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ABSTRACT
Understanding the factors underpinning species abundance patterns in space and
time is essential to implement effective cave conservation actions. Yet, the methods
employed to monitor cave biodiversity still lack standardization, and no quantitative
assessment has yet tried to optimize the amount and type of information required
to efficiently identify disturbances in cave ecosystems. Using a comprehensive
monitoring dataset for tropical iron caves, comprising abundance measurements for
33 target taxa surveyed across 95 caves along four years, here we provide the first
evidence-based recommendations to optimize monitoring programs seeking to
follow target species abundance through time. We found that seasonality did not
influence the ability to detect temporal abundance trends. However, in most species,
abundance estimates assessed during the dry season resulted in a more accurate
detection of temporal abundance trends, and at least three surveys were required to
identify global temporal abundance trends. Finally, we identified a subset of species
that could potentially serve as short-term disturbance indicators. Results suggest
that iron cave monitoring programs implemented in our study region could focus
sampling efforts in the dry season, where detectability of target species is higher,
while assuring data collection for at least three years. More generally, our study
reveals the importance of long-term cave monitoring programs for detecting possible
disturbances in subterranean ecosystems, and for using the generated information to
optimize future monitoring efforts.

Subjects Biodiversity, Conservation Biology, Ecology, Zoology, Population Biology
Keywords Iron caves, Landscape ecology, Mining, Speleology, Subterranean communities,
Troglobites

INTRODUCTION
Quantifying long-term changes in abundance of cave-dwelling organisms and identifying
indicator species, reflecting the health status of subterranean ecosystems, are among the
fundamental research goals of modern subterranean conservation biology (Mammola
et al., 2020). For instance, the lack of knowledge about the factors underpinning abundance
patterns in space and time are among the main impediments to the effective protection of
cave fauna (Cardoso et al., 2011). Long-term studies in caves are scarce (Di Russo et al.,
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1997; Salvidio et al., 2019), and most previous efforts assessing community-level responses
have evaluated population dynamics (Bichuette & Trajano, 2003; Ferreira et al., 2005;
Lunghi, 2018), ecological niches (Mammola & Isaia, 2016; Mammola, Piano & Isaia,
2016), or temporal and spatial variation (Tobin, Hutchins & Schwartz, 2013; Ferreira et al.,
2015; Owen et al., 2016; Paixão, Ferreira & Paixão, 2017;Mammola & Isaia, 2018; Ferreira
& Pellegrini, 2019; Pellegrini, Faria & Ferreira, 2020). Few studies have evaluated the
influence of anthropogenic disturbance on cave biodiversity (Bernardi, Souza-Silva &
Ferreira, 2010; Pellegrini & Lopes Ferreira, 2012; Faille, Bourdeau & Deharveng, 2015;
Cajaiba, Cabral & Santos, 2016; Pellegrini et al., 2016; Jaffé et al., 2018).

Due to the unique characteristics of subterranean environments, an important fraction
of cave fauna exhibits adaptations for life in these extreme environments (Pipan & Culver,
2013). Some of these species are obligate subterranean dwellers and often comprise
narrow-range endemic and threatened species (Harvey, 2002), so stringent legislation
has been put in place in some countries to protect them (Harvey et al., 2011; Culver &
Pipan, 2014). In Brazil, companies executing projects that could potentially impact cave
ecosystems are required by law to assess the extent of impacts and implement control,
monitoring and/or compensation measures (CONAMA, 1986; Brasil, 2008;MMA/ICMBio,
2019). After environmental licenses are granted, some caves are included in long-term
monitoring programs, ultimately seeking to detect possible disturbances on subterranean
fauna. These studies generate comprehensive biological databases containing valuable
information for numerous caves sampled over long periods of time (Jaffé et al., 2016, 2018;
Trevelin et al., 2019). However, although many recommendations have been made to
monitor cave biodiversity (Eberhard, 2001; National Park Service, 2015; Culver & Sket,
2016), methods still lack standardization, and no quantitative assessment has yet tried to
optimize the amount and type of information required to efficiently identify disturbances
in cave ecosystems. This is nevertheless essential to design systematic, repeatable, and
intensive surveys of cave-dwelling organisms, allowing the formulation of evidence-based
management decisions (Wynne et al., 2018, 2019).

In Brazil, most cave monitoring programs have focused on assessing temporal
changes in relative abundance in a set of selected species (ATIVO AMBIENTAL, 2019;
BRANDT, 2019). However, the temporal frequency of field surveys, the impact of seasonal
fluctuations in population size, and the sample sizes needed to detect temporal changes in
population abundance, are yet to be systematically assessed. Moreover, the selection of
species surveyed in these monitoring programs is not based on their usefulness as
disturbance bio-indicators. Here we aim to fill these gaps, taking advantage of a
comprehensive cave monitoring dataset containing abundance measurements for target
taxa surveyed across iron caves along four years.

MATERIAL & METHODS
Study area
The study was performed in the Serra dos Carajás region, southeast of the state of Pará, in
the Brazilian Amazon. This region is within the limits of the Floresta Nacional de Carajás,
a protected area of 400,000 ha allowing sustainable use. The caves analyzed in this
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study are located in two highlands known as Serra Norte and Serra Sul (Fig. 1). These two
regions harbor banded ironstone formations known as cangas, unique campo rupestre
ecosystems resembling mountain savannas (Zappi et al., 2019), and one of the world’s
largest deposits of iron ore (Poveromo, 1999).

Database
We used data generated by independent environmental consulting companies, so our
study did not involve any field work. Vale S. A., a mining company, began operations in
the region more than two decades ago (Souza-Filho et al., 2019), and has conducted
numerous caves surveys over the last years as part of a large monitoring program related to
environmental licensing processes. All surveys where authorized by Instituto Brasileiro
do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), under licenses ABIO
455/2014 (Projeto Ferra Carajás S11D n� 02001.000711/2009-46) and ABIO 639/2015
(Projeto Ferro Serra Norte–Estudo Global das Ampliações das minas N4 e N5 n�

02001.002197/2002-15). We compiled the data generated in these surveys to collect
information from 33 target taxa across 95 caves, surveyed between August 2015 and
September 2019. The selection of species included in these monitoring programs
was based on the following criteria, as stated in environmental assessment reports

Figure 1 Location of the study region (upper left corner) and a detail of the study area showing the
spatial distribution of the caves included in our analyses (N = 95), colored by the number of surveys
performed in each. While the hillshade layer was constructed using a digital elevation model (SRTM, 1
arc-second) from USGS Earth Explorer, the land use classification shapefile was obtained from Souza-
Filho et al. (2019). Coordinates are shown in decimal degrees.

Full-size DOI: 10.7717/peerj.11271/fig-1
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(ATIVO AMBIENTAL, 2019; BRANDT, 2019): large body size and easy to identify in the
field, abundant and showing a wide distribution range, resolved taxonomic classification
(at least to the morpho-species level), and short life cycles allowing the rapid detection of
changes in population dynamics (see Table 1 for the full list of target taxa and their
ecological classification). All the selected species were actively surveyed during each field
trip, so absences represent true absences rather than missing data. In each cave, the
absolute abundance of each target taxa was quantified at least once during the rainy and
the dry season, and sometimes multiple times in one year. Sampling was performed

Table 1 List of surveyed taxa and their ecological classification.

Class Order Family Species Ecological Classification

Malacostraca Isopoda Scleropactidae Circoniscus carajasensis Campos-Filho & Araujo, 2011 Troglobiont

Amphibia Anura Craugastoridae Pristimantis cf. fenestratus (Steindachner, 1864) Trogloxene

Leptodactylidae Leptodactylus pentadactylus (Laurenti, 1768) Accidental

Arachnida Amblypygi Phrynidae Heterophrynus longicornis Butler, 1873 Troglophile

Charinidae Charinus ferreus Giupponi & Miranda, 2016 Troglobiont

Araneae Araneidae Alpaida sp.1 Troglophile

Pholcidae Mesabolivar spp. Troglophile

Prodidomidae Prodidomidae sp. Troglobiont

Salticidade Astieae sp.1 Troglophile

Scytodidae Scytodes eleonorae Rheims & Brescovit, 2001 Troglophile

Theraphosidae Theraphosidae Troglophile

Theridiosomatidade Plato spp. Troglophile

Opiliones Cosmetidae Roquettea singularis Mello-Leitão, 1931 Troglophile

Roquettea sp. Troglophile

Escadabiidae Escadabiidae sp.1 Troglobiont

Escadabiidae sp.2 Troglobiont

Gagrellinae Prionostemma sp. Troglophile

Stygnidae Protimesius sp. Troglophile

Stygnidae sp.1 Troglophile

Chilopoda Scutigeromorpha Pselliodidae Sphendononema guildingii (Newport, 1845) Troglophile

Diplopoda Glomeridesmida Glomeridesmidae Glomeridesmus cf. spelaeus Iniesta, Ferreira & Wesener, 2012 Troglobiont

Polydesmida Chelodesmidae Chelodesmidae sp. Troglophile

Pyrgodesmidae Pyrgodesmidae sp.1 Troglobiont

Spirostreptida – Spirostreptida sp. Troglophile

Pseudonannolenidae Pseudonannolene cf. spelaea Iniesta & Ferreira, 2013 Troglobiont

Insecta Coleoptera Dytiscidae Dytiscidae sp.1 Stygobiont

Hemiptera Cydnidae Cydninae sp.1 Troglophile

Reduviidae Emesinae sp. Troglophile

Lepidoptera Erebidae Latebraria sp. Trogloxene

Orthoptera Phalangopsidae Phalangopsis ferratilis Junta, Castro-Souza & Ferreira, 2020 Troglophile

Uvaroviella sp. Troglophile

Mammalia Rodentia Cricetidae Rhipidomys sp. Undefined

Reptilia Squamata Phyllodactylidae Thecadactylus rapicauda (Houttuyn, 1782) Undefined
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through an active visual search throughout the caves, aiming to cover all available
micro-habitats (spaces under rocks, small cracks, moist soil, etc.) and organic deposits
(litter, logs, carcasses, guano, etc.). Animals were collected with the aid of tweezers and
brushes, and all individuals found in each cave were counted to estimate abundance per
species, as performed in other studies (Silva, Martins & Ferreira, 2011; Ferreira et al., 2015;
De Bento et al., 2016; Pellegrini & Ferreira, 2016; Paixão, Ferreira & Paixão, 2017; Ferreira
& Pellegrini, 2019; Souza-Silva, Iniesta & Ferreira, 2020).

Environmental conditions and landscape metrics
External and internal environmental conditions were monitored during the entire period
across caves. Monitored variables included the deviation in average bimonthly rainfall in
relation to the expected from a 20-years series (in mm, retrieved from small weather
stations located in nearby mines S11D e N4E), and mean internal temperature (�C) on the
date of the surveys (retrieved from portable data loggers placed in the most distant location
from cave entrances). We also recorded the Area (meters2) of each studied cave as an
additional internal condition widely known to influence biodiversity patterns in these
ecosystems (Jaffé et al., 2016, 2018). Using 30 m resolution land-cover maps from 2015 to
2019 (Souza et al., 2020), we then quantified a suit of landscape metrics, including the
proportional amount of forest, canga and mining land covers surrounding caves, and
topographic distance to the nearest mine (see details in Table S1). These were all calculated
at two different spatial scales (circular buffers with 500 and 1,000 m radius), using the
R packages landscapemetrics (Hesselbarth et al., 2019) and TopoDistance (Wang, 2020).
Two of these metrics directly captured possible disturbance of subterranean environments
that could account for changes in the abundance of the studied species: mining cover and
distance to the nearest mine.

Assessing drivers of community composition across caves
Aiming to quantify how environment, cave and landscape variables influenced overall
community composition, we ran a partial redundancy analysis (RDA) controlling for
differences between both highlands (Serra Norte and Serra Sul), using the vegan package
(Oksanen et al., 2019). The community composition matrix containing relative
abundances for each taxa was used as response variable and predictor variables included
year, season, microclimate and landscape metrics (Legendre & Legendre, 1998).
The highland where caves were located was specified as a conditional variable on the model
to control for the effect of cave´s geographical location. Microclimate and landscape
variables were standardized, community composition was Hellinger-transformed, and
permutation tests were used to assess significance of marginal effects (Legendre &
Legendre, 1998).

Assessing the influence of seasonality on the detection of temporal
abundance trends
One of the main goals of cave monitoring programs was to assess changes in species
abundance over time, and thereby identify species with declining or increasing populations

Trevelin et al. (2021), PeerJ, DOI 10.7717/peerj.11271 5/19

http://dx.doi.org/10.7717/peerj.11271/supp-1
http://dx.doi.org/10.7717/peerj.11271
https://peerj.com/


in a particular cave. To understand how seasonality influenced the detection of abundance
trends over time, we ran linear models containing the total number of observed individuals
as the response variable and the interaction between sampling date and season.
If seasonality influences temporal abundance trends, we would expect to find significant
interaction terms. No significant interactions, on the other hand, would indicate that the
trends can be detected regardless of the season when the surveys where performed.
To prevent overfitting, linear models were ran for taxa and caves represented by at least
five surveys in each season (final sample size was 16 taxa and 50 caves). Given the large
number of models we used the Benjamini & Hochberg approach to adjust p-values,
employing the p.adjust function from the stats R package (R Development Core Team,
2020).

Assessing the influence of sampling effort on the detection of
temporal abundance trends
Given the extensive field exposure of people and elevated costs associated with cave
monitoring programs, it is important to quantify how the sampling effort influences the
detection of temporal abundance trends. To do so we compared linear model coefficients
of models fitted with the full dataset with those of models fitted with reduced datasets.
We first split the data by season and ran linear models containing the total number of
observed individuals as the response variable and sampling date as predictor. In these full
models we included observations for all sampling dates, and excluded taxa and caves
represented by less than three surveys per season. We then ran linear models on data
subsets containing a reduced number of observations (ranging between two and the
maximum number of sampling dates found in each cave and taxa). For each data subset
containing a given number of observations (surveys) we performed ten random samplings
without replacement, to ensure the sampling of different sampling dates. Finally, we
compared coefficients from full models with those of subset models using root mean
squared error (rmse), implemented through the rmse function from the Metrics R package
(Hamner & Frasco, 2018). Lower values of rmse indicate more similar model coefficients.

Identifying disturbance indicator species
Given the life history variation between species and their different susceptibility to habitat
disturbance, it is essential to identify indicator species that show a rapid response to
disturbance in order to optimize monitoring programs. By focusing on these indicator
species, monitoring programs could survey caves more efficiently, thereby making
resources available to study more caves or other aspects of cave biodiversity requiring
attention. Here we tried to identify disturbance indicator species by assessing the
relationship between disturbance metrics and species abundance patterns. We first
modeled patterns of relative abundance across all caves, using the function manyglm from
the R package mvabund (Wang et al., 2012). It uses a multivariate generalized linear model
(GLM) to make inferences by fitting separate GLMs to a common set of explanatory
variables, and testing significance through resampling-based hypothesis testing. We ran
negative binomial GLMs containing abundance as the response variable and sampling
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season nested in year, distance to mine and mining cover as predictor variables.
Significance p-values were calculated using 999 resampling iterations via PIT trap
resampling, adjusted for multiple testing using a step-down resampling procedure (Wang
et al., 2012). We then used univariate coefficient estimates and significance for individual
species, to identify specific responses to disturbance metrics (distance to mine and
mining cover).

We then assessed the relationship between disturbance metrics and temporal trends
in species abundance within each cave. To do so we ran linear models containing the
total number of observed individuals as the response variable and sampling date as
predictor, excluding taxa and caves represented by surveys spanning less than three years
(some caves where surveyed multiple times in a single year but these where only included
in this analysis if surveys spanned at least three different years). We used the
model coefficients for each species at each cave, representing temporal abundance trends
(positive coefficients showing an increase and negative coefficients a decrease in
abundance through time), to run a second set of linear models regressing temporal
abundance trends on disturbance metrics. These second set of models thus contained as
response variable the model coefficients representing temporal abundance trends for each
species at each cave, and distance to mine and mining cover (at different spatial and
temporal scales) as predictors. To prevent overfitting we excluded species represented by
less than ten coefficients (caves), and only constructed models containing a single
predictor. We then ran likelihood-ratio tests, where we compared each model with a null
model containing no predictors, and selected those predictor variables resulting in a
significant increase in the model’s log-likelihood. Finally, we retrieved and plotted
coefficients and p-values for these best-fitting models. All data and R scripts are available in
GitHub (https://github.com/rojaff/cave_monitoring).

RESULTS
Overall community composition was weakly influenced by seasonality, cave size,
environmental conditions, and the composition and configuration of landscapes

Table 2 Summary of partial redundancy analyses (RDA).

Variable Df Variance F Pr(>F)

Season nested in year 1 0.0018 4.408 0.001***

Canga cover 1 0.0005 1.164 0.285

Forest cover 1 0.0008 2.093 0.055*

Mining cover 1 0.0010 2.378 0.034*

Distance to mine 1 0.0027 6.766 0.001***

Area 1 0.0197 48.696 0.001***

Temperature 1 0.0054 13.408 0.001***

Dev Rainfall 1 0.0002 0.604 0.746

Residual 671 0.2710

Note:
The table shows F-statistics and p-values from permutation tests (adjusted r2 = 0.13). Significance is highlighted as
* (p < 0.05), ** (p < 0.01) and *** (p < 0.001).
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surrounding caves, as more than 87% of variance in community composition remained
unexplained by these factors (Table 2).

Seasonality did not influence the ability to detect species abundance trends over time,
since the interaction effect between sampling date and season was not significant in
any taxa nor cave (Fig. 2). Increasing the number of samples resulted in more similar
model coefficients between full and subset models, and root mean squared errors usually
stabilized after three surveys (Fig. 3). However, in most species the dry season datasets
allowed a more accurate detection of temporal abundance trends, as revealed by lower root
mean squared errors (Fig. 3).

Whereas relative abundance was associated to at least one disturbance metric in
22 species (Fig. 4), temporal trends in abundance were found associated with disturbance
metrics in only five species (Fig. 5). Overall, two taxa displayed consistent responses across
effects, which makes them potential indicator species for cave monitoring programs:
The troglobiont Charinus ferreus, which appeared negatively affected by disturbance, and a

Figure 2 Adjusted p-values for the interaction between sampling date and season across 16 taxa and
50 caves. The Benjamini & Hochberg approach was used to adjust p-values and the red horizontal line
shows the threshold value of 0.05 (values above this line represent cases where the interaction effect was
not significant). Full-size DOI: 10.7717/peerj.11271/fig-2
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species belonging the Theraphosidae family, which seem to be favored by disturbance
(Table 3).

DISCUSSION
By analyzing abundance measurements for 33 target taxa surveyed across 95 caves along
four years, we found that overall community composition was weakly influenced by
seasonality, cave size, environmental conditions, and the composition and configuration of
landscapes surrounding caves. Furthermore, our results show that seasonality did not
influence the ability to detect abundance trends over time. However, in most species,
abundance estimates assessed during the dry season resulted in a more accurate detection
of temporal abundance trends, and at least three surveys were required to identify
global temporal abundance trends. Finally, we identified a subset of species that could
potentially serve as short-term disturbance indicators, some showing consistent responses
in different analyses.

Figure 3 Root mean squared error (rmse) for model coefficients from full models and those of subset models containing reduced numbers of
samples. Lower values of rmse indicate more similar model coefficients (and a more reliable estimation of temporal abundance trends). For each data
subset containing a given number of observations (surveys) we performed ten random samplings without replacement, to ensure the sampling of
different sampling dates. Full-size DOI: 10.7717/peerj.11271/fig-3
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Subterranean communities have been shown to be affected by seasonality,
environmental conditions, cave characteristics, and the structure of surrounding
landscapes (Simões, Souza-Silva & Ferreira, 2015; Pellegrini et al., 2016; De Bento et al.,
2016; Mammola & Isaia, 2018; Salvidio et al., 2019; Pellegrini, Faria & Ferreira, 2020;
Rabelo, Souza-Silva & Ferreira, 2020). However, our results reveal that overall community
composition was only weakly influenced by these factors, as our model explained merely

Figure 4 Model coefficients and 95% confidence intervals for species showing significant associations
between overall abundance and two disturbance metrics.

Full-size DOI: 10.7717/peerj.11271/fig-4

Figure 5 Model coefficients and 95% confidence intervals for species showing significant associations
between temporal abundance trends and two disturbance metrics.

Full-size DOI: 10.7717/peerj.11271/fig-5

Trevelin et al. (2021), PeerJ, DOI 10.7717/peerj.11271 10/19

http://dx.doi.org/10.7717/peerj.11271/fig-4
http://dx.doi.org/10.7717/peerj.11271/fig-5
http://dx.doi.org/10.7717/peerj.11271
https://peerj.com/


13% of total variation in community composition (Table 2). In contrast, previous
work have found that cave morphology, microclimate, cave depth, and sampling date
explain up to 50% of the variation in community structure in limestone and marble caves
(Tobin, Hutchins & Schwartz, 2013; Lunghi, Manenti & Ficetola, 2014). Our results
thus suggest that other factors, not considered in our analyses, play an important role
structuring subterranean communities of iron caves. Inter-specific interactions, for
instance, are known to have a profound influences on community structure (Ferreira &
Martins, 1999;Mammola, Piano & Isaia, 2016). Alternatively, biological samples collected
in iron caves may not capture the dynamics of the entire subterranean habitat, comprised
by a network of fissures and voids and traditionally referred to as Milieu Souterrain
Superficiel (MSS) (Culver & Pipan, 2014; Mammola et al., 2016; Mammola, 2018).
For instance, most of the surveyed caves were larger than 5 × 5 m (Fig. S1), so they did not
represent suitable sampling sites for the MSS (Mammola et al., 2016).

Even though seasonality affected overall community composition, it did not influence
the ability to detect species abundance trends over time. External climatic conditions
are increasingly attenuated at higher cave depths (Tobin, Hutchins & Schwartz, 2013),

Table 3 Taxa displaying significant responses to disturbance metrics, considering overall abundance and temporal abundance trends.

Taxon Abundance Temporal abundance trend Sampling

Distance to mine Mining cover Distance to mine Mining cover

Charinus ferreus* - Negative Positive Negative Dry

Theraphosidae Negative Positive - Positive Dry

Uvaroviella sp. Negative – Positive Negative Both

Rhipidomys sp. – – Positive – Dry

Roquettea sp. – – – Positive Rain

Pyrgodesmidae sp.1* – Negative – – Rain

Spirostreptida sp.1 Positive – – – Rain

Prodidomidae sp.* Positive Negative Dry

Escadabiidae sp.1* Negative Negative – – Rain

Escadabiidae sp.2* Positive – – – Rain

Leptodactylus pentadactylus Negative – – – Both

Pristimantis fenestratus Negative Positive – – Dry

Thecadactylus rapicauda – Negative – – Dry

Plato spp. Negative – – – Dry

Sphendononema guildingii – Positive – – Dry

Astieae sp.1 Negative – – – Dry

Protimesius sp. Negative – – – Rain

Prionostemma sp. Negative Positive – – Dry

Stygnidae sp1 – Positive – – Dry

Phalangopsis sp.1 – Positive – – Dry

Notes:
* Troglobitic species.
Taxa showing consistent responses (highlighted in bold) are suggested as short-term disturbance indicators. The best sampling season (according to Fig. 3), is indicated for
each taxa.
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so species occurring in the inner portions of caves appear to have life cycles decoupled
from external seasons, whereas species inhabiting the outermost portions of caves seem to
be more strongly affected by seasonality (Di Russo et al., 1997; Gunn, Hardwick & Wood,
2000; Bichuette & Trajano, 2003; Ferreira et al., 2015; Mammola, Piano & Isaia, 2016;
Lunghi, 2018). Recognizing the impact of seasonality on species detection, the current
Brazilian legislation stipulates that cave biodiversity surveys need to comprise at least
two sampling events, one during the dry and one during the rainy season (MMA, 2017).
It is worth emphasizing that these sampling requirements targeted a more accurate
estimation of species richness, but not the continuous monitoring of focus species in time.
Two sampling events are likely insufficient to obtain reliable species richness estimates
for highly diverse caves (Auler & Piló, 2015; Wynne et al., 2018), so some authors have
argued for the estimation of optimal sample sizes based on species accumulation curves
(Trajano & Bichuette, 2010; Trajano, 2013). Our results provide the first evidence-based
recommendations to optimize sampling efforts of monitoring programs seeking to
assess target species abundance through time. Specifically, our findings suggest that
monitoring efforts aiming to detect changes in abundance through time do not need to
sample during two different seasons each year (Fig. 2). Sampling efforts of such monitoring
programs could thus be optimized by performing more focused surveys and by surveying
a larger number of caves during the same period each year. Importantly, restricting
sampling to a single season could substantially attenuate the negative impact of cave
visitation by researchers on subterranean communities (Pellegrini & Ferreira, 2016;
Pellegrini & Lopes Ferreira, 2012; Bernardi, Souza-Silva & Ferreira, 2010).

Although the composition and spatial distribution of subterranean communities can
remain constant over periods of several years (Salvidio et al., 2019), our results suggest that
sampling during at least three years is necessary to detect temporal changes in abundance
patterns in most of our focus species (Fig. 3). We note that our dataset only spans a
period of four years (although some caves were sampled multiple times during the same
season/year), so it cannot capture longer temporal changes in abundance. We also
caution that these results cannot be generalized to all subterranean fauna, as different life
histories and generation times will ultimately determine how fast these organisms
respond to disturbances (Ferreira, 2005; Mammola et al., 2016; Culver & Pipan, 2019).
Sampling in different seasons did not influence the ability to detect general abundance
trends over time, but the dry season datasets allowed a more accurate detection of temporal
abundance trends in most species. These results suggest higher detection probabilities in
the dry season for the subset of species where RMSE curves show a steeper decrease during
the dry season (Fig. 3). Interestingly, this was the case for the troglobitic amblypygid
Charinus ferreus, a species that is difficult to detect like other troglobionts (Wynne et al.,
2018; Lunghi, 2018). Our results thus suggest that monitoring programs focusing on
terrestrial subterranean fauna from our study region could concentrate sampling activity
in the dry season, where most species seem to be easier to detect. Likewise, our findings
highlight the importance of implementing long-term monitoring efforts spanning at least
3 years.
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The concept of indicator species in ecosystem management relies on the idea of
identifying taxa responsive to environmental change, that could inform policies, protocols,
and best practices (Carignan & Villard, 2002). Such environmental indicators
(McGeoch, 1998) seek to provide cost and time effective guidelines to address pressing
conservation issues, such as those faced by large-scale mining projects (Sonter, Ali &
Watson, 2018). Assessing the response of subterranean fauna to anthropogenic
disturbance nevertheless requires access to long-term cave monitoring datasets, which are
remarkably rare for tropical caves (McGeoch, 1998; Carignan & Villard, 2002; Mammola
et al., 2020). Here we identified 20 taxa where overall abundance responded to cave
disturbance, and five where temporal abundance trends where associated with disturbance.
Only two taxa displayed consistent responses across effects, which makes them
candidate indicator species for cave monitoring programs: Charinus ferreus and a species
belonging the Theraphosidae family (Table 2). Both are arachnids, a group that was
recently identified as biodiversity indicator for iron caves (Trevelin et al., 2019). Being a top
predator restricted to cave ecosystems, the first species is a well-known troglobitic
Amblypygi (De Lao Giupponi & De Miranda, 2016). Its strong and consistent response to
disturbances (Figs. 4 and 5) suggest the species is associated with pristine and undisturbed
ecosystems, which makes it an ideal disturbance indicator. Theraphosidae spiders, on
the other hand, are sedentary sit-and-wait predators from the epigea, rarely occupying
subterranean environments for reproduction or shelter (Fonseca-Ferreira, De Zampaulo &
Guadanucci, 2017). Our results suggest that they apparently benefit from disturbance to
opportunistically colonize caves, or alternatively, that disturbances in the surrounding
external habitats are forcing them to look for shelter inside the caves. The species
nevertheless awaits formal taxonomic description, which currently limits its usefulness as
an indicator species.

Effect sizes of disturbance on overall abundance and temporal abundance trends where
generally small, suggesting that some effects could have remained undetected because
they would require sampling over longer time periods (Di Stefano, 2001; Legg & Nagy,
2006). For instance, the ability to detect trends in tropical bat population abundance was
shown to be dependent on the duration of the monitoring efforts, and only long programs
(>20 years) showed sufficient statistical power to reliably detect abundance trends
(Meyer et al., 2010). This could explain why some of our focus species did not exhibit
coherent responses across analyses, like the troglobionts Pyrgodesmidae sp. and Escadabiidae
sp., or opportunistic colonizers like the anuran Leptodactylus pentadactylus or Pristimantis
fenestratus. Although empirical evidence from long-term cave monitoring efforts focusing
on invertebrates is scarce (Faille, Bourdeau & Deharveng, 2015; Cajaiba, Cabral & Santos,
2016; Owen et al., 2016), our results suggest that longer monitoring efforts are needed to
detect disturbance responses in most cave-dwelling species.

CONCLUSIONS
Our study reveals the importance of long-term cave monitoring programs for detecting
possible disturbances in subterranean ecosystems, and for using the generated information
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to optimize future monitoring efforts. Results show that iron cave monitoring programs
implemented in our study region could focus sampling efforts in the dry season, where
detectability of target species is higher, while assuring data collection for at least three
years. Charinus ferreus was identified as the most promising short-term disturbance
indicator species.
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