
Tech Report: Orchestrating Your Cloud

Orchestra: Model Driven Development of Cloud

Deployment and Orchestration for Distributed

Computer Music Instruments

Abram Hindle
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada
abram.hindle@ualberta.ca

2015

Abstract

Cloud computing potentially ushers in a new era of computer music
performance with exceptionally large computer music instruments con-
sisting of 10s to 100s of virtual machines called a Cloud Orchestra. Cloud
computing allows for the rapid provisioning of resources, but to deploy
such a complicated and interconnected network of software synthesizers in
the cloud requires a lot of manual work, system administration knowledge,
and devops (developer-sysop) skills. This is a barrier to computer musi-
cians whose goal is to produce and perform music, and not to sysadmin
100s of computers. This work discusses the issues facing cloud orchestra
deployment and offers an abstract solution and a concrete implementa-
tion. The abstract solution is generate cloud orchestra deployment plans
by allowing computer musicians to model their network of synthesizers and
to describe their resources. A model optimizer will compute near-optimal
deployment plans to synchronize, deploy, and orchestrate the start-up of a
complex network of synthesizers deployed to many computers. This model
driven development approach frees computer musicians from much of the
hassle of deployment and allocation. Computer musicians can focus on
the configuration of musical components and leave the resource allocation
up to the modelling software to optimize.

1 Introduction

With the flick of a switch your lights turn on. With the click of the mouse your
computation can turn on too. Cloud computing promises utility computing:
computing treated as a utility and billed like a utility – even provisioned like

1

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.991v1 | CC-BY 4.0 Open Access | rec: 17 Apr 2015, publ: 17 Apr 2015

P
re
P
rin

ts

a utility such as electricity [4]. This ease of provisioning virtual machines and
destroying them is called elasticity. This elasticity is what makes it possible
for cloud providers to allow clients to scale computation to their needs. Cloud
computing promises much flexibility but these promises are often wrapped in
intense complexity.

The cloud has been leveraged for computer music performance [10]. While
the authors succeed at a demoing the feasibility of a cloud instrument, they
also demonstrated the complexity and frustration of organizing and orches-
trating synthesizers in the cloud. Organizing these synthesizers requires much
knowledge about cloud computers, networking, systems administration, Unix-
like systems, shell scripting and programming. Essentially such a prerequisite
knowledge is a large barrier to the adoption of cloud computing for computer
music performance.

Requiring a computer musician to play the role of sysadmins or devops (de-
veloper/operator) is too high a barrier. A computer musician should strive to be
a musician first and system administrator second. The goals of most musicians
are to produce music, not to configure 100s of computers.

The goal of this work is enable the generation and deployment of a cloud
orchestra. A cloud orchestra is an network of software synthesizers deployed to
multiple networked computers (usually on a cloud). Most cloud-orchestras will
be composed of multiple virtual machines running software synthesizer stitched
together by network audio links. In the future we hope to see cloud-orchestra
services that abstract the virtual machines and provide cloud-orchestras as an
explicit software service rather than configurable virtual machines.

Deployment is an ardous task that requires much networking, programming,
and shell scripting knowledge – unless it is automated. Systems can be built
that take both a model of a cloud orchestra and a list of resources as input to
produce a coherent, runnable deployment plan or deployment program. Once
the deployment plan is generated the computer musician can deploy and start
a cloud orchestra upon request.

Model driven development allows for the rapid modelling (defining) and
generation of runnable code that implements such a model. In the context of a
cloud orchestra we propose to abstractly model a cloud orchestra and rely upon
model optimizers to fit such a synthesizer network near-optimally to available
resources such as cores, virtual machines, etc.

This work addresses: the difficulty of configuring and deploying a cloud
orchestra; and the efficient allocation of resources for cloud orchestras. These
problems motivate the following contributions described in this paper:

• Propose and define cloud orchestras;

• Define a model of cloud orchestras;

• Argue for a declarative model driven development approach to cloud or-
chestras;

• Provide a prototype that defines, generates, and deploys a cloud orchestra;

• Address cloud orchestra deployment abstractly and concretely.

2

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.991v1 | CC-BY 4.0 Open Access | rec: 17 Apr 2015, publ: 17 Apr 2015

P
re
P
rin

ts

The benefits of using cloud computing are clear: one does not need to own
the hardware to run the cloud orchestra; cloud computing enables experimen-
tation with large allocations of resources for short periods of time; cloud service
providers often have reasonable bandwidth; performers do not need to bring
lots of computer equipment to a performance venue [10]; networked computers
enabled centralized and decentralized collaborative instruments [13].

Disclaimer: This work is an extended pre-print of the short paper “Orches-
trating Your Cloud Orchestra” published at NIME 2015 [11]. This preprint is
the original work submitted to NIME 2015, later accepted as a short paper.
This work does not include any feedback from peer review. The intent of this
preprint is to allow interested authors access to a longer description of the cloud
orchestra system.

2 Previous Work

This section discusses some of the previous work relevant to model driven de-
velopment, cloud computing, cloud deployment, networked audio, networked
computer music, networking latency, streaming technology and networked or-
chestras.

Model Driven Development (MDD) and Model Driven Engineering [9] are
forms of specifying software and systems as models and then relying on model
checkers, and model generators to generate skeletal stub code, or fully working
and potentially model checked and proven systems. MDD recognizes that box
arrow diagrams cannot handle everything and special cases where code is needed
are often required. Model Driven Development is often used in fields which have
computation but are limited to certain problems, often allowing end-users to
customize a system without excessive programming experience.

Barbosa et al. [3] provide a survey of networked computer music. They
demonstrate that networked computer music is not a new idea and has been
discussed since the 1970s. Yet many of the techniques used in the past are still
relevant to today. Barbosa’s work and the work that was surveyed eventually
lead to the jack [7] sound server and netjack [7]. The jack sound server is a
portable low latency sound server that allows the routing of audio and MIDI
messages. Netjack augments jack by allowing communication of synchronized
jack audio streams over a network, but it is jitter sensitive. Jacktrip [5] was cre-
ated to address more internet relevant network problems rather than the context
of computer music over a LAN. Jacktrip [6] has been used in a star-formation
to allow multi-site jams over the internet. The concrete cloud orchestra imple-
mentation in the work relies heavily upon jack and jacktrip.

One reason to employ cloud computing in a computer music instrument
is to provide user interfaces to mobile devices over the web, thereby allowing
audience participation. “Audience-Participation Techniques Based on Social
Mobile Computing” by Oh et al. [14] demonstrates the use of smartphones in
audience participatory music and performace. Oh et al.’s work serves to provide
user interface design hints to instruments deployed in the cloud. Jordà [12]

3

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.991v1 | CC-BY 4.0 Open Access | rec: 17 Apr 2015, publ: 17 Apr 2015

P
re
P
rin

ts

describes many patterns of multi-user instruments as well as the management
of musicality of instruments that under the collective control of performers and
the audience. Jordà’s recommendations would be valuable for anyone creating
an audience-participatory instrument with a cloud orchestra.

Cloud computing was indirectly used by Dahl et al. [8] in TweetDreams.
TweetDreams allows an audience to participate with a musical instrument by
tweeting at a twitter account that aggregates audience tweets. Underlying the
performance is the use of Twitter’s cloud infrastructure to deliver messages.
The focus of the cloud orchestras described in this current paper is more on
transmitting audio between synths than webservice infrastructure.

A cloud orchestra is composed of many machines and many of these machines
need input or parameterization, often best served as a web interface. Jesse
Allison et al. [1, 2] describe the Nexus framework to allow for user-interface
distribution via the web. They employed the Ruby on Rails framework to deliver
interactive HTML5 user interfaces to end users. They emphasize the value of
HTML5 interfaces as they are both standardized and ubiquitous. Ubiquity
avoids portability issues. Nexus addresses user interface issues that will face
many cloud-deployments such as control.

Much like Allison et al. [1, 2], Weitzner et al. [18] have build a system
called massMobile that allows the creation of a web interface to interact with
Max/MSP via the web. massMobile is currently not very distributed as it
employs a single sound server that communicates audio to and from Max/MSP
on a single machine. Exposing this kind of user-interface from a cloud orchestra
would prove invaluable as it would allow fine grained control of a synthesizer
running on a VM.

Cloud Orchestras share many of the same problems and difficulties as lap-
top orchestras [16, 15]. Laptop orchestras are composed of laptop synthesizer
users who are connected together over OpenSound Control or jack. The main
difference between a laptop orchestra and a cloud orchestra is that a cloud or-
chestra doesn’t necessarily have more than 1 performer or musician, much of the
orchestra is under computer control. Furthermore a cloud orchestra can scale,
but it is unlikely that its virtuosity and naunce can scale without adding more
human musicians.

Lee et al. [13] describe many opportunities for live network coding. They
argue that networked live coded music allows for interesting mixes of central-
ized and decentralized synthesis and control. Many of these configurations and
models could be leveraged in a cloud orchestra, whether the UI be web-based
or the hosts in a cloud remotely provisioned.

Ansible, Chef and Puppet [17] are common configuration management and
automation framework tools. These tools tend to be used to install software,
synchronize software, bring up servers and automate tasks. In this research we
use Ansible to run commands on multiple VMs. Chef and Puppet are domain
specific languages meant to enable the automation of installations and services
on infrastructure like cloud computers.

Hindle [10] describes using the cloud [4] for computer music and the issues
one encounters, in particular south portability and latency. To export audio

4

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.991v1 | CC-BY 4.0 Open Access | rec: 17 Apr 2015, publ: 17 Apr 2015

P
re
P
rin

ts

adc adc

id synthfmgen fm

dac daclowpass lp

Figure 1: Example UI for defining a cloud orchestra

[
 {
 "name":"VagrantHost",
 "host":"172.17.0.4",
 "username":"ubuntu",
 "cores":1,
 },
 {
 "name":"DockerHost",
 "host":"172.17.0.5",
 "username":"ubuntu",
 "cores":2,
 }
]

slaves.json

1) Define resources 2) Define and deploy cloud orchestra 3) Generate deployment plan

4) Run deployment plan 5) Connect to Cloud Orchestra 6) Use Cloud Orchestra

Web User
Interface

Generated
Deployment

Plan

Deploying to hosts
and running Synths

Connecting audio
from cloud to Jack

clicking here
will execute

steps 3-5

Figure 2: Example of defining and deploying a cloud orchestra using the concrete
implementation synth-cloud-orchestra.

from the cloud Hindle describes streaming raw audio over websockets. Cloud
orchestras suffer from exactly this problem, in the cloud no one can hear unless
you stream. This work seeks to elaborate on the prior work and focuses more on
the cloud orchestra, the synthesizers in the cloud rather than exporting audio
from the cloud.

3 Model of a Synth Network

The proposed solution to the cloud orchestra deployment problem is to lever-
age model driven development to define a cloud orchestra. A definition of a
cloud orchestra is a model. This model may be optimized by model optimizers
which search for an efficient configuration. Once such a configuration has been

5

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.991v1 | CC-BY 4.0 Open Access | rec: 17 Apr 2015, publ: 17 Apr 2015

P
re
P
rin

ts

found, templates can be executed to generate a working deployment plan. This
deployment plan can be executed and the cloud orchestra will be instantiated,
configured, and executed eventually producing music in near real-time streamed
over a network.

Cloud orchestras and their potential resources can be modelled and these
models can be used to develop a deployment plan to deploy a cloud orchestra
on resources available to you. The fundamental problem of a declarative model
of a cloud orchestra is how to match a set of resources (hosts) with the workload
(cloud orchestra) proposed.

The inputs to this problem are a set of usable host virtual machines and a
synthesizer network model (the cloud orchestra). The model we use is partially
described in the model package of Figure 3. Synthesizers are modelled as Synth-
Modules or modules. An instance of a module is a SynthBlock. The distinction
is similar to the distinction between a class and an object. The SynthBlock
has a SynthModule, a name and a host will be associated with it. These Syn-
thblocks are collected within a SynthDef, which is the definition of the entire
cloud orchestra. The SynthDef also contains connections that join the inputs
and outputs of a SynthBlock together. In the next section we formalize this
model for the purposes of optimization.

3.1 Modeling and Optimization

In general one can model the resource allocation problem as a cost minimization
problem or constraint problem. One can formalize this problem as an Integer
Linear Programming problem, and potentially minimize it using tools such as
GNU Linear Programming Kit 1. Both formulations enable heuristic search to
produce optimal and near-optimal configurations.

Regardless, given available resources or a resource allocation one must allo-
cate synthesizers (synthBlocks) to hosts. For a cloud orchestra deployment one
should consider optimizing for:

• Locality: the more synths communicating on the same VM the less latency
and network bandwidth required.

• CPU load: too many synths will overload a CPU hamper near-realtime
performance.

• Remote Links: The number of remote links between synths should be
reduced, different allocations of synths to different hosts can increase or
decrease the number of remote links.

• Bandwidth: network bandwidth decreases as locality of synths increases
and the number of remote links decreases.

Other costs could be considered such as the cost to provision cores, VMs,
memory, and bandwidth. One could add another level of modeling to model

1https://www.gnu.org/software/glpk/

6

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.991v1 | CC-BY 4.0 Open Access | rec: 17 Apr 2015, publ: 17 Apr 2015

P
re
P
rin

ts

provisioning and to determine the minimum resources required to deploy a cloud
orchestra.

The optimizer’s main task is to take the available hosts and allocate the
synthesizer instances (synthBlocks) to these hosts based on the cores and band-
width available. The allocation should be optimal in the sense that it increases
locality and reduces the number of remote links. Reducing remote links limits
the potential latency.

Given synthBlocks from S, connections can be represented as a set of edges
Cs,t from C : S × S where s and t are synthBlocks and a connection from s to
t is represented by set membership. The UML in Figure 3 is labelled with our
mathematical definitions.

This synthDef model tuple (H,S,C,A) can formalized and optimized using
the following definitions and mappings:

• H is the set of hosts.

• S is the set of SynthBlocks.

• C : S × S is the set of connections between synthBlocks. Cs,t where s
and t are synthBlocks represents a connection between s and t. This set
is constant throughout optimization.

• A : H×S is the allocation of synthBlocks to hosts where Ah,s, h ∈ H and
s ∈ S, represents an allocation of a synth s to a host h. This set is the set
to be optimized.

• cores : H 7→ Z+ is a function returning the number of cores of a host.

• blocks : H 7→ Z = |{Ah,s|s ∈ S}| returns the number of synthblocks
allocated to the host in A.

• overflow : H 7→ Z = max(0, blocks(h) − cores(h)) The number of allo-
cated synthBlocks beyond the cores of the host.

• overflowall =
∑

h∈H overflow(h) The number of overflowing hosts for
the whole network.

• connections : H 7→ Z = |Cu,x| + |Cx,u| where x ∈ S and u ∈ {s|s ∈
S ∧Ah,s}. The number of connections to and from synthBlocks of host h.

• locals : H 7→ Z = |{Cs,t|Ah,s ∧ Ah,t ∧ Cs,t}| The number of connections
internal to host h.

• remotes : H 7→ Z = connections(host)− locals(h) The number of remote
connections to and from host h.

• remotesall =
∑

h∈h remotes(h) The sum of remote connections over all
hosts.

An optimizer for this problem should be a function that at least takes in a
current configuration optimize : (H × S × C) 7→ (A : H × S) and produces a
host to synthBlock mapping A. When implemented it could potentially take a
partial initial allocation A if needed.

7

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.991v1 | CC-BY 4.0 Open Access | rec: 17 Apr 2015, publ: 17 Apr 2015

P
re
P
rin

ts

The goal of the optimize function should be to minimize overflowall first
and then to minimize remotesall. A synthDef that needs more resources than
are available is a concern. A tuning parameter α (α ∈ R) can be used to indicate
the importance of overflowall versus remotesall. An optimal optimizer function
will meet the requirements of Equation 1 below:

optimize(H,S,C) = arg min
A
f(A)

f : A 7→ R = α · overflowall + remotesall
(1)

Naively one could generate all permutations of the legal sets A, matching
SynthBlocks and Hosts, and rank them by function f described in Equation 1,
choosing the minimum result. There are likely more efficient methods of deter-
mining optimal configurations, such as employing linear programming. At this
point, once an optimal or near-optimal configuration of hosts and synthBlocks
is found, the deployment can be generated or executed.

3.2 Deploying a Synth Network

In this section we describe a general process to start and deploy a cloud orches-
tra. Any concrete implementation will follow this process. After generating all
the code necessary to deploy and run a cloud orchestra from the model, one has
to deploy and run the synth network.

1. First the synthesizer source code and cloud orchestra model are synchro-
nized to all synth hosts (rsync).

2. Then the sound server (jackd) is started on each synth host.

3. Remote network audio connectors are started (jacktrip or netjack).

4. For every synth host, their synthBlocks’ associated synthesizers are started.

5. All audio connections are disconnected on all hosts to avoid interference
and to start in a disconnected state.

6. SynthBlock synthesizers are connected to their appropriate jack audio
ports per each synth host.

7. An audio exporter is started (e.g., icecast (mp3), jacktrip, or cloudorch
(websocket streaming)).

To halt or tear down the cloud orchestra each host is contacted and all
sound servers, remote network audio connectors, and all synthesizers and audio
exporters are killed.

The responsibilities of a concrete framework based on this abstract will be:
to elicit a definition from a user; to elicit resources and resource constraints; to
search for optimal deployment plans; to generate or execute such a deployment
plan; to enable the end-user to listen to the cloud orchestra once it is deployed.
These responsibilities will be discussed in the next section.

8

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.991v1 | CC-BY 4.0 Open Access | rec: 17 Apr 2015, publ: 17 Apr 2015

P
re
P
rin

ts

H

S

A C

locals remotes

cores

Figure 3: Architecture of an example Cloud Orchestra

4 Synth-Cloud-Orchestra: A Concrete Imple-
mentation

Our concrete cloud orchestra generator is called synth-cloud-orchestra and it
is freely available 2 3 The hope is that the compute music community can
take advantage of this operable framework and start building cloud orchestras
without the hassle that the authors went through to get the cloud orchestra to
run.

A dockerfile is provided with synth-cloud-orchestra and acts as instructions
to setup hosts consistently so they can act as synth hosts. This implementation
currently makes some assumptions:

• The cloud orchestra user has write access to a home directory of the hosts
they will employ.

• The hosts already have the main software synthesizers needed installed

2Demo and source code: https://archive.org/details/CloudOrchestraDemo
3Repository: https://github.com/abramhindle/synth-cloud-orchestra

9

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.991v1 | CC-BY 4.0 Open Access | rec: 17 Apr 2015, publ: 17 Apr 2015

P
re
P
rin

ts

(Csound, Chuck, Supercollider, PureData).

• The hosts allow for passwordless login via ssh or ssh-agents 4

• The hosts can access each other over ports used by jack and jacktrip.

• The hosts need bash and ruby installed.

• The head node needs ansible, bash, and ruby installed.

Technically this means that the cloud orchestra doesn’t need super-user ac-
cess to the machines as long as the necessarily synthesizers are available. In
most cases cloud virtual machines are used so one can use a package manager
to install all the necessary synthesizers. Chef, puppet, and ansible can also be
used to ensure that the prerequisites are installed.

The current implementation generates a series a bash scripts that allows
for the synchronization of files, deployment, and the startup and connecting of
synthesizers. Once generated all an end-user needs to run is gen/run.sh which
will execute all of the steps described in Section 3.2 on deployment.

Throughout this section we will use an example of a FM synthesizer and
microphone (ADC) chained through a lowpass filter to a DAC. While these are
not expensive operations they can be run on separate machines. Figure 1 and
Figure 2 shows a graphical configuration the full webUI and shows some of the
JSON definition of the synthdef.

4.1 Defining Resources

A slaves.json (an example is in Figure 2) lists all machines potentially under
the cloud orchestra’s control. Each definition is named and also details the ssh
username used for access, the hostnames, and the number of cores.

4.2 Defining the Cloud Orchestra

By seperating the cloud orchestra definitions from the resources, the model
optimizer is enabled to come up with many solutions and choose the best ones
based on the resources available and the optimization heuristics which emphasize
locality preserving configurations. Figure 2 shows how the webUI represents and
generates a JSON definition. The user can define cloud orchestras in either pure
JSON or with the webUI that comes with synth-cloud-orchestra.

Figure 2 depicts part of the web-based user interface provided by synth-
cloud-orchestra. The boxes are instances of synthesizers, synthBlocks, and the
arrows are the directional links between the synthBlocks. By dragging from the
boxes on the synthBlocks to the other synthBlocks themselves one can connect
the synthBlocks together. The synthBlocks are specified by first specifying a
name of that instance of the synthesizer and then the kind of synthesizer it
is. Double clicking deletes connections and synthesizers. New synthBlocks are
added by clicking the new button.

4Consider using ssh-askpass ahead of time if passwords and passwords for keys are required.

10

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.991v1 | CC-BY 4.0 Open Access | rec: 17 Apr 2015, publ: 17 Apr 2015

P
re
P
rin

ts

This method is flexible and allows optional parameters to be specified. For
instance the host parameter in the SynthBlocks can be specified, this allows the
user to override the optimizer and assign a particular synthblock to a particular
host, perhaps for performance reasons. Hosts that do not reference particular
slave hosts will be automatically allocated from the slaves.json file.

Synth-cloud-orchestra comes with some default synthesizers including ADC
and DAC, these are meant to represent general inputs and outputs that might be
in the cloud or actual computers. Connecting all listenable streams to the DAC,
regardless of the existance of an actual soundcard, is recommended as it is easy
export those to an end-user. Audio maybe exported from this cloud orchestra
using jacktrip, but cloudorch – the soundcard in the cloud – or icecast can also
be used. Icecast and other multi-media streamers tend to incur much latency
but can handle more traffic than jacktrip or cloudorch websocket streaming.

4.3 Adding synthesizers

Each custom synthesizer is considered a synthModule or module. Modules can
be templated and that is indicated if their directory is name <modulename>.erb
where <modulename> is the name of the module (e.g. fm, lp, ...).

An optional manifest file, manifest.json, is left in the root of the mod-
ule’s directory that defines the synthesizer to use, the module’s name and the
synthesizers source code. For instance the example fm synthesizer is a csound

synthesizer with the fm.csd as the synthesizer to run and its module name is
fm.

A user can add a custom synth to their cloud-orchestra by creating a direc-
tory that will serve as their module. Within this directory they should put all
assets and code needed by their synthesizer such as Csound orchestras, Super-
Collider source code, and sound assets. These modules will be synchronized to
the appropriate hosts and executed as needed. This works well for self-contained
synths that have audio interfaces. But control messages can be more difficult.
Most control messages will be over OSC or PD netsend and thus one needs to
resolve the name of the host running the message receiving synthblock. If one
has this requirement then templated modules should be used.

Templated modules are important because protocols like OSC do not allow
explicit routing without using proxies or bouncers. Proxies or bouncers can
increase latency. Thus instead of hard-coding IP addresses in the synthesizer’s
definition one can treat the synthesizer source code as a template to parame-
terize. Thus at generation time, the appropriate configuration will be inserted
into the source code of the synthesizer, as well as dynamicly into environment
variables. Many text based synthesizers can be instrumented with ERB tem-
plate commands to insert the proper parameters. Templated modules will be
fed the entire synthdef definition of the cloud orchestra and their local synth-
block with any custom parameters. Since each instance of a synthesizer can
have different parameters the modules generated will be in directories called
<synthname>-<modulename>, for example fm1 of templated synth fm will be
called fm1-fm.

11

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.991v1 | CC-BY 4.0 Open Access | rec: 17 Apr 2015, publ: 17 Apr 2015

P
re
P
rin

ts

This pattern of user-defined synthesizers allows for the computer musician
to rely on their own synthesizers and also leverage the hard work of the makers
of CSound, SuperCollider, Chuck, PD, and other software synthesizers.

4.4 Generating and Deploying A Cloud Orchestra

The program synthdefrunner is run within the directory defining the cloud
orchestra. This program reads the definitions of the cloud orchestra and avail-
able resources. It then optimizes the network according to heuristics meant to
improve locality. If there are not enough cores for all of the synthesizers then it
tries not overload the cores too much and tries to increase locality. Regardless,
the best suggested network configuration is chosen. This configuration is then
recorded. The configuration is then provided to the Templater that generates
the gen directory from the gen.erb templates. These are shell scripts, written
as very portable bash scripts. The scripts define how to run the synthesizers
and how to connect the audio links together. Using bash ensures that there are
not many dependencies on the client hosts.

Once gen is created the user can simply run gen/run.sh to synchronize,
deploy, instantiate and use their cloud orchestra as per Section 3.2 on deploy-
ment. The WebUI lets a user define a cloud orchestra synthdef and deploy it
in one step, clicking submit query in part 2 of Figure 2 causes the generation,
deployment and running of the cloud orchestra – the execution of steps 3 to 5
in Figure 2. In this implementation we provide a means of quickly starting up a
jacktrip connection with the cloud, and connecting all of the synths connected
to the DAC to the this connection. This enables the end-user to listen to the
cloud over jacktrip.

To stop the cloud orchestra, teardown.sh will log into all the appropriate
hosts and halt off all of the synthesizers, audio connectors and sound daemons.
If one solely provisioned these machines for this orchestra, one could shut them
all down and discard them.

5 Experience with the Cloud Orchestra

Connecting to the cloud orchestra with jacktrip [5] results in relatively low la-
tency. The overhead is not excessive and like jack, jacktrip was well made, with
the concerns of the music community in mind. Streaming over cloudorch [10]
increases latency considerably as any jitter or fluctations in the network can
harm the TCP (rather than the UDP) connection established. Icecast incurs
much overhead in encoding MP3 frames, buffering audio, and buffering output
audio to clients.

Many software synthesizers automatically setup jack connections when they
start, include audio connectors such as jacktrip. These automatic connections
get in the way and make it difficult to deterministicly connect components prop-
erly. Disconnecting all synths and connectors before connecting them ensures a
consistent state. Thus we recommend: do not auto-connect to audio ports and

12

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.991v1 | CC-BY 4.0 Open Access | rec: 17 Apr 2015, publ: 17 Apr 2015

P
re
P
rin

ts

be lenient with regards connected and disconnected ports. Musicians should
consider sending synthesizers a start signal so that instruments can safely start
once the connectors are ready.

5.1 Recommendations

The authors of Cloudorch [10] recommended maintaining master and slave
images that can be easily duplicated and deployed as instances (synth-cloud-
orchestra includes a dockerfile). They also made performance recommendations:
locality tends to improve performance so network audio links should be avoided
to reduce latency; star-network formations [6] for audio can flood switches and
knock out local network abilities, so tree network structures might be required.

Based on observations with this work, we emphasize the value of optimizing
for locality. Virtual machines have high internal bandwidth and low external
bandwidth. Latency between processes is less than latency between computers.

Debugging is often best done locally. Using docker and/or vagrant 5 allows
for the flexibility of setting up a local cloud for debugging purposes. Synth-
cloud-orchestra includes a dockerfile to configure docker containers.

6 Conclusions and Future Work

Leveraging the cloud is difficult and leads to complicated orchestration and de-
ployment. To address this difficulty have described an abstract and concrete
framework that enables computer musicians to define, create, and run cloud
orchestras. By leveraging model driven development one can allow end-user
programmers such as computer musicians to focus on programming synthe-
sizers rather than sysadmining the cloud computers they rent. Model driven
development allows musicians to define their cloud orchestra as a network of
connected synthesizers and then deploy an optimized version of that network
to existing resources. Thus freeing the musician of the burden of long, tedious,
and manual configuration of their computational resources.

Abstractly a method of assigning resources to a cloud orchestra has been
presented. Concretely, the example implementation synth-cloud-orchestra al-
lows single-click deployment of cloud orchestras defined by drag and drop. This
work provides a novel user interface to design, define, deploy, and run cloud
orchestras.

6.1 Future Work

This work opens up new areas for computer music performance related to cloud
orchestras, and the exploitation of cloud computing in computer music. One
area of research includes optimal and near optimal resource allocation heuristics
that could potentially allocate according to psychoacoustic models with respect
to latency. The integration of other sources of information into the models is

5http://docker.io and http://vagrantup.com/

13

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.991v1 | CC-BY 4.0 Open Access | rec: 17 Apr 2015, publ: 17 Apr 2015

P
re
P
rin

ts

another area. Work should be done to create real-time/run-time configuration
and re-configuration of the cloud orchestra much like modifying a max/MSP
or pd patch live, except with numerous machines. OSC support should be
included in the model as well. More work should be done on system liveness
and awareness as well as enabling the distribution of user interfaces. Currently
there is much work to be done on easing the provisioning of a cloud orchestra
and estimating the minimum resources needed to provision a cloud orchestra.

References

[1] J. Allison. Distributed performance systems using html5 and rails. In Pro-
ceedings of the 26th Annual Conference of the Society for Electro-Acoustic
Music, 2011.

[2] J. Allison, Y. Oh, and B. Taylor. Nexus: Collaborative performance for the
masses, handling instrument interface distribution through the web. 2013.

[3] Á. Barbosa. Displaced soundscapes: A survey of network systems for music
and sonic art creation. Leonardo Music Journal, 13:53–59, 2003.

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud
computing and emerging it platforms: Vision, hype, and reality for deliv-
ering computing as the 5th utility. Future Generation computer systems,
25(6):599–616, 2009.

[5] J.-P. Cáceres and C. Chafe. Jacktrip: Under the hood of an engine for
network audio. Journal of New Music Research, 39(3):183–187, 2010.

[6] J.-P. Cáceres and C. Chafe. Jacktrip/soundwire meets server farm. Com-
puter Music Journal, 34(3):29–34, 2010.

[7] A. Carôt, T. Hohn, and C. Werner. Netjack–remote music collaboration
with electronic sequencers on the internet. In Proceedings of the Linux
Audio Conference, 2009.

[8] L. Dahl, J. Herrera, and C. Wilkerson. Tweetdreams: Making music with
the audience and the world using real-time twitter data. In International
Conference on New Interfaces For Musical Expression, Oslo, Norway, 2011.

[9] A. V. Deursen, E. Visser, and J. Warmer. Model-driven software evolution:
A research agenda. In International Workshop on Model Driven Software
Evolution, 2007.

[10] A. Hindle. Cloudorch: A portable soundcard in the cloud. Proceedings of
New Interfaces for Musical Expression (NIME), London, United Kingdom,
2014.

[11] A. Hindle. Orchestrating your cloud orchestra. 2015.

14

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.991v1 | CC-BY 4.0 Open Access | rec: 17 Apr 2015, publ: 17 Apr 2015

P
re
P
rin

ts

[12] S. Jordà. Multi-user Instruments: Models, Examples and Promises. In
NIME’05, pages 23–26, 2005.

[13] S. W. Lee and G. Essl. Models and opportunities for networked live coding.
Live Coding and Collaboration Symposium 2014, 1001:48109–2121, 2014.

[14] J. Oh and G. Wang. Audience-participation techniques based on social
mobile computing. In Proceedings of the International Computer Music
Conference 2011 (ICMC 2011), Huddersfield, Kirkless, UK, 2011.

[15] S. Smallwood, D. Trueman, P. R. Cook, and G. Wang. Composing for
laptop orchestra. Computer Music Journal, 32(1):9–25, 2008.

[16] D. Trueman. Why a laptop orchestra? Organised Sound, 12(02):171–179,
2007.

[17] P. Venezia. Review: Puppet vs. chef vs. ansible vs. salt.
http://www.infoworld.com/article/2609482/data-center/

review--puppet-vs--chef-vs--ansible-vs--salt.html, Novem-
ber 2013.

[18] N. Weitzner, J. Freeman, S. Garrett, and Y.-L. Chen. massMobile - an
Audience Participation Framework. In G. Essl, B. Gillespie, M. Gurevich,
and S. O’Modhrain, editors, Proceedings of the International Conference
on New Interfaces for Musical Expression (NIME), Ann Arbor, Michigan,
May 21-23 2012. University of Michigan.

15

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.991v1 | CC-BY 4.0 Open Access | rec: 17 Apr 2015, publ: 17 Apr 2015

P
re
P
rin

ts

