717/peerj.16910 7/22

http://dx.doi.org/10.7717/peerj.16910
https://peerj.com/


the difference in offspring number from the control sample (equal capture rates between
infected and uninfected individuals) relative to the values from the full population.
We found that the sampled values dramatically underestimated the magnitude of the
difference between reproductive success of the infected and uninfected parents (Fig. 2A,
slope = 0.15 (0.139, 0.158), p = 0, F = 10,195.91, r = −0.99). When we divided the difference
in offspring numbers in the control samples by the mean number of sampled offspring for
uninfected parents (Fig. 2B), the value of the slope of the regression of the control samples
against the full population values was much closer to one (slope = 1.16 (1.085, 1.230),
p = 9.24 × 10−6, F = 20.73, r = 0.31). That is, proportional measures were not impacted by
sampling but the calculated values of raw numbers of offspring were. The underestimation
was likely due to the asymmetrical sampling space available. Parents with no offspring will
always have their success ‘correctly’ detected by sampling, while the success of parents that
do reproduce will be underestimated when some offspring are not captured.

We repeated the slope tests for the increased and decreased capture rate simulations.
We found that slopes from corrected increased (slope = 0.998 (0.910, 1.094), F = 0.003,
r = −0.004), and decreased (slope = 0.992 (0.909, 1.083), F = 0.032, r = −0.013) capture rate
samples were not significantly different from one (increased p = 0.960; decreased
p = 0.859). Since there is a stochastic component to infection for both parents and
offspring, even susceptible parents with susceptible offspring are likely to have offspring in
both infection categories. As a result, there are likely an adequate number of offspring in all
infection categories to correctly detect relative reproductive success values even with biased
sampling.
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Figure 2 Sampling effects on the detectability of the impact of infection on reproductive success.
Point colors represent different host reactions to parasite infection: 1) control samples in which infec-
ted and uninfected individuals have equal capture probabilities, 2) reduced capture rate samples in which
parasitized individuals have a lower capture probability, and 3) increased capture rate samples in which
parasitized individuals have a higher capture probability. Uncorrected sampling underestimates the
impact of infection due to the uneven bounding of the parameter space (A). Correcting the measured
values by dividing the differences in reproductive success by the mean number of offspring for uninfected
parents reduces the sampling effects (B). Full-size DOI: 10.7717/peerj.16910/fig-2
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To test whether sampling resulted in a larger variance of outcome values relative to the
corrected true population values, we performed Fligner tests comparing the corrected
reduced rate, increased rate, and control samples to the true population values. Only the
test of the control sample compared to the real population was significant (p = 0.050, med
chi2 = 3.843, df = 1), while the increased and decreased rate samples did not have
significantly higher variance than the real population (increased p = 0.103l, med
chi2 = 2.653, df = 1; decreased p = 0.094, med chi2 = 2.804, df = 1). This is likely due to the
altered sampling rates clustering outcomes together, thereby counteracting the variability
caused by random sampling effects. Some of 50- and 100-sample size runs for both the
slope test and the Fligner test were significant, likely due to greater impact of random
sampling errors in smaller samples (Table S1). No Fligner test was significant for the 1,000
sample simulation.

We tested whether we could successfully differentiate the capture rates for infected and
uninfected individuals in simulation runs in which capture availability differed for the two
groups. This test ensured that lack of correlation between CJS capture values and our
metrics of interest were due to characteristics of the metric, not a lack of differentiation
between groups in the CJS values. T-tests successfully separated the differences in the
capture rates of infected and uninfected individuals between the control and both varied
capture rate runs (reduced rate: p < 2.2 × 10−16, t = 21.57, df = 265.53; increased rate:
p < 2.2 × 10−16, t = −16.48, df = 373.57). We also determined whether we could detect a
relationship between the difference in capture rates in a run as calculated by the CJS
algorithm and the degree of error or bias in the reproductive success value in our sampled
populations compared to the full population. We first found the residuals of a linear
regression of reproductive success difference values from the captured samples on those
from the full populations. These measured the degree to which the outcomes of a
simulation run differed from the expected outcomes at a specific parameter value. Then,
we found the absolute differences in the CJS capture probability values for the infected vs
uninfected groups in each simulation run. We found the slope and R2 goodness of fit
between the residuals and the capture probability differences. None of the three parameter
values showed a significantly positive slope (increased p = 0.8189, F = 0.0525, df = 198;
decreased p = 0.051, F = 3.858, df = 198; control p = 0.283, F = 1.158, df = 198), and all had
small R2 values (increased R2 = −0.005; decreased R2 = −0.014; control R2 = −0.0007),
indicating that CJS capture probability values cannot detect the sampling issues that cause
spurious results when detecting reproductive success differences in real populations.

Relative infection risks of host genotypes
We calculated the relative risk of infection for individuals with the high-risk genotype
compared to the resistant genotype for each of our capture rate scenarios. Regressing the
relative risk measures from the control sample heterozygote runs against the full
population resulted in a slope close to one (slope = 1.04 (1.013, 1.058), p = 0.002, F = 9.909,
r = 0.216). The increased capture rate samples had a slope of 0.835 (0.815, 0.855),
significantly lower than the control samples (p = 0, F = 225.094, f = −0.729). The reduced
capture rate samples had a slope of 1.56 (1.493, 1.629), significantly higher than the control
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slope (p = 0, F = 428.372, r = 0.827) (Fig. 3A). The resistance allele runs had a similar
pattern, with the slope of the control sample regression being 1.05 (1.035, 1.070) (p = 6.43
× 10−9, F = 36.836, r = 0.396) (Fig. 3B). The increased rate sampling significantly
underestimated the size of the relative risk between different genotypes (slope = 0.755
(0.729, 0.782), p = 0, F = 258.889, r = −0.753), while the reduced rate samples significantly
overestimated it (slope = 2.04 (1.936, 2.143), p = 0, F = 902.936, r = 0.906).

In the reduced capture rate simulations, infected individuals with the resistant genotype
will be the rarest sampled category. The relative risk calculation divides the proportion of
infected individuals with the high-risk genotype by the proportion in the low-risk
genotype. Failing to accurately measure the number of infected individuals in the low-risk
genotype will inflate the denominator of the relative risk calculation, driving up the final
value. The rarest sampled category is the most vulnerable to random sampling error,
particularly to under-sampling. This produces the triangle-shaped distribution visible in
Fig. 3, in which some points in each increased and reduced rate samples fall near the
control samples, but others deviate in the direction driven by under sampling the rare
category. Similar logic applies to the simulations in which infected individuals are more
likely to be captured.

According to the Fligner test, the variability in outcomes from the increased and
decreased capture rate simulations in the heterozygosity runs was significantly greater than
the variability of the full dataset (increased rate p = 0.037, med chi2 = 4.348, df = 1;
decreased rate p = 0.006, med chi2 = 7.615, df = 1). The variance in the control samples
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Figure 3 Differing capture rates impact estimates of relative infection risks of susceptible and
resistant genotypes, in both the heterozygote advantage and resistance allele scenarios. Point col-
ors represent different host reactions to parasite infection: 1) control samples in which infected and
uninfected individuals have equal capture probabilities, 2) reduced rate samples in which parasitized
individuals have a lower capture probability, and 3) increased rate samples in which parasitized indi-
viduals have a higher capture probability. In both heterozygote advantage (A) and resistance allele (B)
scenarios, biased capture rates lead to some runs that dramatically under- or over-estimate true values.
Relative risk is calculated by comparing numbers of individuals in four possible genotype-by-infection
categories. The rarest infection by sampling category will be most vulnerable to sampling error, which
could drive the spread we see in outcomes of the metric. Full-size DOI: 10.7717/peerj.16910/fig-3
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were not significantly different from variance in the full dataset (p = 0.850, med chi2 = 0.36,
df = 1). For the resistance allele runs, the pattern was similar, with differing rate samples
being significantly different from the full dataset (increased p = 0.015, med chi2 = 5.861,
df = 1; decreased p = 0.005, med chi2 = 7.911, df = 1), while the control sampling was not
(p = 0.889, med chi2 = 0.020, df = 1).

T-tests again separated the differences between the capture rates of infected and
uninfected individuals between control and varied capture rate in both simulations
(increased het: p < 2.2 × 10−16, t = −16.41, df = 381.24; decreased het: p < 2.2 × 10−16,
t = 19.863, df = 263.18, increased allele: p < 2.2 × 10−16, t = −19.11, df = 382.83, decreased
allele: p < 2.2 × 10−16, F = 19.612, df = 254.71). Our linear models of residuals compared to
capture probability values were significant for some parameter values (Fig. 4B; compare to
the non-significant relationship between residuals and capture probabilities for the fitness
impacts of infection in 4A). For the heterozygote simulations, the increased and decreased
rate relationships were significant (increased: p = 0.004, F = 9.538, df = 198, R2 = 0.037;
decreased: p = 2.6 × 10−5, F = 18.570, df = 198, R2 = 0.081), while the control runs were not
(p = 0.084, F = 3.025, df = 198, R2 = 0.010). The resistance allele simulations followed a
similar pattern, although the increased rate samples did not show a significant correlation
(increased: p = 0.109, F = 2.597, df = 198, R2 = 0.008; decreased: p = 5.09 x 10−16, F = 78.22,
df = 198, R2 = 0.280; control: p = 0.311, F = 1.034, df = 198, R2 = 0.0002). We take the CJS
calculated estimates of capture probability for infected and uninfected groups and find that
simulation runs with large differences in the CJS values for the two groups (runs with
higher capture bias) also have higher deviations from expected value of our relative risk
measure. Since we see this correlation, we hypothesize that high measured bias in a CJS

reproductive success

measured vs. real residuals

ca
pt

ur
e 

pr
ob

ab
ili

ty
 d

iff
er

en
ce

-0.3 -0.1 0.1 0.3

-0.04

-0.02

0

0.02

0.04

0.06
control
low rate
high rate

A) relative risk

measured vs. real residuals

ca
pt

ur
e 

pr
ob

ab
ili

ty
 d

i ff
er

en
ce

-0.4 -0.2 0 0.2 0.4

-0.04

-0.02

0

0.02

0.04

0.06

B)

Figure 4 Mark-recapture approaches identify capture biases. We measured the ability of capture bias
from CJS statistics to predict errors in our metrics of interest. First, we found the residuals of a regression
of our metrics of interest (difference reproductive success for (A), and relative risk of infection for (B)
calculated from the sampled individuals against the metric calculated from the full population. Higher
residuals indicate higher bias. We then compared these residual values to metrics of capture bias from the
CJS statistics. For measuring reproductive success differences, the residual values of the outcome of
interest are not correlated with the success in detection of bias (A), while they are for detection of dif-
ferences in genotype relative risk of infection (B). Full-size DOI: 10.7717/peerj.16910/fig-4
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study could flag instances in which calculated relative risk values should be treated with
caution.

However, the relationships are relatively weak, though significant (Fig. 5B). In addition,
the smaller sample size simulations (50 and 100 individuals sampled) did not show this
significant correlation, indicating that higher sample sizes are necessary for this
comparison to be useful.

Allele frequency change detection
We found the difference in allele frequencies between our parental and offspring
generations in each simulation. In the heterozygote-advantage simulations (Fig. 5A), allele
frequency change calculated from the control samples showed a positive correlation with
the true values (slope = 3.86 (3.402, 4.397), R2 = 0.891, p = 0, F = 765.911). The increased
rate and decreased rate simulations behaved similarly (increased: p = 0, slope = 3.785
(3.313, 4.324), F = 674.354; R2 = 0.879; decreased: p = 0, slope = 4.024 (3.530, 4.589),
F = 800.801, R2 = 0.895). In all simulations, sampling on average exaggerated allele
frequency changes. In the resistance allele simulations (Fig. 5B), the slope was close to one,
indicated that the sampled population directly reflected the direction and magnitude of
allele frequency change in the true population (control = 1.291 (1.179, 1.414); increased
rate = 1.309 (1.189, 1.441); decreased rate = 1.245 (1.130, 1.373)). Correlation coefficients
were smaller compared to the heterozygote-advantage simulation (control R2 = 0.373;
increased R2 = 0.415, decreased R2 = 0.368), and p-values were all significant (control
p = 6.672 × 10−8, F = 31.499; increased p = 8.179 × 10−8, F = 31.040; decreased p = 1.355 ×
10−5, F = 19.918). Differing capture rate samples had significantly more variance in allele

heterozygote advantage

true change in frequency

m
ea

su
re

d 
ch

an
ge

 in
 fr

eq
ue

nc
y

-0.02 -0.01 0 0.01 0.02

-0.06

-0.03

0

0.03

0.06
control
low rate
high rate

one to one

A) resistance allele

true change in frequency

m
ea

su
re

d 
ch

an
ge

 in
 fr

eq
ue

nc
y

-0.04 -0.02 0 0.02 0.04

-0.04

-0.02

0

0.02

0.04

B)

Figure 5 Sampling effects on measured changes in allele frequency between generations. Point colors
represent different host reactions to parasite infection: 1) control samples in which infected and unin-
fected individuals have equal capture probabilities, 2) reduced rate samples in which parasitized indi-
viduals have a lower capture probability, and 3) increased rate samples in which parasitized individuals
have a higher capture probability. In the heterozygote-advantage case (A), no linear relationship exists
between measured and true allele frequency changes, and measured changes can be double true changes.
In the resistance allele simulation (B), a relationship does exist, but the sampled population can still
overestimate the true allele frequency change. Full-size DOI: 10.7717/peerj.16910/fig-5
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frequency change than the full population in both heterozygote-advantage (increased
p = 2.2 × 10−16, med chi2 = 110.55, df = 1; reduced p = 2.2 × 10−16, med chi2 = 139.4, df = 1)
and risk-allele (increased p = 0.003, med chi2 = 8.859, df = 1; reduced p = 0.02, med
chi2 = 5.653, df = 1) simulations. Control samples in both simulations also had significantly
higher variance than the full population (p = 2.2 × 10−16 for both, het med chi2 =139.4,
df = 1, allele med chi2 = 135.09, df = 1). With sample sizes of 1,000, the variance detected
by the Fligner test was no longer significant (Table S1) for the resistance allele simulations
but remained significant for the heterozygosity simulations.

As with all other comparisons, t-tests separated the differences between the capture
rates of infected and uninfected individuals in all simulations (increased het: p < 2.2 ×
10−16, t = −17.126, df = 385.1; decreased het: p < 2.2 × 10−16, t = 20.567, df = 253.97,
increased allele: p < 2.2 × 10−16, t = −16.908, df = 378.71, decreased allele: p < 2.2 × 10−16,
F = 19.257, df = 247.64). For the heterozygote runs, none of the regressions of CJS capture
rates against residuals reached the threshold of significance (increased: p = 0.833, F = 0.044,
df = 198, R2 = −0.005; decreased: p = 0.547, F = 0.364, df = 198, R2 = −0.003; control:
p = 0.228, F = 1.463, df = 198, R2 = 0.002). The resistance allele simulations performed
similarly (increased: p = 0.546, F = 0.365, df = 198, R2 = −0.003; decreased: p = 0.423,
F = 0.646, df = 198, R2 = −0.002; control: p = 0.832, F = 0.045, df = 198, R2 = −0.004).

DISCUSSION
Infection-induced capture bias and sampling effects impacted the reliability of our three
ecoimmunological metrics of interest in distinct ways. Differing capture rates between
infected and uninfected individuals can inflate estimates of the relative infection risk
associated with susceptible genotypes (Fig. 3), while sampling error can result in
underestimating the impact of infection on reproductive success (Fig. 2). Sampling error
can also inflate measured changes in allele frequencies between generations, leading to
overestimation of the impact of selection due to parasite infection (Fig. 5). Sampling error
is more severe with smaller sample sizes (Table S1). Mark-recapture statistics successfully
identify simulation runs in which infected and uninfected individuals have different
capture rates, and so can indicate problems for downstream analyses. For the relative risk
of infection of different host genotypes, the difference in calculated CJS capture rates
between the infected and uninfected hosts were positively correlated with outlier values in
the metric in sampled relative to full populations (Fig. 5), indicating that they can be useful
in identifying biased outcomes. The values were not correlated in the other two metrics.
However, this level of discrimination is only possible at relatively high sample sizes,
limiting its applicability with many taxa (Table S1).

Our simulated sampling underestimated the magnitude of the impact of parasitism on
reproductive success (Fig. 2). We believe that this underestimate comes from the uneven
bounding of the sampling distribution for this outcome (Kimura, 1957; de Franciscis,
Caravagna & d’Onofrio, 2014; Cai & Geritz, 2020). An individual with no offspring will
have their reproductive success “correctly detected” in every sample because no offspring
are available for sampling. However, highly successful parents are most likely to have their
reproductive success estimated to be far lower than their true value because they have more
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offspring in the population that can be missed. When an infection exerts selective pressure,
uninfected parents should be the most reproductively fit. As a result, uninfected parents
are the most likely to have their total success underestimated, which in turn dilutes
estimates of selective pressure. Because the underestimates do not result from a difference
in detection probability between infected and uninfected individuals, the difference in
calculated capture rate values from the mark-recapture statistics are not helpful in
identifying specific sampling events in which the issue is particularly acute. However, they
can indicate instances in which caution should be applied to the interpretation of results.
We find that adjusting for sampling effects by dividing the difference in reproductive
success by the mean number of offspring captured from uninfected parents can nearly
account for this source of error (Fig. 2B). Future work may be able to generalize this
approach or develop different normalization approaches. Specifically, the bounded nature
of the sampling error leads to nonlinear behavior by the outcome metrics. Here, we have
both analyzed and corrected using a linear approach. Nonlinear methods may better
capture this error distribution.

Our measures of the relative risk of infection associated with susceptible genotypes were
inflated when infected individuals were less likely to be captured and biased down when
infected hosts were more available for capture (Fig. 3). We believe this outcome resulted
from a combination of the altered sampling rates and sampling error. When the values of
rare classes, such as infected individuals with resistant genotypes, drive a metric of interest,
the metric is highly susceptible to random sampling effects within the rare outcome class.
Because this metric was directly impacted by capture availability, differences in capture
values frommark-recapture statistics were able to identify more-impacted simulation runs.

Sampling error more than differences in capture rates impacted our ability to correctly
detect the magnitude of allele frequency changes, particularly in our heterozygote-
advantage simulation (Fig. 5). In our heterozygote-advantage simulations, true allele
frequency changes in the population are less than half of the magnitude of the measured
changes. In the resistance allele simulations, there is a relationship between measured and
real allele frequency changes, and the amplitude of the allele frequency change can be more
successfully detected from the samples.

Error in estimating parameters relevant to pathogen-driven selection on host
populations could propagate into the estimation of a range of population-scale
evolutionary scenarios. As with any organism, the pathogen population’s potential for
adaptation is related to its size, which will in turn be impacted by the outcomes of host/
pathogen coevolution. For example, the expected length of pathogen persistence in a host
population is influenced by our focal parameters (Rand, 1995; Fleming-Davies et al., 2015).
Overestimating the relative risk of infection to susceptible hosts might lead to the
assumption that the host population will evolve toward resistance over short time frames
(Lattorff et al., 2015; Vitale & Best, 2019; White et al., 2021). Pathogen population size
might then be assumed to be lower than what it is in reality (Kao, 2006; Kerr et al., 2006),
causing underestimation of the pathogen’s adaptive potential (Antolin, 2008; Gordo et al.,
2009; Ailloud et al., 2019). Such incorrect inferences could impact short and long-term
conservation planning for disease management (Frick et al., 2017). Epidemiological
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conclusions, particularly for poorly understood emerging disease, can also be impacted by
incorrect inferences about local selection dynamics (Keeling & Gilligan, 2000; Ball et al.,
2015; Britton & Scalia Tomba, 2019).

In addition to evolutionary potential, within-population behavior is key to
understanding a pathogen’s metapopulation dynamics. Several parameters of
metapopulation models, such as propagule pressure and the expected longevity of a host or
pathogen population, are impacted by our outcomes of interest. Like other organisms,
pathogens can experience local extinction events. Pathogen persistence at a landscape scale
is therefore dependent on their ability to migrate between subpopulations of their hosts
(Soubeyrand et al., 2009). Even if the pathogen will eventually go locally extinct, a longer
than expected persistence will provide more opportunities to colonize naive host
subpopulations and persist at the landscape scale (Laine, 2004). Metapopulation models
are used to predict the spread and impact of emerging infectious diseases (Keeling &
Gilligan, 2000; Ball et al., 2015; Britton & Scalia Tomba, 2019), predict the evolutionary
trajectory of virulence (Thrall & Burdon, 2003), and determine the likelihood that some
host subpopulations will remain uninfected (Dijk, Ehrlén & Tack, 2022).

Field studies have several sources of uncertainty that are not modeled here. First, false
negative tests for pathogen presence can occur. Using mark-recapture techniques, the
probability of non-detection of infection can be modeled jointly with imperfect detection
of hosts (Jennelle et al., 2007; Conn & Cooch, 2009; Cooch et al., 2012; Tersago et al., 2012).
Second, errors in inference of parent-offspring relationships can impact estimates of
fitness. As with pathogen detection, uncertainty in genealogical reconstruction using DNA
markers can be accounted for in empirical systems (Zhu, Fung & Guo, 2007; Lacy, 2012;
Wang, 2017, 2019). Finally, spatial or other environmental heterogeneity could impact
recapture rates. For example, if infection correlates with occupancy a specific habitat type
that alters capture availability, biased sampling could occur even if infection doesn’t
directly alter host behavior (Johnson et al., 2009; Hernández-Olascoaga, González-Solís &
Aznar, 2022). In our simulation, every individual is equally likely to be infected. Real
pathogens tend to move through populations through contact between individuals or
through vectors (VanderWaal & Ezenwa, 2016; Mousa et al., 2021). These complexities
could also result in non-random spatial patterns of infection, potentially introducing
further bias in downstream analyses. Further, some of the effects that we note depend on
sample size. As sample sizes get larger, approaching 500 or 1,000 individuals, samples
better approximate the variability and slope of the full populations. Conversely, our ability
to use mark-recapture statistics to detect events that are strongly impacted by sampling
bias is only reliable at larger sample sizes. These sample sizes may be impractical for some
study taxa. While our simulations represent a best-case scenario for information about
individual hosts, they describe patterns of capture biases that can occur or even be inflated
in work on natural populations.

CONCLUSIONS
Identifying the possibility of parameter estimation errors due to differences in capture rate
and sampling error is a key concern in expanding landscape-scale host-pathogen evolution
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studies to a broad range of species. Mark-recapture techniques provide a key detection
probability metric that quantifies the likelihoods of encountering individuals with different
biological traits. Many mark-recapture studies are intended to detect survival probability
of animals over relatively long time scales. These studies are time and resource intensive,
because they require a large enough sample size of individuals to ensure that some can be
recaptured throughout the study. However, we demonstrate that a single, week-long, bout
of robust-design sampling has considerable value in identifying detection bias between
infected and uninfected individuals. Implementing this approach in the field could
increase the accuracy of disease ecological sampling across many taxa.
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