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ABSTRACT
Here we detail the use of an R package, ‘EcoCountHelper’, and an associated
analytical pipeline aimed at making generalized linear mixed-effects model
(GLMM)-based analysis of ecological count data more accessible. We recommend a
GLMM-based analysis workflow that allows the user to (1) employ selection of
distributional forms (Poisson vs negative binomial) and zero-inflation (ZIP and
ZINB, respectively) using AIC and variance-mean plots, (2) examine models for
goodness-of-fit using simulated residual diagnostics, (3) interpret model results via
easy to understand outputs of changes in predicted responses, and (4) compare the
magnitude of predictor variable effects via effects plots. Our package uses a series of
easy-to-use functions that can accept both wide- and long-form multi-taxa count
data without the need for programming experience. To demonstrate the utility of this
approach, we use our package to model acoustic bat activity data relative to multiple
landscape characteristics in a protected area (Grand Teton National Park), which is
threatened by encroaching disease—white nose syndrome. Global threats to bat
conservation such as disease and deforestation have prompted extensive research to
better understand bat ecology. Notwithstanding these efforts, managers operating on
lands crucial to the persistence of bat populations are often equipped with too little
information regarding local bat activity to make informed land-management
decisions. In our case study in the Tetons, we found that an increased prevalence of
porous buildings increases activity levels of Eptesicus fuscus and Myotis volans;
Myotis lucifugus activity decreases as distance to water increases; and Myotis volans
activity increases with the amount of forested area. By using GLMMs in tandem with
‘EcoCountHelper’, managers without advanced programmatic or statistical expertise
can assess the effects of landscape characteristics on wildlife in a statistically-robust
framework.
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INTRODUCTION
Wildlife managers are often tasked with understanding ecological relationships that may
shed light on the potential effects of proposed management actions. While these
relationships may vary in complexity and scale, a common means of assessing interactions
between wildlife and characteristics of the environments they occupy is to count some
metric of wildlife abundance or activity, then quantitatively relate those counts to
environmental characteristics of interest. Examples of this ecological relationship
assessment technique include examination of bat activity at varying distances from a road
(Berthinussen & Altringham, 2012), assessment of bird abundance with respect to river
noise levels and other habitat characteristics (Gomes et al., 2021), and examining the effect
of seasonality and weather on sika deer activity (Ikeda et al., 2015). Perhaps one of the most
widely available, flexible and powerful analyses managers can use to gauge the potential
effects of management decisions on wildlife are generalized linear mixed models
(GLMMs).

While the process required for a statistically-sound GLMM-based analysis is well
documented (Bolker, 2008; Kéry & Royle, 2015; Harrison et al., 2018; McElreath, 2020),
implementing that process for a specific dataset can be tedious and difficult without
guidance. Additionally, the lack of standardization in how analyses are performed can lead
to variability in statistical inference (Silberzahn et al., 2018). The potential for GLMMs to
be inaccessible to managers is unfortunate, as GLMM analyses can be relatively simple in
execution, flexible, and allow structured (hierarchical) data to be accounted for in statistics.
GLMMs are also robust to imbalanced data, are more flexible in their assumptions than
many other analytical methods and can accommodate both categorical and numeric data.
These models can be particularly useful for analyses involving count data with repeated
measures at multiple locations (e.g., acoustic monitoring bat activity, aggregated telemetry
detections, avian point counts, camera trapping) (Bolker et al., 2009). To reduce the coding
skills necessary for GLMM-based analyses and guide users through the GLMM workflow,
we developed the R package ‘EcoCountHelper’. Here, we have two aims: (1) detail the
function and use of the R package, ‘EcoCountHelper’, that we developed to aid in the
analysis of our multispecies count data, and (2) describe a simple GLMM analysis of
multi-species bat activity data using ‘EcoCountHelper’.

Our case study involves archetypal count data, bat acoustic monitoring data, collected in
Grand Teton National Park. A crown jewel of the US protected area network, Grand Teton
National Park lies at the southern end of the Greater Yellowstone Ecosystem—an area
dominated by high elevation coniferous forests and sage steppe plains. In March of 2016,
the Washington Department of Fish and Wildlife found bats afflicted by white-nose
syndrome in King County, WA (Haman, Hibbard & Lubeck, 2016). The arrival of the
deadly Pseudogymnoascus destructans fungus in a Western state, 10 years after it was first
introduced to North America in New York (White-nose Syndrome Response Team, 2020),
increased the imminence of the threat posed by white-nose syndrome to western bat
populations and set a precedent to better understand habitat characteristics that may be
managed to help bolster bat populations in the face of a looming epidemic.
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Prior to our project, multiple bat surveys were conducted in Grand Teton (Genter &
Metzgar, 1985; Keinath, 2005), however they were primarily descriptive in nature and did
not aim to quantify the importance of landscape features to the bats they were surveying.
In our attempts to quantify the importance of different habitat characteristics to bats in
Grand Teton, we predicted that bat space use would be driven by several factors including
elevation (Cryan, Bogan & Altenbach, 2000), distance to water (Evelyn, Stiles & Young,
2004), land cover type (Evelyn, Stiles & Young, 2004; Russo & Ancillotto, 2015), proportion
of porous buildings that could serve as day roosts (Voigt et al., 2016), lunar phase (Saldaña-
Vázquez & Munguía-Rosas, 2013), ordinal date (Weller & Baldwin, 2012), and the
presence of non-natural light sources (Stone, Harris & Jones, 2015). To advance future
work on bat population biology and make modelling bat activity more accessible, we
describe an analytical pipeline using ‘EcoCountHelper’ to facilitate the identification of the
most appropriate error distribution, assessment of zero-inflation, goodness-of-fit testing,
and model interpretation processes associated with analyses incorporating generalized
linear mixed models (GLMMs).

MATERIALS AND METHODS
GLMM workflow
We have adapted a workflow for constructing and interpreting GLMMs based on the
‘glmmTMB’ package (Bolker et al., 2012; Bolker, 2016; Brooks et al., 2017b). An outline of
this adapted workflow involves the following steps for each taxonomic group of interest:

1. We first decide on predictor variables and random effects structures for a response of
interest.

2. We then compare the fits of Poisson and negative binomial error distributions (as well as
the potential for zero-inflation) by corroborating AIC values, mean-variance plots, and
examining simulated residual test plots—the latter of which also help identify outliers
and uniformity.

3. We then interpret model results through both standardized coefficient visualizations
and predicted changes to response variables, given a user-specified increase in a single
predictor variable.

To aid researchers, and particularly land and wildlife managers, in implementing
GLMM-based analyses for count data, we developed the ‘EcoCountHelper’ R package to
simplify this workflow.

Package workflow
The ‘EcoCountHelper’ package (downloadable via Cole, Gomes & Barber, 2021a, 2021b) is
meant to assist researchers for the portions of a GLMM-based analysis after the point at
which candidate models have been generated. It is important that individuals using
‘EcoCountHelper’ take care to carefully consider candidate model structures, and to
appropriately implement GLMM components such as zero-inflation formula (Martin
et al., 2005) and random effects (Harrison et al., 2018;Gomes, 2022). Despite the popularity
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of selecting predictor variables for both conditional model zero-inflation formulas via
dredging with information criteria (e.g., AIC), there are many pitfalls with using these
methods (Guthery et al., 2005; Link & Barker, 2006; Bolker, 2008). While there are multiple
excellent resources for learning about GLMMs (Bolker, 2008), Harrison et al. (2018) is an
excellent touchstone for these analyses. Once one has already generated appropriate
candidate models with ‘glmmTMB’ (Bolker et al., 2012; Bolker, 2016; Brooks et al., 2017a)
and prepared all data (see Supplemental “EcoCountHelperExample” vignette), the
workflow we suggest for GLMM analyses using the ‘EcoCountHelper’ functions (Table 1)
can be executed.

The first step in our pipeline is to select the best-fitting model for each response group
under investigation, taxonomic (e.g., species, genus) or otherwise (e.g., indistinguishable
grouped taxa, foraging guilds, operational taxonomic units). Two non-exclusive
techniques for deciding whether to use zero-inflated models and selecting the best error
distribution family for a particular count dataset are: (1) examine AIC values to assess
zero-inflation and select an error distribution, and (2) examine the mean-variance
relationship within the data and determine an error distribution family that best mirrors
the mean-variance relationship. The ‘EcoCountHelper’ package has a function,
“ModelCompare”, for simultaneously obtaining AIC values for each group’s candidate
models and creating a vector of the models with the lowest AIC scores for each group.
The “DistFit” family of functions aids in visual examinations of mean-variance
relationships for each group in the analysis. These “DistFit” functions allow users to specify
vectors by which data should be aggregated for examining the mean-variance relationship
of the data. The “DistFit” functions then generate a scatterplot displaying the
mean-variance relationship for the data and draw lines through the scatterplot showing
three common error distributions used for count data: Poisson, negative binomial with a
linear mean-variance relationship (a.k.a. quasi-Poisson), and negative binomial with a
quadratic mean-variance relationship (variance increases by the squared mean) (Bolker
et al., 2012). The functions used during the model construction process that correspond
with each of these error distributions are “poisson” from the ‘stats’ package, “nbinom1”
from ‘glmmTMB’, and “nbinom2” from ‘glmmTMB’, respectively. For the sake of
simplicity, we will use these function names to describe the associated distributions from
this point on. After generating mean-variance plots using the “DistFit” family of functions,

Table 1 EcoCountHelper function purposes.

Analytical framework component Associated function(s)

Choose an error distribution family
Are data zero-inflated?

ModelCompare, DistFitLong, & DistFitWide

Goodness-of-fit diagnostic plots/tests ResidPlotLong & ResidPlotWide

Examining relative effect sizes EffectsPlotter

Interpreting scaled estimates RealEffectText, RealEffectTabLong, & RealEffectTabWide

Note:
Each step in the analytical framework we outline in this document can be facilitated by one or more
EcoCountHelper functions.
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the user can then choose the model with the most appropriate error distribution for each
group by visually examining the plots and choosing the model employing the error
distribution that best fits. By using both of these methods (AIC and mean-variance
relationships) we generally arrive at the same conclusion about which distribution best fits
the data. There is, however, some subjectivity in distribution choice when both Poisson
and negative binomial models appear to fit similarly. In our experience with this situation,
the differences in parameter estimates are usually negligible, and thus distributional choice
will likely be inconsequential. In this case, one may prefer the simpler Poisson distribution
because there are fewer parameters to estimate (Poisson is a special case of negative
binomial model in which the variance equals the mean, so there is only one term to
estimate instead of two). It is also worth noting that using AIC values to determine whether
zero-inflation formulas result in better model fit does not test for zero-inflation of data.
Rather, the use of AIC values to compare candidate models either employing or omitting
zero-inflation formulas provides information about whether variables specified in zero-
inflation formulas explain any zero-inflation that does exist within given data.
Zero-inflation formulas may be implemented to examine the effects of one or multiple
predictors on zero-inflation of data, but care must be taken to ensure that predictors
specified in zero-inflated formulas could reasonably contribute to zero-inflation of data.

Following the model selection process, it’s important to test the goodness-of-fit of the
chosen models. Because a model fits a dataset better than all others does not mean it is
adequate for making inferences or predictions. Plotting residuals (or simulated residuals) is
a quick and often useful step in model criticism, but it is important to note that there are
many other ways to assess goodness-of-fit. EcoCountHelper’s “ResidPlot” family of
functions provide a simple way to simulate residuals for models that employ a
non-Gaussian error distribution and generate plots to visually check residual uniformity,
outliers, and over-/under-dispersion (important indicators of goodness of fit). These
functions borrow functions from the ‘DHARMa’ R package (Hartig, 2022). It is important
to note that if precise predictions are required from a model in order to make management
decisions, the “gold-standard” for assessing the predictive capacity of a model is leave-one-
out (a variant of k-fold) cross validation (Hawkins, Basak & Mills, 2003; Vehtari, Gelman
& Gabry, 2017). Holding out part of a dataset to assess predictive capacity may be a
computationally less intense alternative (Kim, 2009). These methods involve additional
computational steps and are outside the scope of this article.

Assuming selected models, for all species or groups of interest, fit the data adequately,
the next step is interpretation of model results by visualizing model coefficients and
confidence intervals. The “EffectsPlotter” function generates coefficient plots with up to
three user-specified confidence intervals surrounding each coefficient value. While many
managers and practitioners are most often familiar with p-values (and an alpha of 0.05),
any confidence interval chosen is arbitrary and we suggest thinking deeply about the
consequences of type I and type II errors in your system and adjust confidence intervals
accordingly. See the “Model Interpretation” section of the methods for additional
discussion surrounding confidence interval selection. More importantly the effect size, on
the scale of the original response variable, should be taken into consideration when making
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management decisions (Sullivan & Feinn, 2012). Because the coefficients of fitted GLMMs
(except for those using an identity link, as typically used in linear (Gaussian) models) are a
product of a link transformation (via the link specified during the model fitting process;
with Poisson and negative binomial this is typically a log link), the coefficients cannot be
used to predict the effect without back-transformation. Additionally, continuous data used
during model fitting is often standardized for computational gains, increased model
convergence, and comparison purposes (Gelman, 2008) which further complicates the
process of making predictions with meaningful units. To simplify this process, we created
the “RealEffects” family of functions in ‘EcoCountHelper’ which allows users to rapidly
assess the response to given changes in predictors using untransformed “real world” values
and outputs to a readable text. A flowchart integrating both conceptual and programmatic
steps in the workflow proposed here can be found in Fig. 1.

‘EcoCountHelper’ also has multiple accessory functions that do not directly pertain to
the model fitting, model selection, and result interpretation process outlined above.
One noteworthy accessory function is “scale2”. This function is identical to the base R scale
function in that it standardizes a vector, but rather than subtracting the mean from each
value and dividing by the standard deviation, “scale2” subtracts the mean and then divides

Figure 1 Conceptual and applied workflow of EcoCountHelper. An illustration of the workflow
associated with GLMM analyses using EcoCountHelper. Blue boxes represent conceptual steps, and
orange boxes represent the application of functions to accomplish related conceptual steps.

Full-size DOI: 10.7717/peerj.14509/fig-1

Cole et al. (2022), PeerJ, DOI 10.7717/peerj.14509 6/20

http://dx.doi.org/10.7717/peerj.14509/fig-1
http://dx.doi.org/10.7717/peerj.14509
https://peerj.com/


each value by two standard deviations (Eq. (1)) as suggested by Gelman (2008). During the
model fitting process, using the “scale2” function puts continuous values on the same scale
as binary categorical variables allowing a direct comparison of standardized continuous
coefficients and categorical coefficients.

x � �x
2r

(1)

Package limitations
The ‘EcoCountHelper’ package was designed to make GLMMs more accessible to
researchers and managers who otherwise may not have sufficient programmatic skills to
carry out analyses in a timely, reproducible, and statistically responsible manner. Because
many of our package’s functions are designed to return specific results (e.g., plots, test
statistics) while minimizing unguided data preparation, users must adhere to relatively
strict object naming schemes to ensure that pattern recognizers within the functions can
identify relevant objects in the global environment. This forces users to conform to a model
naming scheme that provides information about the taxonomic group the model belongs
to, and also creates intermediate objects that have little or no flexibility in naming
conventions. While it makes some aspects of the package inflexible, this strict naming
convention allows users unfamiliar with regular expressions to forgo the exercise of
identifying objects in the global environment and adding them to a vector for further use
either manually or through regular expressions. Because functions that generate plots
require virtually no user input for plot construction, it can be difficult to make edits to
resulting plots. Again, while this may be inconvenient for programmatically savvy
individuals, this inflexibility in data visualization allows for programmatically
inexperienced individuals to carry out GLMM based analyses in a simple and
straightforward manner.

Case study methods
Throughout the summers (June to September) of 2016 and 2017, we monitored bat activity
throughout Grand Teton National Park, Wyoming, USA (referred to as Grand Teton from
here on) using passive acoustic monitors. Grand Teton is composed of a relatively flat, high
elevation (average ~2,073 m (National Park Service, 2019)) valley bounded by the Teton
mountain range to the west, and the Gros Ventre mountain range to the east. The majority
of our work occurred within the valley of the park.

To assess the impact of buildings and artificial light on the bats of Grand Teton, we used
Wildlife Acoustics SM2BAT and SM3BAT units to record bat echolocation at 36 sites
throughout the park with varying levels of anthropogenic infrastructure. To obtain high
quality recordings, we set sampling rates for all ultrasonic recorders to 384 kHz allowing us
to capture frequencies up to 192 kHz. We programmed all recorders to allow ultrasonic
recordings from thirty minutes before sunset to sunrise, and to begin recording when
triggered by a 16 kHz or greater signal that was 18 dB or more above background sound
levels. This triggered recording scheme generates WAV files with individual bat call
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sequences, allowing for rapid and automated processing using call identification software
(e.g., SonoBat, Kaleidoscope).

We chose monitoring sites to capture variation in multiple landscape characteristics
including elevation, distance to water, land cover, and human infrastructure that may
influence habitat suitability for bats (e.g., porous buildings that could serve as day roosts
(Voigt et al., 2016)), the presence of non-natural light sources (Stone, Harris & Jones, 2015).
In total, we monitored bat activity at 36 sites throughout the park (see Fig. 2), deploying
units at 26 sites in 2016, and 27 sites in 2017 (17 of which were sites established in 2016).
We deployed each acoustic monitor for five to six nights at each site during 2016 and 13 to
14 nights in 2017 due to an increased availability of units. Our sampling effort totaled 840
site-nights for both years of data collection, with 276 site-nights in 2016 and 564 site-nights
in 2017. For additional information regarding data collection and preparation, see the
Supplemental Information.

Analysis
We used generalized linear mixed models (GLMMs) to assess the effect of the predictors
mentioned above on activity for each species of bat that was detected during at least 50
site-nights (Eptesicus fuscus, Lasiurus cinereus, Lasionycteris noctivagans, Myotis evotis,

Figure 2 Map of the study area. Our research was conducted throughout the valley of Grand Teton
National Park. The data included in our analyses are from the 36 sites shown in this map, with the color
of each site indicating the year(s) that data were collected. Map data©2015 Google.

Full-size DOI: 10.7717/peerj.14509/fig-2
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Myotis lucifugus, Myotis volans andMyotis yumanensis). We ran all models in R using the
‘glmmTMB’ package (Brooks et al., 2017a) and standardized all continuous variables using
our “scale2” function using the formula.

For each bat species under investigation, we generated six models (three different
distribution families and a zero-inflated version of each; see below). All models shared a
common conditional model structure that included year, lunar phase, ordinal date,
elevation, roost-building density index, proportion of cool lights within 50 m, summed
brightness score of lights within 50 m, distance to the nearest water source, proportion of
developed land cover within 50 m, and proportion of forested area within 50 m as fixed
effects, and monitoring site as a random intercept term. Additionally, all models used a log
link function. For each species, two models were generated for each error distribution
implemented in the mean-variance plots produced by the “DistFit” family of functions
(“poisson”, “nbinom1”, and “nbinom2”): one with a zero-inflation formula, and one
without. We modelled zero-inflation with ordinal date and site as predictors.

For each species, we determined the most appropriate error distribution by
corroborating results from the synergistic “DistFit” family of functions and the
“ModelCompare” function (see Package Workflow above). We determined a priori that in
the case of conflicting results from the two processes above, we would rely on visual
mean-variance plots for assessing a best-fit model for the proceeding analytical steps.
We also used the AIC values generated by the “ModelCompare” function to determine
whether a model with a zero-inflated component was necessary. Note that only the
parameters specified in the zero-inflation formula are assessed for effects on zero-inflation,
and while zero-inflation may exist in one’s data, ZIP or ZINB candidate models may not
result in better model fit if predictors influencing zero-inflation are not specified in a
zero-inflation formula. The best-fitting model for each species was subsequently tested for
goodness-of-fit using EcoCountHelper’s “ResidPlot” functions. We also checked variance
inflation factors (VIF) in R using the function “check_collinearity” in the ‘performance’
package (Lüdecke et al., 2020).

Model interpretation
We first examined the scaled coefficient estimates by plotting each estimate with
confidence intervals on a common scale using EcoCountHelper’s “EffectPlotter” function.
These plots were used to inform our understanding of the relative importance of landscape
features to species-specific bat activity. While informative in terms of relative effect sizes
and confidence levels surrounding those effects, these plots do not provide meaningful
absolute effect sizes that can be interpreted in an ecological context. The purpose of
examining effects plots of scaled and transformed coefficient estimates is to develop an
understanding of the relative magnitude of effect each predictor of interest has on a bat
species’ activity throughout the study area.

Rather than creating and examining effects plots, one might want to simply examine the
p-values of coefficient estimates to determine which predictors warrant further
investigation. We suggest avoiding making any decisions regarding the importance of
landscape features for bat conservation using p-values alone. While there is nothing
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inherently wrong with this approach, relying on p-values alone is insufficient for
meaningful interpretations of results (Sullivan & Feinn, 2012; Lin, Lucas & Shmueli, 2013;
Halsey et al., 2015; Vidgen & Yasseri, 2016). By examining scaled coefficient estimates, one
can quickly assess both the relative magnitude of, and confidence in, effect sizes. It is
important for ‘EcoCountHelper’ users to determine confidence intervals and effect sizes
that are suitable for their purposes. Many researchers have traditionally used 95%
confidence intervals to determine whether the effect of a predictor is meaningful, but any
confidence interval can be used to arbitrate the validity of an effect so long as the researcher
has considered the consequences of type I errors due to a low confidence threshold.
In interpreting the results of our case analysis, we examined both 85% and 95% confidence
intervals. While not as conservative as 95% confidence intervals, 85% confidence intervals
still provide information regarding trends in data that, given more sampling or follow-up
research, could be confirmed at a higher confidence level (Cumming & Finch, 2005).
Similarly, one may observe a large effect size but have insufficient data to obtain 95%
confidence intervals that do not overlap zero. By tempering the interpretation of results by
acknowledging the confidence surrounding those estimates, managers can act on the
information available if necessary while also recognizing the need for additional research
on the topic of interest. Considering the low risk posed by a type I error (i.e., persistence of
historic and porous structures throughout the park) and the potential benefit of increasing
our understanding of bat ecology in Grand Teton with relatively high certainty, we decided
interpreting trends present at approximately the 85% confidence level was acceptable.
Ultimately we suggest that researchers and managers implementing our suggested
workflow do not treat it as a means of hypothesis testing, but rather as a path toward
understanding a system surrounded by a level of uncertainty. Both the estimates provided
by models as well as the associated uncertainty should be examined within the context of
the research objectives to inform one’s conclusion about a predictor’s influence on an
ecological process.

After identifying landscape features that influence activity levels, we examined the
real-world effects of our predictors by calculating the factor by which bat activity changes
relative to a percentage change in each predictor and associated confidence intervals. In the
case of models implementing a (natural) log-link, this entails back-transforming the
coefficient estimate by first unscaling and then exponentiating Euler’s number (e) by that
quotient/value. Then the resulting term is exponentiated by the difference of interest in the
values of the predictor. For example, if one is interested in the relative change across 50 m
of elevation change, this difference (dx) would be 50 (since the rest of the term has already
been back-transformed to the original units and represents 1 unit change; in this example
1 m). Because we scaled continuous variables using two standard deviations, we used
Eq. (2) to calculate the factor by which the response variable changes given a change in a
predictor.
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In Eq. (2), β represents the model coefficient of interest, σ represents the standard
deviation of the unstandardized predictor, e represents Euler’s number, and dx is the
difference of interest in predictor x. To facilitate these calculations, the ‘EcoCountHelper’
package contains a “RealEffect” group of functions that back-transform estimates and
return unscaled response for specified changes in predictors.

RESULTS
For the seven species of bats for which we constructed models (see Table 2), all exhibited
model convergence for at least one candidate model. Corroboration of mean-variance
plots and AIC values for all candidate models indicated that data were not zero-inflated

Table 2 Species-level model results.

Species Value Brightness
index

Prop. cool
lights

Prop.
developed

Structure
index

Elevation Moon
illum.

Ordinal
day

Prop.
forest

Water
distance

Year
(16–17)

Epfu Estimate −0.299 0.848 −1.055 −0.767 1.795 0.194 −0.159 0.765 0.401 −0.571

SE 0.257 1.203 0.744 1.015 0.529 0.545 0.132 0.17 0.504 0.504

p 2.43E−01 4.81E−01 1.56E−01 4.50E−01 6.98E−04 7.21E−01 2.27E−01 6.45E−06 4.26E−01 2.57E−01

Laci Estimate 0.696 0.536 −0.698 −0.284 0.654 0.527 0.056 2.65 −0.438 −0.427

SE 0.217 0.936 0.612 0.772 0.448 0.445 0.109 0.161 0.414 0.404

p 1.32E−03 5.67E−01 2.55E−01 7.13E−01 1.45E−01 2.37E−01 6.06E−01 5.89E−61 2.90E−01 2.90E−01

Lano Estimate 1.08 0.256 −0.6 0.17 0.896 −0.35 −0.221 1.239 0.052 −0.353

SE 0.273 1.227 0.824 0.991 0.589 0.599 0.108 0.14 0.551 0.54

p 7.57E−05 8.35E−01 4.67E−01 8.64E−01 1.28E−01 5.59E−01 4.09E−02 6.63E−19 9.25E−01 5.13E−01

Myev Estimate 0.449 0.693 0.252 −0.893 −0.666 −0.451 −0.036 1.015 0.216 −0.626

SE 0.2 0.902 0.601 0.74 0.451 0.44 0.088 0.115 0.396 0.398

p 2.46E−02 4.42E−01 6.76E−01 2.28E−01 1.40E−01 3.05E−01 6.81E−01 1.10E−18 5.85E−01 1.15E−01

Mylu Estimate 2.367 0.824 0.793 0.467 −0.019 −0.563 0.325 0.893 1.04 −1.09

SE 0.266 1.192 0.812 0.956 0.583 0.597 0.088 0.127 0.541 0.538

p 4.89E−19 4.89E−01 3.28E−01 6.25E−01 9.74E−01 3.45E−01 2.34E−04 2.30E−12 5.47E−02 4.27E−02

Myvo Estimate −0.508 0.098 −0.328 0.103 1.468 −0.205 −0.075 0.007 1.464 −0.567

SE 0.225 1.027 0.647 0.864 0.464 0.485 0.109 0.134 0.438 0.44

p 2.38E−02 9.24E−01 6.12E−01 9.05E−01 1.57E−03 6.73E−01 4.92E−01 9.57E−01 8.32E−04 1.98E−01

Myyu Estimate −3.014 −0.368 0.801 0.309 0.095 −0.431 0.218 0.645 0.015 −1.114

SE 0.377 1.352 0.809 1.21 0.696 0.71 0.284 0.322 0.635 0.736

p 1.27E−15 7.85E−01 3.22E−01 7.98E−01 8.91E−01 5.44E−01 4.42E−01 4.51E−02 9.81E−01 1.30E−01

Note:
For each species-level model (seven models total), we have listed the model estimate, standard error (SE) and p-value for all predictors included in the
fixed-effects model structure. Species are identified in the first column using their respective four-letter code (Epfu = E. fuscus, Laci = L. cinereus,
Lano = L. noctivagans, Myev = M. evotis, Mylu = M. lucifugus, Myvo = M. volans, and Myyu = M. yumanensis). All models were constructed using the
glmmTMB package in R, and interpreted using functions from EcoCountHelper. Models for all species utilized a negative-binomial quadratic error-
distribution. Values in the column labelled “Intercept (Site)” correspond with the random-intercept term that incorporates a site-dependence of
observations in the models.
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and the “nbinom2” error distribution family best fit the data for all species modelled. There
were no conflicting results regarding mean-variance plots and AIC values. All models
exhibited adequate goodness-of-fit as determined by examining diagnostic plots, and no
model parameters exhibited excessive VIF values (James et al., 2013, pp. 101–102), though
the parameter capturing a site’s summed light brightness scores showed moderate
collinearity (VIFs between 5.04 and 5.76) in models for E. fuscus, M. volans, and
M. yumanensis.

Model results are shown in Table 2. Results presented in this format can be difficult to
interpret. The “EffectsPlotter” function in the ‘EcoCountHelper’ package allows users to
quickly visualize model results as shown in Fig. 3. As mentioned in the Methods section, it
is difficult to interpret meaningful effects from scaled predictor coefficients. We used

Figure 3 EffectsPlotter function output. Following the model construction and selection process, we
used EcoCountHelper’s “EffectsPlotter” function to visualize scaled parameter estimates with 85% and
95% confidence intervals. Each plot represents a species-level model, with the associated species indicated
by the four-letter code above each plot (see Table 2 for species code definitions).

Full-size DOI: 10.7717/peerj.14509/fig-3
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multiple approaches to assess more ecologically-meaningful model results. Utilizing the
‘EcoCountHelper’ “RealEffect” functions, we examined the change in model-predicted
change in nightly recorded bat call sequences (as a percent) by specified changes in
predictors. This can be done using the “RealEffectText” function which prints a sentence
describing the predicted change in nightly bat call sequences for a given change in a single
predictor. Using the “RealEffectText” function to interpret the effect of a 10-day increase in
ordinal day on M. lucifugus activity results in the sentence: the response variable

increases 22.81% (+/-5.91%) for every 10 day increase in the predictor.
In this output, the parenthetical value indicates the 95% confidence interval, but the
“RealEffectText” function allows users to specify any confidence level for errors
surrounding the predicted change in the response variable. Because our analysis included a
total of seven parameters of interest for each of the seven species-level models, we chose to
use the “RealEffectTab” functions instead of the “RealEffectText” function.
The “RealEffectTab” functions accept vectors of models, predictors, and specified changes
in each predictor, then generate a table similar to Table 3.

We also produced plots that fall outside of the scope of our package due to the necessary
specificity of their construction relative to model structure for visually-appealing plots (see

Table 3 Model-predicted responses to changes in predictors of interest.

Predictor
classification

Predictor Unit
increase

Epfu Laci Lano Myev Mylu Myvo Myyu

Anthropogenic Structure
index

0.05 +82.29%
(40.79%/
123.79%)

+24.46%
(−9.73%/
58.64%)

+34.97%
(−12.21%/
82.15%)

−19.97%
(−54.43%/
14.48%)

−0.63%
(−47.22%/
45.95%)

+63.43%
(27.83%/
99.03%)

+3.24%
(−54.63%/
61.12%)

Proportion
cool lights

0.2 −28.30%
(−86.68%/
30.08%)

−19.74%
(−65.73%/
26.24%)

−17.24%
(−83.68%/
49.20%)

+8.25%
(−36.73%/
53.23%)

+28.41%
(−36.70%/
93.53%)

−9.83%
(−59.02%/
39.36%)

+28.74%
(−36.16%/
93.64%)

Brightness
index

5 +50.02%
(−158.81%/
258.85%)

+29.22%
(−111.16%/
169.60%)

+13.04%
(−202.89%/
228.98%)

+39.28%
(−93.62%/
172.18%)

+48.34%
(−157.43%/
254.11%)

+4.82%
(−156.97%/
166.61%)

−16.15%
(−271.2%/
238.89%)

Proportion
developed

0.2 −29.44%
(−176.37%/
117.49%)

−12.11%
(−111.07%/
86.84%)

+8.04%
(−133.60%/
149.67%)

−33.34%
(−126.69%/
60.01%)

+23.65%
(−110.64%/
157.95%)

+4.78%
(−111.13%/
120.70%)

+15.09%
(−178.78%/
208.96%)

Natural Elevation
(m)

50 +39.45%
(−482.12%/
561.02%)

+146.15%
(−198.61%/
490.90%)

−45.01%
(−690.08%/
600.07%)

−53.73%
(−390.18%/
282.72%)

−61.84%
(−701.87%/
578.19%)

−29.53%
(−437.02%/
377.95%)

−52.19%
(−1033.85%/
929.48%)

Water
distance
(m)

250 −12.54%
(−38.62%/
13.53%)

−9.54%
(−29.96%/
10.88%)

−7.95%
(−36.15%/
20.25%)

−13.66%
(−33.73%/
6.41%)

−22.56%
(−50.62%/
5.50%)

−12.45%
(−34.91%/
10.00%)

−22.99%
(−63.25%/
17.27%)

Proportion
forested

0.2 +19.08%
(−34.58%/
72.74%)

−17.35%
(−59.64%/
24.94%)

+2.29%
(−57.63%/
62.21%)

+9.88%
(−30.35%/
50.10%)

+57.22%
(−1.45%/
115.89%)

+89.11%
(43.80%/
134.41%)

+0.65%
(−71.18%/
72.49%)

Note:
Using EcoCountHelper’s RealEffectTab functions, we predicted responses of each modelled species to a specified increase in unscaled (i.e., in the original
units) predictors (specified in the “Unit Increase” column), then formatted the table in R. The seven right-most columns each contain the change in
species-level activity (represented as a percentage value) as well as the 95% confidence interval range listed parenthetically as “x/y”, where x is the lower
boundary of the confidence interval, and y is the upper boundary of the confidence interval. Species are identified by their respective four-letter code (see
Table 2 for species code definitions).
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associated GitHub repository for the code used to produce these plots). These plots are
essentially visualizations of the sentences produced by the “RealEffectText” function, but
across the continuum of observed values of each predictor and with predicted nightly call
sequences as an absolute metric of bat activity rather than percent change (Fig. 4).
Additionally, all other predictors are held constant at their median values in Fig. 4. Both
the table generated with the “RealEffectTab” functions and the plots in Fig. 4 were used to
gauge the ecological significance of the relationship between predictors and bat activity.

Figure 4 Continuous model predictions for each parameter by individual species. Plot titles indicate the four-letter code of the bat species with
which each plot is associated (see Table 2 for species code definitions). The most appropriate model for each species was identified and validated
using functions from EcoCountHelper. All parameters of each model were held at their median observed value except the parameter to be plotted,
which was equally distributed throughout its range of observed values. Dark and light shaded areas indicate 85% and 95% confidence intervals,
respectively. Full-size DOI: 10.7717/peerj.14509/fig-4
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DISCUSSION
While the scientific community’s understanding of bat ecology has grown substantially in
recent years (Weller, Cryan & O’Shea, 2009), our knowledge is often over-generalized
both spatially and demographically which may not provide adequate information for
managers to effectively assess the potential consequences of a management decision. The
‘EcoCountHelper’ package presented here is structured with the intent of making model
interpretation and visualization more accessible for wildlife managers and ecologists
working with ecological count data. We hope that it helps remove a barrier to
understanding the effects of locally-relevant landscape features on bats and other wildlife.
Using the ‘EcoCountHelper’ package and an associated analytical workflow, we examined
the effects of multiple landscape characteristics on bat activity throughout Grand Teton
National Park.

In our case study example, we examined the impact of several landscape features on bats
in Grand Teton National Park, and found that the presence of porous buildings suitable for
roosting had a positive effect on both E. fuscus and M. volans activity. While bat activity
and abundance should not be treated as synonymous metrics, a large body of literature
exists documenting a multitude of bat species occupying buildings in high numbers
(Geluso, Benedict & Kock, 2004; Voigt et al., 2016; Johnson et al., 2019) which is consistent
with these findings. Increased bat activity near buildings may be a result of increased bat
roosting and foraging near buildings due to decreased predation risk, energetically efficient
shelter, or conspecific attraction (Voigt et al., 2016). We also found that an increase in the
distance to water had a negative effect on M. lucifugus activity which is consistent with
other findings regarding myotid distribution and roost locations (Evelyn, Stiles & Young,
2004; Womack, Amelon & Thompson, 2013). The propensity of M. lucifugus to roost near
water may be due to increased insect densities above water (Barclay, 1991) and the use of
waterways as travel corridors. Additionally, we found that the proportion of forest in an
area had a significant positive impact on M. volans which is consistent with the frequent
use of largely forested areas by this species (Baker & Lacki, 2006; Johnson, Lacki & Baker,
2007; Lacki, Johnson & Baker, 2013). While research from Europe suggests that both the
presence of artificial light as well as the color of that light may influence bat space use
(Stone, Jones & Harris, 2012; Spoelstra et al., 2017), our results here do not suggest the same
trends. It is possible that these North American bats are not substantially affected by
artificial lights, yet we caution that we had a low number of artificially lit sites (n = 6).

The analytical framework and use of the ‘EcoCountHelper’ R package outlined in this
article is meant to serve as a guide for land and wildlife managers to conduct similar
research with locally-relevant parameters in mind. There are many analytical solutions for
researchers to assess the effect that habitat features and environmental variables have on
bats and other wildlife such as spatial autoregressive models (Li & Wilkins, 2014; Ver Hoef
et al., 2018), ANOVA (Kalcounis et al., 1999), and models that can account for detectability
at the species (i.e., occupancy modelling) (Mendes et al., 2017), site/population (i.e., N-
mixture), or individual levels (i.e., mark-recapture) (Kéry & Royle, 2015). We think,
however, that the GLMM-based workflow outlined in this article paired with the
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‘EcoCountHelper’ package and vignette provides a balance of accessibility, statistical
robustness, and research flexibility for analyzing ecological count data. Similarly, while the
methods, results and discussion associated with our case study are relatively simple and
could be more specifically tailored to provide information about bat habitat selection, the
information we presented here can easily be reproduced and modified to suit the needs of
other managers while maintaining a relatively simple and robust analysis.

While it was initially written with bat conservation in mind, this package and
framework can also be used in tandem for any type of count data (e.g., avian point counts,
insect samples, camera trap data, invasive species removal data). We hope that this package
provides a clear, succinct, and adaptable analytical framework for managers and ecologists
to analyze count data, and facilitates the use of statistically-robust and reproducible
methods to inform management actions.
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