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Abstract
A unifying theme of many ongoing trends in software en-
gineering is a blurring of the boundaries between building
and operating software products. In this paper, we explore
what we consider to be the logical next step in this succes-
sion: integrating runtime monitoring data from production
deployments of the software into the tools developers uti-
lize in their daily workflows (i.e., IDEs) to enable tighter
feedback loops. We refer to this notion as feedback-driven
development (FDD).

This more abstract FDD concept can be instantiated in
various ways, ranging from IDE plugins that implement
feedback-driven refactoring and code optimization to plu-
gins that predict performance and cost implications of code
changes prior to even deploying the new version of the soft-
ware. We demonstrate existing proof-of-concept realizations
of these ideas and illustrate our vision of the future of FDD
and cloud-based software development in general. Further,
we discuss the major challenges that need to be solved be-
fore FDD can achieve mainstream adoption.

Categories and Subject Descriptors D.2.3 [Software En-
gineering]: Coding Tools and Techniques; H.3.4 [Systems
and Software]: Distributed Systems

Keywords Software Development, Cloud Computing, Con-
tinuous Delivery, Feedback-Driven Development

1. Introduction
With the widespread availability of broadband Internet, the
software delivery process, and, as a consequence, indus-

[Copyright notice will appear here once ’preprint’ option is removed.]

trial software engineering, has experienced a revolution. In-
stead of boxed software, users have become accustomed
to software being delivered “as-a-Service” via the Web
(SaaS [43]). By now, this trend spans various kinds of soft-
ware, including enterprise applications (e.g., SAP Success-
Factors), office products (e.g., Windows Live), end-user ap-
plications (e.g., iCloud), or entire web-based operating sys-
tems (e.g., eyeOS). With SaaS, much faster release cycles
have become a reality. We have gone from releases every
few months or even years to weekly or daily releases. Many
SaaS applications are even employing the notion of contin-
uous delivery [20] (CD), where new features or bug fixes
are rolled out immediately, without a defined release plan.
In the most extreme cases, this can lead to multiple rollouts
a day, as for instance claimed by Etsy, a platform for buy-
ing and selling hand-made crafts1. On the one hand, these
circumstances have imposed new challenges to software de-
velopment, such as the necessity not to postpone quality
checks to a dedicated quality assurance phase, as well as
necessitating a high degree of automation of the delivery
process as well as cultural changes [10, 21]. On the other
hand, SaaS and CD have also opened up tremendous new
opportunities for software developers, such as to gradually
rollout new features and evaluate new ideas quickly using
controlled experiments in the production environment [25].

1.1 Feedback-Driven Development
In this paper, we focus on one particular new opportunity in
SaaS application development: tightly integrating the collec-
tion and analysis of runtime monitoring data (or feedback)
from production SaaS deployments into the tools that de-
velopers use to actually work on new versions of the ap-
plication (i.e., into Integrated Development Environments,
or IDEs). We refer to this notion as feedback-driven devel-
opment (FDD). FDD includes, but goes way beyond, visu-
alizing performance in the IDE. We consider FDD to be a
logical next step in a long succession of advancements in
software engineering that blur the traditional boundaries be-

1 http://www.infoq.com/news/2014/03/etsy-deploy-50-times-a-day
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tween building and operating software products (e.g., cloud
computing [9], DevOps [21], or live programming [32]).

We argue that now is the right time for FDD. Firstly,
driving software development through runtime feedback is
highly necessary, given that the fast release cycles prevalent
in SaaS and CD do not allow for long requirements engi-
neering and quality assurance phases. Secondly, the neces-
sary feedback data is now available. Most SaaS applications
are run using the cloud deployment model, where comput-
ing resources are centrally provided on-demand [9]. This al-
lows for central management and analysis of runtime data,
often by using Application Performance Monitoring (APM)
tools, such as New Relic2. However, currently, this runtime
data coming from operations (operations data) is hardly in-
tegrated with the tooling and processes that software de-
velopers use in their daily work. Instead, operations data is
usually available in external monitoring solutions, making it
cumbersome for developers to look up required information.
Further, these solutions are, in many cases, targeted at op-
erations engineers, i.e., data is typically provided on system
level only (e.g., CPU load of backend instances, throughput
of the SaaS application as a whole) rather than associated to
the individual software artifacts that developers care about
(e.g., lines of code, classes, or change sets). Hence, opera-
tions data is available in SaaS projects, but it is not easily
actionable for software developers.

1.2 Paper Contribution and Outline
In this paper, we discuss the basic idea behind the FDD
paradigm based on two classes of FDD tools, namely an-
alytic and predictive FDD. Analytic FDD tools bring run-
time feedback directly into the IDE and associate perfor-
mance data visually to the software artifacts that they relate
to, hence making operations data actionable for software de-
velopers. For instance, this allows developers to refactor and
optimize applications based on feedback on how the code
actually behaves during usage.

Predictive FDD goes one step further, and warns develop-
ers about problems based on local code changes prior to even
running the application in production. To this end, predictive
FDD builds upon static code analysis [1, 13], but augments
it with knowledge about runtime behavior. This allows us
to generate powerful warnings and predictions, which would
not be possible based on static analysis alone. Even more so-
phisticated predictive FDD tools are able to use knowledge
about the concrete system load that various service calls in-
duce to predict the impact of code changes on the cloud host-
ing costs of the application, warning the developer prior to
deployment about changes that will make hosting the appli-
cation in the cloud substantially more costly.

In Section 2 we give a brief exposition of relevant back-
ground, which we follow up by an illustration of an example
application that can benefit from FDD in Section 3. We in-

2 http://newrelic.com

troduce the general concepts in Section 4, and, in Section 5,
substantiate the discussion using three concrete case studies
of analytic as well as predictive FDD tools, which we have
devised and implemented as part of the European research
project CloudWave3. Further, we elaborate what major chal-
lenges remain that might impede the wide-spread adoption
of feedback usage in everyday development projects in Sec-
tion 6. Finally, we discuss related research work in Section 7,
and conclude the paper in Section 8.

2. Background
The overall vision of FDD is tightly coupled to a number of
other recent advances in Web engineering, some of which
we have already sketched in Section 1. We now provide a
more detailed background, to allow the reader to understand
what kind of applications we assume will be supported by
FDD going forward. Specifically, three current trends (cloud
computing, SaaS, and continuous delivery) form the basis of
FDD.

2.1 SaaS and Cloud Computing
The concept “cloud computing” is famously lacking a crisp
and agreed-upon definition. In this paper, we understand
“cloud” applications to mean applications that are provided
as a service over the Web (i.e., SaaS in the NIST model of
cloud computing [34]), in contrast to applications that are
licensed and installed on premise of a customer’s site, or
downloaded and run on the user’s own desktop or mobile
device. Figure 1 illustrates these different models.

Locally Installed On-Premise

Install

Use

Install Use

SaaS

VENDORVENDORVENDOR

Figure 1. SaaS in contrast to on-premise or on-device soft-
ware provisioning models. In SaaS, only one instance of the
application exists and is accessed by clients directly. The
software is never installed outside of the vendor’s control.

SaaS has some interesting implications for the evolution
and maintenance of applications. Most importantly, there is
exactly one running instance of any one SaaS application,
which is hosted by and under control of the service provider.
This single instance serves all customers at the same time
(multi-tenancy [3]). Implementing and rolling out new fea-
tures in a SaaS environment is at the same time promis-
ing (as rollouts are entirely under the control of the ser-
vice provider) and challenging (as every rollout potentially
impacts each customer) [4]. Further, the SaaS model gives

3 http://cloudwave-fp7.eu
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service providers ready access to a rich set of live perfor-
mance and usage data, including, for instance, clickstream
data, fault logs, accurate production performance metrics,
or even production user data (e.g., uploaded videos, number
and type of Skype contacts). In addition to supporting tradi-
tional operations tasks (e.g., application performance engi-
neering), this abundance of data has also led to the ongoing
“big data” hype [5], which promises to generate deep mar-
ket insight based on production data. However, these anal-
yses are primarily on a strategic level (e.g., which product
features to prioritize, which markets to address). Whether,
and how, cloud feedback can also be used to support soft-
ware developers in their daily workflow, i.e., while they are
writing or optimizing code, is a much less discussed topic.

2.2 Continuous Delivery
Another recent advance that is tightly coupled to the changed
evolution of SaaS applications is continuous delivery (CD).
CD has recently gained steam due to the success of compa-
nies such as Facebook, Google, or Etsy, all of which claim
to employ CD to varying degrees for their core services. The
most significant conceptual novelty behind CD is the abol-
ishment of the traditional notion of releases. Instead, each
change to the SaaS application may be shipped (i.e., pushed
to production) independently of any release cycles “as soon
as it is ready” [20].

In other release models (e.g., release trains [24], as used
by the Firefox project), new features are rolled out accord-
ing to a defined release plan. If a new feature is not ready
in time for a feature cut-off date, it is delayed to the next
release, which may in the worst case take months. At com-
panies like Etsy, features are rolled out as soon as they are
deemed ready, independently of a defined release plan. Face-
book claims to occupy a middle ground between release
trains and strict CD, where most features are rolled out into
production the same day they are ready, while a fraction of
particularly sensitive changes (e.g., those related to privacy)
are rolled out once a week [14]. In practice, these models re-
sult in frequent, but tiny, changes to the production environ-
ment, in the most extreme cases multiple times a day. This
practice increases both, the business agility of the applica-
tion provider, as well as the likelihood of releasing badly-
performing changes to production [42]. A consequence is
that SaaS applications with such release models tend to be
in a state of perpetual development [14] – there is never a
stable, released and tagged version which is not supposed to
be touched by developers.

3. Illustrative Example
In the rest of this paper, we base our discussions on a (ficti-
tious) enterprise application MicroSRM. MicroSRM is based
on a microservice architecture [37], of which a small ex-
cerpt is shown in Figure 2a. MicroSRM consists of a pur-
chase order service (PO) and a supplier service (Supplier).

The application allows companies to manage its purchases
and suppliers, such that its business users can create, modify
or delete purchase orders, or view individual purchase or-
ders including all details, such as order items. Following the
notion of microservices, each of those services consists of a
frontend, which acts both as a load balancer and API for the
clients of the service, a data storage, and a number of back-
end instances, which implement the main business logic of
the service. The concrete number of backend instances can
be adjusted dynamically, based on load and following the
idea of auto-scaling [30]. This is depicted in Figure 2(b).

User 
Interface

Supplier 
Service

Purchase 
Order

Service

Supplier 
Rating 
Service

Payment 
Service

Fr
on

te
nd

Supplier Service

Service 
DB

Backend 
VMs

Backend 
VMs

Backend 
Instances

(a) Excerpt of the Microservices Architecture of MicroSRM

(b) Zooming into a Service (SupplierService)

Figure 2. Architecture overview of MicroSRM consisting of
a network of Microservices.

Let us now assume that MicroSRM has been running suc-
cessfully for a while, and the application is supposed to be
extended with an additional service, a supplier rating ser-
vice (Rating). The new service utilizes information accessed
through the APIs of both, PO and Supplier. It calculates and
rates how well suppliers have performed in the past, eval-
uating delivery performance, comparing prices, as well as
user ratings persisted in the Rating service itself. After the
service has been deployed in production, it can be observed
(through standard monitoring tools), that the new Rating ser-
vice shows poor response time behavior, which had not been
noticed through tests during development. The root cause for
this performance problem has been that the complete data to
recalculate the supplier rating based on orders from this sup-
plier has been fetched at runtime from the PO service. With
a growing number of orders this had slowed down the Rat-
ing service. Moreover, the algorithm used to calculate the
rating was linear in the number of order items per supplier.
To identify the root cause of the performance problem, the
Rating service developers had to perform a manual analy-
sis. They had to log the data volume accessed from the PO
service and analyze the usage of this data inside the rating
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algorithm. Only then they could start to re-engineer the al-
gorithm, replicate data from the PO service, or use a data
aggregation API at the PO service.

At the time the performance problem was discovered and
the analysis was conducted, it already had an impact on the
end user. We argue that feedback on the application can be
provided much earlier, already during the development of
the Rating service. All operations data relevant for identi-
fying the root cause of the performance problem (e.g. data
volume inside the PO service) has already been available. It
has just not been pushed to the appropriate level of abstrac-
tion, namely the development artifacts, such as the involved
REST calls in the program code. Additionally, the available
feedback has not been integrated into the daily workflow and
tools of developers.

As we will detail in the following sections, FDD is about
enabling the automation of this feedback process: aggregat-
ing operations data, binding it to development artifacts, and
predicting and visualizing it in the IDE.

4. Feedback-Driven Development
In this section, we introduce our approach for Feedback-
driven Development (FDD), a paradigm for systematically
exploiting operations data to improve development of SaaS
applications. We discuss that FDD is about tightly integrat-
ing the collection and analysis of feedback from production
deployments into the IDEs that developers use to actually
work on new versions of the application. By nature, FDD is
particularly suited to support more service-oriented and CD-
based projects, but the underlying ideas are useful for the
development of any kind of SaaS application.

FDD is not a concrete tool or process. Rather, FDD is an
abstract idea, which can be realized in different ways, using
different kinds of operations data and feedback, to support
the developer in different ways. We refer to these different
flavors of the same underlying idea as FDD use cases. In this
section, we discuss general FDD concepts, while concrete
use cases and prototypical example implementations on top
of different cloud and monitoring systems are the scope of
Section 5.

4.1 Conceptual Overview
A high-level overview that illustrates the core ideas behind
FDD is given in Figure 3. At its heart, FDD is about mak-
ing operations data, which is routinely collected in the run-
time environment, actionable for software developers. To
this end, we transform source code artifacts (e.g., services,
methods, method invocations, or data structures) into one
or more graph representations modeling the dependencies
between different artifacts (dependency graphs). Each node
in these dependency graph represents a source code artifact
ai ∈ A. The concrete semantics of these graphs, and what
they contain, differ for different FDD use cases. For exam-
ple, for feedback-based performance prediction, the depen-

dency graph is a simplified abstract syntax tree (AST) of
the application, containing only method definitions, method
calls, and control structures (ifs and loops).

Operations data (e.g., service response times, server uti-
lization, but also production data, such as the number of
purchase orders as in our example) is collected from run-
time entities (e.g., services or virtual machines running in
the production environment). Every operations data point,
di, is represented as a quadruple, di = 〈t, τ, e, v〉, where:

• t is the time the operations data point has been measured,
• τ is the type of operations data (as discussed in Section

4.2.1),
• e refers to the runtime entity that produced the data point,
• v is the numerical or categorical value of the data point.

Operations data deriving from the measurement of a run-
time entity usually come in the form of a series D =
{d1, d2, . . . , dn}. In our illustrative example, relevant run-
time entities are, for instance, the services, virtual machines,
and databases. Operations data can be delivered in various
forms, for instance through execution logs or events. Feed-
back control is the process of filtering, integrating, aggregat-
ing, and mapping this operations data to relevant nodes in
the dependency graphs generated from code artifacts. There-
fore, we define feedback as the mapping from source code
artifacts to a set of operations data points, F : A 7→ {D}.

This process is steered by feedback mapping, which in-
cludes specifications (tailored to expected use cases) that
contain the knowledge which operations data is mapped to
which entries in the dependency graphs, and how. In our ex-
ample, the services would need to be mapped to their invo-
cation in the program code.

This feedback-annotated dependency graphs then form
the basis of concrete FDD use cases or tools, which either
visualize feedback in a way that is more directly actionable
for the software developer (left-hand side example use case
in Figure 3), or use the feedback to predict characteristics of
the application (e.g., performance or costs) prior to deploy-
ment (right-hand side example).

4.2 Operations Data and Feedback
We now discuss the collection, aggregation, and mapping of
operations data to feedback in more detail.

4.2.1 Types of Operations Data
In Figure 4, we provide a high-level taxonomy of types of
operations data. Primarily, we consider monitoring data, i.e.,
the kind of operational application metadata that is typi-
cally collected by state-of-the-art APM tools, and production
data, i.e., the data produced by the SaaS application itself,
such as placed orders, customer information, and so on.

Monitoring data can be further split up into execution
performance data (e.g., service response times, database
query times), load data (e.g., incoming request rate, server
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.......
[26/06/2015:21205.0], responseTime, "CustomerService", 204
[26/06/2015:21215.0], responseTime, "CustomerService", 169
[26/06/2015:21216.0], cpuUtilization, "CustomerServiceVM2", 0.73
[26/06/2015:21216.0], cpuUtilization, "CustomerServiceVM1", 0.69
[26/06/2015:21216.1], vmBilled, "CustomerServiceVM1", 0.35
[26/06/2015:21219.4], ids, "ids", [1,16,32,189,216]
........

Runtime Entities

FDD Use Cases

... ...

readConnecti
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idsconnectionPo
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readConnection

getConnections

idsconnectionPool Feedback Control

Feedback 
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VM1
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Interface

VM

Purchase Order
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Figure 3. Conceptual overview of Feedback-Driven Development. Code artifacts are transformed into use case specific de-
pendency graphs, which are enriched with feedback harvested in the production cloud environment. The annotated dependency
graphs are then used to visualize feedback directly in the IDE, as well as predict the impact of changes to the program code.

utilization), costs data (e.g., hourly cloud virtual machine
costs, data transfer costs per 10.000 page views), and user
behavior data (e.g., clickstreams).

4.2.2 Feedback Control
All this operations data is, in principle, already available in
today’s cloud solutions, either via built-in cloud monitor-
ing APIs (e.g., CloudWatch4 in Amazon Web Services) or
through external APM solutions. However, operations data
by itself is typically not overly interesting to developers
without proper analysis, aggregation, and integration. This
is what we refer to as feedback control.

Feedback control is steered by feedback specifications,
which are custom to any specific FDD use case. Further,
software developers typically are able to further refine feed-
back specifications during visualization (e.g., via a slider in
the IDE which controls the granularity of feedback that is vi-
sualized). Feedback control encompasses five steps, (1) data
collection, (2) data filtering, (3) data aggregation, (4) data

4 http://aws.amazon.com/cloudwatch/

integration, and (5) feedback mapping, as depicted in Figure
5.

Operations 
Data

Monitoring 
Data

Production 
Data

Load Data Performance 
Data Costs Data User Behavior 

Data

Products Orders...service load 
(req/s)

response 
time (ms)

cloud costs 
($/h) 

click stream 
data (traces)... ... ... ...

Figure 4. Overview of the types of operations data we con-
sider in FDD and concrete examples. We distinguish be-
tween production data (i.e., the payload of the application,
for instance, placed orders) and the monitoring informa-
tion delivered by APM tools (e.g., response times or service
load). A special type of APM data is usage data (e.g., click
streams).
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Data collection controls how operations data is moni-
tored and collected on the target system. This may include
instrumenting the application to produce certain operations
data which would be unavailable otherwise (e.g., by sending
required production data to the APM tool), or by configur-
ing the APM tool (e.g., to collect operations data for a given
percentage of users or only during system load below x per-
cent).

Data filtering controls how the data is filtered for a spe-
cific use case. That is, FDD use cases often differ in the types
and resolution of required operations data. This includes se-
lecting the type of operations data relevant for the specific
FDD use case. For resolution, for instance, performance vi-
sualization use cases often require fine-grained data to dis-
play accurate dashboards and to allow developers to drill
down. Performance prediction, on the other hand, does not
require data on the same resolution, and can work on a more
coarse-grained sampling.

Data aggregation controls how operations data should
be compressed for a use case. For some use cases, basic
statistics (e.g., minimum, maximum, arithmetic mean) are
sufficient, while other use cases require data on a different
level of granularity.

Data integration controls how different types of opera-
tions data (or operations data originating from different run-
time entities) should be integrated. For instance, in order to
calculate the per-request costs of a service, the hourly costs
of all virtual machines hosting instances of this service need
to be integrated with request counts for this service.

Finally, feedback mapping links collected, filtered, ag-
gregated, and integrated operations data to development-
time source code artifacts. This final step transforms oper-
ations data into feedback, i.e., data that is immediately ac-
tionable for developers.

Each of the first four steps takes the form of transforma-
tion functions, taking as input one or more series of opera-
tions data D, and produces one or more series of operations
data D′ as output. In feedback specification, these functions
can be represented using, for instance, the complex event
processing [29] (CEP) abstraction (i.e., using Esper Pattern
Language (EPL5). The final step, feedback mapping, is typ-
ically encoded in FDD tools. That is, the knowledge which
series of operations data should be mapped to which source
code artifacts is generally hard-coded in FDD implementa-
tions for a specific use case.

4.2.3 Feedback Freshness
One of the challenges with integrating feedback is identify-
ing when the application has already sufficiently changed so
that feedback collected before the change should not be con-
sidered anymore (i.e., the feedback became “old” or “stale”).
A naive approach would simply ignore all data that had been
gathered before any new deployment. However, in a CD pro-

5 http://www.espertech.com/esper/index.php

.......
[26/01/2015:21205.1], responseTime, 
"CustomerService", 204
[26/01/2015:21215.0], responseTime, 
"CustomerService", 169
[26/01/2015:21217.0], responseTime, 
"CustomerService", 201
[26/01/2015:21218.4], responseTime, 
"CustomerService", 99
........

Data Collection

Data 
Integration

getCustomerData Feedback 
Mapping

.......
[26/01/2015:21205.1], requestsPerSec, 
"CustomerService", 14872
[26/01/2015:21205.1], requestsPerSec, 
"CustomerService", 11092
[26/01/2015:21217.0], requestsPerSec, 
"CustomerService", 15872
........

Data Filtering 
and Aggregation

Figure 5. Feedback is filtered, aggregated, and integrated
operations data, which has been mapped to source code
artifacts (e.g., method calls).

cess, where the application is sometimes deployed multiple
times a day, this would lead to frequent resets of the available
feedback. This approach would also ignore external factors
that influence feedback, e.g., additional load on a service due
to increased external usage.

Hence, we propose the usage of statistical changepoint
analysis on feedback to identify whether data should still
be considered “fresh”. Changepoint analysis deals with the
identification of points within a time series where statistical
properties change. For the context of observing changes of
feedback data, we are looking for a fundamental shift in the
underlying probability distribution function. In a time series,
we assume that the observations come from one specific dis-
tribution initially, but at some point in time, this distribution
may change. Recalling the series of observations in opera-
tions data in Section 4.1, D = {d1, d2, . . . , dn}, a change-
point is said to occur within this set when there exists a point
in time, τ ∈ {1, ..., n − 1}, such that the statistical prop-
erties of {d1, ..., dτ} and {dτ+1, ..., dn} exhibit differences.
The detection of these partition points in time generally takes
the form of hypothesis testing. The null hypothesis, H0, rep-
resents no changepoint and the alternative hypothesis, H1,
represents existing changepoints. In previous work, we have
already shown that changepoint analysis can be successfully
employed to detect significant changes in the evolution of
operations data [11].
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(a) Code in development environment

(c) Annotated dependency graph combining code artefacts and 
operations data and creating feedback

readConnections

getConnections

showConnections

setConnectionImage

setConnectionStatus
.......
[26/06/2015:21205.0], responseTime, “showConnections, 204
[26/06/2015:21215.0], responseTime, “setConnectionImage, 169
[26/06/2015:21216.0], responseTime, “PaymentService”, 79
[26/06/2015:21216.0], cpuUtilization, “ConnectionsVM1", 0.69
[26/06/2015:21216.1], vmBilled, "CustomerServiceVM1", 0.35
[26/06/2015:21219.4], ids, "ids", [1,16,32,189,216]
........

.......
[26/06/2015:21216.0], cpuUtilization, “ConnectionsVM2", 0.73
[26/06/2015:21216.0], cpuUtilization, “ConnectionsVM1", 0.69
[26/06/2015:21216.1], vmBilled, “PaymentServiceVM, 0.35
[26/06/2015:21219.4], ids, “connectionIDs, [1,16,32,189,216]
........

(b) Operations data gathered through monitoring

getImage

(d) Feedback Visualization in the IDE

Figure 6. How visualization works: (a) A developer examines the method readConnections. (b) The application is in
production and operations data is available from concrete traces. (c) The dependency tree is annotated with operations data,
creating feedback. (d) The feedback visualization is integrated in the code view of the IDE.

4.3 Supporting Developers With Feedback
The purpose of feedback is thus by definition to support
developers in reasoning about the future behavior of the
systems they create. We can distinguish two types of FDD
use cases: analytic FDD and predictive FDD. The former
deals with analyzing operations data and its relation to de-
velopment artifacts a-posteriori. The latter provides a pre-
diction of future system behavior under certain assumptions.
In practice, analytic FDD often takes the form of feedback
visualization, while predictive FDD is primarily concerned
with inferring (as of yet unknown) operations data prior to
deployment of a change.

4.3.1 Feedback Visualization
After feedback data is collected it needs to be displayed to
the developer in a meaningful context to become actionable.
As with all visualizations, the chosen visualization tech-
niques should be appropriate for the data at hand, allow-
ing the user to interactively explore the recorded feedback
data and quickly identify patterns. In the context of FDD,
the more interesting challenge is to put the implicitly ex-
isting link between feedback data and the development-time
artifacts (feedback mapping) to good use. Figure 6 illustrates
the process of feedback visualization starting from the devel-
oper’s code view and execution traces to how standard IDE
views are being enriched with feedback.

A developer is examining readConnections(), consist-
ing of a small number of method calls. Different kinds of op-
erations data on these methods have been made available by
monitoring solutions. A combination of simple static anal-
ysis (extracting a simplified AST and call graph in Figure
6a) and dynamic analysis (extracting relevant metrics from
concrete traces in Figure 6b) results in the annotated depen-
dency graph seen in Figure 6c. Note that the getImage node
is highlighted, as it is the only artifact deemed relevant in this
scenario. Relevance is determined from a combination of pa-
rameters of feedback control and statistics calculated from
the values of the attached feedback data (e.g., methods with

an average execution time over a developer-defined thresh-
old). These artifacts are then highlighted in the IDE through
warnings and overlays in the exact spot the identified issue
occurred, as depicted in a mockup in Figure 6d. Develop-
ers are now able to utilize this targeted feedback to guide
their design decisions and improve the application. Exem-
plary concrete visualization techniques that we have exper-
imented with in our concrete tooling are shown in Section
5.

4.3.2 Predicting Future Behavior Based on Feedback
Predictive FDD aims at deriving the impact of changes
during development in an application based on existing
feedback. Figure 7 illustrates the steps leading to the pre-
diction of future behavior of an application. A developer
changes the code of the method overallRating(), adding
an iteration over suppliers (getSuppliers()) and a call
to a different service (getPurchaseRating()). Figure
7b shows how this code change transforms the depen-
dency graph (described in Section 4.1). The change in-
troduced 3 new nodes where feedback is already avail-
able from existing traces: (1) getSuppliers, (2) collec-
tion size of suppliers, and (3) getPurchaseRating.
The steps “Statistical Inference” and “Feedback Propaga-
tion”, illustrated in 7c, complete the prediction cycle. Feed-
back for the iteration node Loop:suppliers is inferred
using the feedback of its child nodes (size:suppliers and
getPurchaseRating) as parameters for a statistical infer-
ence model, identifying it as a critical entity. The concrete
statistical model is specific to the use case. For instance, for
one of our use cases (PerformanceHat in Section 5.2), we
chose to implement a quite simplistic model for loop predic-
tion. We model the total execution time of a loop, τ(l), as the
sum of the average execution times, τ̄ , of all methods within
the loop, {lm,1, . . . , lm,n}, times the average collection size,

|l|, the loop is iterating over: τ(l) =
n∑
i=1

τ̄(lm,i) × |l|. De-

pending on the specific application nature, the complexity of
these inference models can vary greatly. In a last step, all de-
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Code 
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readConnection
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(a) Code changed by developer (b) Dependency graph before and after the code change (existing feedback is already attached)

overallRating

readConnection

size:
suppliers

getSuppliers Loop:suppliers

getPurchaseRating

overallRating

readConnection

size:
suppliers

getSuppliers Loop:suppliers

getPurchaseRating

Inferred Critical 
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[Feedback Propagation]

[Statistical Inference]

(c) Prediction through Statistical Inference of new nodes without feedback and Feedback 
Propagation of the changes

(d) Feedback Prediction in the IDE

?

Figure 7. How Prediction works: (a) A developer changes the program and adds a loop within the method overallRating().
(b) The annotated dependency graph changes accordingly with the change, adding the loop (Loop:suppliers) and its nodes
(size:suppliers and getPurchaseRating ). (c) Prediction and change impact analysis is achieved through statistical inference
and feedback propagation. (d) The prediction is integrated in the code view of the IDE, warning the developer about a
preformance-critical change.

rived feedback from changes are propagated in the nodes of
the graph following its dependency edges. This kind of pre-
diction allows us to warn developers about possible issues
of their code changes prior to even running the application
in production, as shown in a mockup in Figure 7d.

5. Case Studies
As discussed in Section 4, the abstract idea of FDD can be
instantiated in various ways, and through various concrete
developer tools. We now discuss three concrete tools which
implement the FDD paradigm in different ways.

5.1 FDD-Based Expensive Artifacts Detection
Performance Spotter is an experimental set of tools devel-
oped on top of the SAP HANA Cloud Platform6. The aim
of Performance Spotter is to help the developers in find-
ing expensive development artifacts. This has been achieved
by creating analytic feedback based on collected operations
data (see Section 4.2) and mapping this feedback onto cor-
responding development artifacts in the IDE. Other infor-
mation such as the number of calls and the average exe-
cution time are derived by aggregating the collected data.
Performance Spotter provides ways to promote performance
awareness, root cause analysis, and performance analysis for
external services. Hence, Performance Spotter is one instan-
tiation of an analytic FDD tool.

Performance Awareness. Performance Spotter helps de-
velopers to become aware of potential performance issues

6 http://hcp.sap.com

by observing, aggregating and then visualizing the collected
metrics of artifacts. Figure 8, illustrates Performance Spot-
ter’s Functions Performance Overview. On the left side of
the figure, a Javascript code fragment is depicted. On the top
right, a list of functions with their relative execution times to
other functions is visualized. The blue bars represent the rel-
ative execution times. On the bottom right, a diagram illus-
trates the average execution times of selected functions over
time. We can identify poorly performing functions by using
the given overview. For instance, Figure 8 shows that the av-
erage execution time of getPOs() is very large in relation
to other functions, and that the performance of this function
has recently decreased, Furthermore, execution times have
increased significantly at particular application runs (prob-
lematic sessions) and stayed almost stable afterwards. Iden-
tifying problematic sessions enables developers to analyze
the impact of code as well as resource changes on certain
artifacts’ performance behavior. In this particular case, the
cause of increasing the execution times was code changes in
getPOItems() before each problematic sessions. However,
discovering the root cause of the problem required more in-
sight into the collected monitoring data.

Root Cause Analysis. However, knowing that a develop-
ment artifact suffers from poor performance is by itself not
sufficient. Developers need to find the root cause of such is-
sues. Thus, another feature of Performance Spotter is Func-
tions Flow, which builds an annotated dependency graph of
functions. The nodes of this graph are function calls and
there is an edge between two nodes if one function calls an-
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Figure 8. Performance Spotter’s Functions Performance
Overview.

other (i.e., a call graph). The nodes are annotated with rele-
vant feedback (e.g., execution time). Having a visualization
of the dependency graph of functions, we can find the root
cause of performance issues by traversing the graph and fol-
lowing the poorly performing nodes. The Functions Flow of
the artifact getPOs() is depicted in Figure 9, showing that
getPOItems() is the most expensive function call, i.e., it is
the root cause of the performance problem.

Figure 9. Performance Spotter’s Functions Flow helps the
developer to find expensive functions.

External Service Performance Analysis. Since in many
cases an external service (e.g., database) is called within
an application, it is necessary to keep track of its behavior
from an application’s perspective. Previously, we have de-
tected getPOItems() as the cause for the high execution
time of getPOs(). Internally, this method uses a number of
database calls, which indicates that improving the database
calls would improve the overall performance of the func-
tion. Performance Spotter provides a feature to analyze the

database statements directly from where they are called. Fig-
ure 10 shows a piece of code (on the top) and the Database
Performance Overview (on the bottom). This feature enables
the developer to find the expensive database statements by
sorting and/or filtering them.

Figure 10. Performance Spotter’s Database Performance
Overview helps the developer to find expensive database
calls.

5.2 FDD-Based Prediction of Performance Problems
A second concrete implementation of the FDD paradigm is
PerformanceHat, a prototypical Eclipse IDE plugin that is
able to predict performance problems of applications dur-
ing development in the IDE (i.e., prior to deployment). It
works with any underlying (cloud) platform, as long as the
required operations data (see discussion below) is available.
PerformanceHat is consciously designed in a way that it can
easily interface with a variety of monitoring solutions as a
backend for operations data (e.g., APM solutions such as
NewRelic). The current proof-of-concept version of Perfor-
manceHat provides two main features, hotspot detection and
critical loop prediction.

Detecting Hotspots. Hotspots refer to methods that, in
the production execution of the application, make up a sub-
stantial part of the total execution time of the application
(cp. “expensive artifacts” in the previous case study discus-
sion). In a traditional environment this information could be
looked up in dashboards of APM solutions, requiring a con-
text switch from the development environment to the oper-
ations context of performance dashboards. It also requires
further navigation to a specific location in these dashboards.
In the FDD paradigm, such hotspot methods are reported as
warnings attached to a software artifact within the develop-
ment environment. Figure 11 gives an example of a hotspot.
Notice that hotspot methods are identified both at method
definition level (e.g., private void login()) and method
call level (e.g., Datamanager(b).start()) in Figure 11.
When hovering over the annotated entities a tooltip displays
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summary statistics (currently the average execution time) as
a first indicator of the performance problem, as well as a
deep link to a dashboard visualizing the time series of oper-
ational metrics that led to the feedback.

For hotspot detection, PerformanceHat requires only
method-level response times in ms, as delivered by state-
of-the-art monitoring solutions. For program statements for
which no response times are available, a response time of 0
ms is assumed. In practice this means that, oftentimes, we
primarily detect hotspots of statements that implement inter-
actions with external components or services (e.g., database
queries, remote method invocations, JMS messaging, or in-
vocations of REST interfaces). In Figure 11, login() is
identified as a hotspot, as DataManager.start(..) in-
vokes an external REST service in the Microservice based
architecture of the MicoSRM illustrative example (see Sec-
tion 3). Other statements, for instance b.getPassword(),
are ignored as the response times for these statements are
negligible.

Figure 11. The PerformanceHat plugin warning the devel-
oper about a “Hotspot” method.

Critical Loop Prediction.
Performance problems are often related to expensive

loops [23]. As described in Section 4.3.2, in FDD we predict
the outcome of changes in code by utilizing existing data to
infer feedback for new software artifacts. In Performance-
Hat we are able to do so for newly introduced loops over
collections (i.e., foreach loops). In the initial stages of our
prototype we propose a simplified model over operations
data on collection sizes and execution times of methods to
infer the estimated execution time of the new loop (as dis-
cussed in Section 4.3.2). Figure 12 gives an example of a
so-called Critical Loop. When hovering over the annotated
loop header a tooltip displays the estimated outcome (Av-
erage Total Time), the feedback parameters leading to this
estimation (Average Iterations and Average Time per Iter-
ation), and the execution times of all methods in the loop.
This information enables developers to dig further into the
performance problem, identify bottlenecks and refactor their
solutions to avoid poor performance even before committing
and deploying their changes.

We are in the process of releasing PerformanceHat as
an open source project at GitHub7, as a plugin compatible
with Eclipse Luna (Version 4.4.1) and onwards. A screencast

7 http://www.github.com/sealuzh/PerformanceHat

demonstrating PerformanceHat’s capabilities can be found
online8 as well.

Figure 12. Prediction of Critical Loops in the Performance-
Hat plugin.

5.3 FDD-Based Prediction of Costs of Code Changes
It is often assumed that deploying applications to public, on-
demand cloud services, such as Amazon EC2 or Google Ap-
pengine, allows software developers to keep a closer tab on
the operational costs of providing the application. However,
in a recent study, we have seen that costs are still usually
intangible to software developers in their daily work [12].
To increase awareness of how even small design decisions
influence overall costs in cloud applications, we propose in-
tegrated tooling to predict costs of code changes following
the FDD paradigm. We present our ideas on how we can
predict costs induced by introducing a new service and by
replacing existing services. Unlike the Performance Spotter
and PerformanceHat use cases, our work on this idea is still
in an early stage. We are currently in the process of building
a proof-of-concept implementation for these ideas on top of
Eclipse, NewRelic and AWS CloudWatch.

Figure 13. IDE Tooling displaying how the new service
SupplierRating has an impact on the cost of existing service
of the PurchaseOrder.

Costs through new Services. When considering services
deployed on cloud infrastructure, increasing load usually
leads to the addition of compute instances to scale horizon-
tally or vertically. In this scenario, illustrated in Figure 13,
we introduce a new service SupplierRatingService that in-
vokes the existing PurchaseOrderService. The IDE tooling

8 http://bit.ly/PerformanceHat
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provides information on the deployment and cost structure
of the existing service (StatusQuo) and provides an impact
analysis on how this structure would change (Expected Im-
pact) based on load pattern parameters (Incoming Requests).
The load pattern parameters would be estimated by leverag-
ing monitoring data for similar services in the application
and can be adjusted by the developer to perform sensitivity
analysis.

Costs induced by Replacing Services. Another, simi-
lar, scenario in Figure 14 considers the replacement of an
invocation within an existing service (OtherPaymentSer-
vice) with a new service (NewPaymentService). In this case,
the load pattern parameters are known and pre-populated
in the interface (Incoming Requests). The impact analysis
(Expected Impact) differs from the previous case in that the
model takes into account partial rollouts (Simulation). This
allows for more complex sensitivity analysis scenarios.

Figure 14. IDE Tooling displaying how the replacement of
an existing service (OtherPaymentService) by a new service
(NewPaymentService) has an impact on overall costs.

6. Challenges Ahead
Based on our case study implementations, as well as based
on initial experiments and discussions with practitioners, we
have identified a small number of interesting challenges that
need to be addressed before the FDD idea can be deployed
on a larger scale.

Data Access and Privacy. The availability of rich, up-
to-date, and correct operations data is the cornerstone upon
which FDD builds. While modern cloud and APM solutions
already provide a wealth of data, we have still encountered
concerns regarding the availability of some of the data dis-
cussed in Figure 4. Most importantly, production data (e.g.,
user information, order data) will, in many cases, be unavail-
able to engineers due to privacy and data protection con-
cerns. Consequently, our initial use cases in PerformanceHat
and Performance Spotter did not make use of these types of
operations data. Relatedly, when deploying the FDD idea on
Web scale, we will also face the orthogonal problem that
there will in many cases actually be too much data available
to use directly in developer-facing FDD tools.

For both cases, it will become necessary to invest more
research into how operations data is actually harvested in
production. In terms of privacy protection, we envision fu-
ture monitoring solutions to be privacy-aware, and be able
to automatically anonymize and aggregate data to the ex-
tent required by local data protection laws or customer con-
tracts. We expect that many lessons learned from privacy-
preserving data mining [45] can be adapted to this challenge.
Further, we need to devise monitoring solutions that are able
to sample operations data directly at the source. While it is
easy to only generate data for a subset of calls (e.g., only
track 1% of all service invocations), doing so while preserv-
ing the relevant statistical characteristics of the underlying
distribution is not trivial.

Confounding Factors. All prototypical FDD use cases
discussed in Section 5 are operating on the simplified as-
sumption that feedback is largely free from confounding fac-
tors, such as varying service performance due to external in-
fluences (e.g., variance in networking performance, external
stress on the service, or a service scaling up or down due
to changes in customer behavior). This problem is amplified
by the fact that cloud infrastructures are known to provide
rather unpredictable performance levels [26]. When deploy-
ing FDD in real projects, such confounding factors will lead
to false positives or negatives in predictions, or produce mis-
leading visualizations.

More work will be required on robust data aggregation
methods that are able to produce useful feedback from noisy
data. These methods will likely not only be statistical, but
integrate heterogeneous operations data from different levels
in the cloud stack (e.g., performance data, load data, scaling
information) to produce clearer and more accurate feedback.
First steps in this direction have already been conducted
under the moniker 3-D monitoring [31].

Information Overload. Another challenge that all FDD
use cases discussed in Section 5 face is how to display the,
and only the, information that is relevant to a given devel-
oper. Ultimately, visualizations and predictions generated by
FDD tools need to not only be accurate, but also be relevant
to the developer. Otherwise, there is a danger that develop-
ers start ignoring or turning off FDD warnings. This problem
is amplified by the fact that different developers and project
roles care about different kinds of problems.

A technical solution to this challenge is customization
support. Feedback control (see Section 4.2.2) enables devel-
opers to turn specific feedback on and off, to restrict feed-
back to certain services or methods, or to change the thresh-
olds for warnings. For instance, in PerformanceHat, devel-
opers can change the threshold from which a method is dis-
played as a hotspot, either globally or on a per-method level.
However, in addition, more research is necessary to know
which kinds of feedback, warnings and predictions are typ-
ically useful for which kinds of developers and projects.
Existing research in software engineering on information
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needs [7, 16] and developer profiles [6] can serve as a ba-
sis for this work.

Costs as Opportunity. Our aim to integrate monetary
considerations within the FDD paradigm is to increase
awareness about the costs design decisions have when de-
veloping for the cloud. However, this awareness should go
beyond considering costs solely as a burden, but rather as an
opportunity (e.g., better performance through more comput-
ing power leads to more sales).

Possible solutions to this challenge include associating
cost models in FDD with business metrics, as well as proper
information visualization to underline opportunities.

Technical Challenges. Finally, there are a number of
technical challenges that need to be tackled when realizing
the FDD paradigm in industry-strength tools. Specifically,
in our work on PerformanceHat and SAP HANA’s Perfor-
manceSpotter, we have seen that implementing FDD in a
light-weight way, such that the additional static analysis, sta-
tistical data processing, and chart generation does not overly
slow down the compilation process or the perceived respon-
siveness of the IDE, is not trivial from a technical perspec-
tive. Feedback control, as discussed in Section 4.2.2, mit-
igates this challenge somewhat by minimizing the nodes in
the generated dependency graphs. However, particularly pre-
diction of the impact of code changes (see Section 4.3.2)
is currently taxing in terms of performance, as predicted
changes to the feedback associated to one method need to
be propagated through the entire application AST. We are
currently investigating heuristics to speed up this process.

7. Related Work
A substantial body of research exists in the general area
of cloud computing [19], including work on cloud perfor-
mance management and improvement (e.g., [17, 22, 40],
among many others). However, as [2] notes, software devel-
opment aspects of cloud computing and SaaS are currently
not widely explored. We have recently provided a first sci-
entific study that aims to empirically survey this field [12].

One of the observations of this study was that cloud
platforms and APM tools (e.g., the commercial solutions
NewRelic or Ruxit9) make a bulk of data available for soft-
ware developers, but that developers currently struggle to
integrate the provided data into their daily routine. Exist-
ing research work, for instance in the area of service [28,
36, 39], cloud [31, 35], or application monitoring [44], pro-
vides valuable input on how monitoring data should be gen-
erated, sampled, and analyzed. There is very little research
on how software developers actually make use of this data
to improve programs. FDD is an approach to address this
gap. However, FDD is not a replacement of APM, but rather
an extension that makes use of the data produced by APM
tools. To this end, our work bears some similarities to re-
search in the area of live trace visualization [15, 18]. How-

9 https://ruxit.com

ever, our work goes beyond the scope of visualization of pro-
gram flow.

Some parts of FDD, specifically the use cases more
geared towards predicting performance problems before de-
ployment, are based on prior work in the area of perfor-
mance anti-patterns [41, 46] and their automated detection.
Our implementation of these predictive FDD use cases also
leans heavily on prior work in static and dynamic program
analysis [38].

It is possible to view FDD as a pragmatic approach to
bring cloud development closer to the idealistic view of live
programming [32, 33]. Live programming aims to entirely
abolish the conceptual separation between editing and ex-
ecuting code. Developers are editing the running program,
and immediately see the impact of any code change (e.g.,
on the output that the program produces). Hence, developers
can make use of immediate feedback to steer the next edit-
ing steps [8]. Existing work on live programming has also
stressed the importance of usable IDEs and development en-
vironments [27]. FDD is an approach to take similar core
ideas (bringing feedback, e.g., in terms of execution time,
back into the IDE), but plugging them on top of existing
programming languages, tools and processes, rather than re-
quiring relatively fundamental changes to how software is
built, deployed, and used. FDD also acknowledges that, for
enterprise-level SaaS applications, local execution (as used
in live programming) is not necessarily a good approxima-
tion for how the application will perform in a Web-scale pro-
duction environment. Hence, the production feedback used
in FDD is arguably also of more use to the developer than
the immediate feedback used in live programming.

8. Conclusions
In this paper, we presented our vision on Feedback-Driven-
Development, a new paradigm that aims at seamlessly in-
tegrating feedback gathered from runtime entities into the
daily workflow of software developers, by associating feed-
back to code artifacts in the IDE. We discussed how oper-
ations data produced by APM solutions is filtered, aggre-
gated, integrated, and mapped to relevant development-time
artifacts. This leads to annotated dependency trees, which
can then be utilized for different use cases. In this paper, we
have focused on two types of FDD use cases. Analytic FDD
focuses on displaying relevant collected feedback visually
close to the artifacts that it is relevant for, hence, making the
feedback actionable for developers. Predictive FDD makes
use of already collected feedback in combination with static
analysis to predict the impact of code changes in produc-
tion. We have exemplified these concepts based on two im-
plementations, on top of Eclipse as well as on top of SAP’s
HANA cloud solution.

We believe that the general idea of FDD will, in the up-
coming years, become more and more important for soft-
ware developers, tool makers, and cloud providers. Cur-
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rently, we are arguably only seeing the tip of the iceberg
of possibilities enabled by integrating operations data into
the software development process and tools. However, we
also see a number of challenges that need to be addressed
before the full potential of FDD can be unlocked. Primar-
ily, we need to address questions of privacy and correct-
ness of data. Further, more academic studies will be required
to identify which kinds of feedback developers actually re-
quire in which situations. Finally, our practical implemen-
tations have also shown that there are numerous technical
challenges to be addressed when trying to make Web-scale
data useful for the developer in (or close to) real-time.
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