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Abstract 

In this study, a logistic regression model is proposed to classify deleterious missense mutation 

from a list of nonsynonymous SNPs (nsSNPs) – where multiple features (i.e. rank scores of 18 

classifiers e.g. SIFT, PolyPhen2, MutationTaster, MutationAssessor, FATHMM, VEST 3.0, 

RadialSVM, LR, CADD, etc. from dbNSFP v2.5) were combined for 44,702 UniProt human 

polymorphisms and disease mutations (19,033 disease and 25,669 neutral). The model is trained 

and validated on 80% of the data (15,226 disease + 20,535 neutral nsSNPs), and tested on 

remaining 20% (3,807 disease + 5134 neutral nsSNPs); and finally applied to a 

neurodegenerative disease-specific dataset (NeuroTest) from UniProt. The ROC AUC of the 

model is 0.97 on the test set and 0.92 on the NeuroTest dataset, with an accuracy of 0.91 and 

0.86, respectively. This model outperformed SIFT, PolyPhen2, MutationTaster, 

MutationAssessor, and the two ensemble classifiers of dbNSFP v2.5 (RadialSVM and LR), on 

both the testing sets. 

  

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.994v1 | CC-BY 4.0 Open Access | rec: 21 Apr 2015, publ: 21 Apr 2015

P
re
P
rin

ts



Introduction 

Today, whole-exome sequencing (WES) is a method of choice for identifying genetic 

defects leading to Mendelian disorders (Bamshad et al., 2011; Yang et al., 2013). WES 

experiments identify hundreds of variants that needed to be classified based on the 

deleteriousness of the mutations. Some coding variants are more important than others because 

of their aberrant role in protein function; nonsynonymous single-nucleotide polymorphisms 

(nsSNPs), for instance, are the coding variants that change the underlying amino acid and thus 

can affect the function of the protein most. It is likely believed that these nsSNPs exhibit the 

largest impact in disease pathogenesis compared to other counterparts (Ng & Henikoff, 2006). 

Computational analysis for predicting the impact of nsSNPs in the structure and function of the 

respective proteins could assist (wet) laboratory based functional analysis, and ease the process 

of drug target profiling in pharmacogenomic studies (Mah, Low, & Lee, 2011). However, there 

are many Bioinformatics tools to classify pathogenic missense mutations, e.g. SIFT (Kumar, 

Henikoff, & Ng, 2009), PolyPhen-2 (Adzhubei et al., 2010), MutationTaster (Schwarz, 

Rodelsperger, Schuelke, & Seelow, 2010), MutationAssessor (Reva, Antipin, & Sander, 2011), 

FATHMM (Shihab et al., 2013), CADD, VEST, RadialSVM, LR, etc., but the performance of 

these tools are not uniform in most cases. Moreover, it is difficult to emphasize on one tool over 

the others in terms of overall performance. Therefore, in this study a logistic regression based 

ensemble model is proposed integrating scores from eighteen of these publicly available tools – 

to harness the predictive power of these tools into an integrated classifier. 

Methods 

Dataset 

A total of 44,702 nsSNPs (19,033 disease and 25,669 neutral) were selected from UniProt 

Humsavar (Human polymorphisms and disease mutations) database (UniProt, 2014) for training 

and testing the prediction model. The dataset is randomly split into training (80% nsSNPs) and 

testing set (20% nsSNPs) – where the training set contains 35,761 nsSNPs (15,226 disease + 

20,535 neutral nsSNPs), and the testing set has the remaining 8,941 nsSNPs (3,807 disease + 

5,134 neutral nsSNPs). Besides, a neurodegenerative disease-specific dataset (NeuroTest) was 
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prepared from UniProt which contains 585 nsSNPs from 41 genes – which includes 421 nsSNPs 

associated neurodegenerative diseases, such as, Alzheimer disease (MIM: 104300, 615590, 

615711, 607822, and 606889), Amyotrophic lateral sclerosis (MIM: 105400, 612069, 612577, 

613435, 613954, 300857, 614373, 614696, 614808, 615515, 615426, 606070, 602433, 608030, 

608627 and 611895), Parkinson disease (MIM: 168600, 168601, 607688, 610297, 612953, 

260300, 614203, 614251, 600116, 615530, 613643, 605909, 606324 and 607060), 

Parkinsonism-dystonia infantile (MIM:613135), Creutzfeldt-Jakob disease (MIM:123400), 

Gerstmann-Straussler disease (MIM:137440), Neurodegeneration with brain iron accumulation 

(MIM: 610217, 256600), etc., and 164 neutral polymorphisms.    

Feature selection 

For building the prediction model 18 features were considered from publicly available 

tools. The model is an ensemble of ten functional prediction scores e.g. SIFT (Kumar, et al., 

2009), Polyphen2 (Polyphen2 HDIV and Polyphen2 HVAR) (Adzhubei, et al., 2010), 

MutationTaster (Schwarz, et al., 2010), MutationAssesor (Reva, et al., 2011), FATHMM 

(Shihab, et al., 2013), RadialSVM (Xiaoming Liu, 2014), LR (Xiaoming Liu, 2014), VEST 

v3.0 (Carter, Douville, Stenson, Cooper, & Karchin, 2013), CADD (Kircher et al., 2014), and 

eight conservation scores e.g. GERP++ Rejected Substitutions (RS) (Davydov et al., 2010), 

phyloP (phyloP46way primate, phyloP46way placental and phyloP100way vertebrate) (Pollard, 

Hubisz, Rosenbloom, & Siepel, 2010; Siepel et al., 2005), phastCons (phastCons46way primate, 

phastCons46way  placental and phastCons100way vertebrate) (Pollard, et al., 2010; Siepel, et al., 

2005), SiPhy 29way logOdds (Garber et al., 2009; Lindblad-Toh et al., 2011). Seventeen of 

these scores are converted ranked scores (“the rankscore is the ratio of the rank the score over the 

total number of the scores in dbNSFP”) of dbNSFP database version 2.5 (Xiaoming Liu, 2014; 

X. Liu, Jian, & Boerwinkle, 2011, 2013); however, all the scores were retrieved from dbNSFP 

v2.5 for building the prediction model. 

Prediction Model and Performance Analysis 

A logistic regression model was built using the selected features from dbNSFP v2.5. The 

model was trained and validated using caret package (Kuhn, 2008) from R core package (R Core 

Team, 2014); and receiver operating characteristic (ROC) curves were generated using ROCR 

package (Sing, Sander, Beerenwinkel, & Lengauer, 2005). All the analyses were conducted in R 
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core package version 3.1.2. The performance of the classifier was measured in terms of 

Accuracy, Precision, Sensitivity, Specificity, Negative predictive value (NPV), and Matthew’s 

correlation coefficient (MMC) using following equations – 
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Here TP, FP, TN and FN represent the number of true positive, false positive, true 

negative and false negative cases, respectively. 
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Results  

Here, a logistic regression model (logitModel) is built to classify deleterious nsSNPs 

from a list of missense mutations. The logit model is trained, and validated using resampling 

technique bootstrap (repeated 25 times). The final model has accuracy of 0.91 with Kappa 0.81. 

Model parameters are given in Table 1. Though all the parameters are not statistically significant, 

which may be due to multicollinearity, we did not exclude any of the selected features from the 

final model.   

Table 1. Parameters of the logistic regression model (logitModel) 

 Coefficients Std. Error Z-statistic P-value 

Intercept -6.6696 0.1045 -63.80 < 2 × 10
-16

 

SIFT converted rankscore 0.1421 0.1092 1.30 0.1930 

Polyphen2 HDIV rankscore 0.4383 0.2645 1.66 0.0975 

Polyphen2 HVAR rankscore -0.4469 0.2722 -1.64 0.1005 

MutationTaster converted rankscore -0.4345 0.1416 -3.07 0.0021 

MutationAssessor rankscore -0.3001 0.1094 -2.74 0.0061 

FATHMM rankscore 2.1359 0.1525 14.00 < 2 × 10
-16

 

RadialSVM rankscore -0.4584 0.2343 -1.96 0.0504 

LR rankscore 3.6094 0.2222 16.25   < 2 × 10
-16

 

VEST3 rankscore 5.4104 0.1044 51.81   < 2 × 10
-16

 

CADD phred 0.0038 0.0047 0.80 0.4216 

GERP++ RS rankscore -0.5930 0.1768 -3.36 0.0008 

phyloP46way primate rankscore -0.3851 0.0928 -4.15 3.34 × 10
-05

 

phyloP46way placental rankscore -0.2069 0.1769 -1.17 0.2421 

phyloP100way vertebrate rankscore 0.9043 0.1543 5.86 4.62 × 10
-09

 

phastCons46way primate rankscore -0.1734 0.1090 -1.59 0.1114 

phastCons46way placental rankscore 0.1994 0.1248 1.60 0.11 

phastCons100way vertebrate rankscore 0.0939   0.1705 0.55 0.5816 

SiPhy 29way logOdds rankscore -0.4802 0.1449  -3.32 0.0009 

 

However, all the variables (features) do not have same contribution to the model; hence, 

we characterized the general effect of the variables on our model which is shown in a needle plot 

in Figure 1. The top variable VEST (Variant Effect Scoring Tool) has highest contribution 

relative to the other variables, followed by dbNSFP’s logistic regression based model LR and 
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FATHMM (Functional Analysis Through Hidden Markov Models). While phastCons100way 

vertebrate importance value equal to zero, indicating that this variable was not used in any of 

the model.  

 

Figure 1. A needle plot of the logitModel's variable importance values. 

 

 Receiver operating characteristic (ROC) curves of the logitModel for the test dataset and 

NeuroTest dataset are shown in Figure 2 and 3. Here, true positive rates (sensitivity) are plotted 

on the y-axis and false positive rates (i.e.                ) are on the x-axis. The ROC curve 

captures the class probabilities of all thresholds simultaneously for the Model. The ROC AUC of 

the logitModel is 0.97 for the test set and 0.92 for the NeuroTest test set.  

 

 The performance of the logitModel is compared with SIFT, Polyphen2 (HDIV & 

HVAR), MutationTaster, MutationAssessor, RadialSVM and LR on two test set. The logitModel 

performed relatively well on both the test datasets - its accuracy (0.91 & 0.86), NPV (Negative 

predictive value) (0.94 & 0.74) and MCC (Matthew’s correlation coefficient) (0.81 & 0.65) are 

highest comparing the others (Table 2 and Table 3). Precision, specificity, and sensitivity are 

also high comparing e.g. SIFT, Polyphen2, MutationAssessor, etc.    
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Figure 2. Receiver operating characteristic (ROC) curve of the logitModel for test set.  

 

 

Figure 3. Receiver operating characteristic (ROC) curve of the logitModel for NeuroTest dataset. 
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Table 2. Performance of the logitModel on Test set. 

 
TP FP TN FN Accuracy 

Precision 

(PPV) 

Specificity 

(TNR) 

Sensitivity 

(TPR) 
NVP MCC 

logitModel 3490 505 4629 317 0.91 0.87 0.90 0.92 0.94 0.81 

SIFT 3030 1366 3768 777 0.76 0.69 0.73 0.80 0.83 0.52 

Polyphen2 HDIV 3457 2086 3048 350 0.73 0.62 0.59 0.91 0.90 0.51 

Polyphen2 HVAR 3305 1560 3574 502 0.77 0.68 0.70 0.87 0.88 0.56 

MutationTaster 3522 2276 2858 285 0.71 0.61 0.56 0.93 0.91 0.50 

MutationAssessor 3007 1280 3854 800 0.77 0.70 0.75 0.79 0.83 0.54 

RadialSVM 3193 424 4710 614 0.88 0.88 0.92 0.84 0.88 0.76 

LR 3211 451 4683 596 0.88 0.88 0.91 0.84 0.89 0.76 

           

 

 

Table 3. Performance of the logitModel on NeuroTest set. 

 TP FP TN FN Accuracy Precision Specificity Sensitivity NVP MCC 

logitModel 377 40 124 44 0.86 0.90 0.76 0.90 0.74 0.65 

SIFT 282 42 122 139 0.69 0.87 0.74 0.67 0.47 0.37 

Polyphen2 HDIV 348 80 84 73 0.74 0.81 0.51 0.83 0.54 0.34 

Polyphen2 HVAR 322 57 107 99 0.73 0.85 0.65 0.76 0.52 0.39 

MutationTaster 367 82 82 54 0.77 0.82 0.50 0.87 0.60 0.40 

MutationAssessor 273 27 137 148 0.70 0.91 0.84 0.65 0.48 0.43 

RadialSVM 338 21 143 83 0.82 0.94 0.87 0.80 0.63 0.62 

LR 345 25 139 76 0.83 0.93 0.85 0.82 0.65 0.62 
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Conclusion 

A logistic regression based ensemble classifier (logitModel) is proposed in this study to classify 

deleterious missense mutation from a list of nonsynonymous SNPs (nsSNPs). The model 

classified deleterious and neutral nsSNPs with an accuracy of 0.91 and 0.86 on test and 

NeuroTest dataset, respectively. It outperformed SIFT, PolyPhen2, MutationTaster, 

MutationAssessor, and the two ensemble classifiers of dbNSFP v2.5 (RadialSVM and LR), on 

both the testing sets.  
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