
Efficient “pythonic” access to FASTA files
using pyfaidx
Matthew Shirley1,2, Zhaorong Ma3, Brent Pedersen4, and Sarah
Wheelan1,2

1Department of Oncology, Johns Hopkins University School of Medicine, USA
2Center for Computational Genomics, Johns Hopkins University, USA
3SoftGenetics, LLC. 100 Oakwood Ave, Suite 350 State College, PA 16803, USA
4Eccles Institute of Human Genetics, University of Utah School Of Medicine, USA

ABSTRACT

The pyfaidx Python module provides memory and time-efficient indexing, subsetting, and in-place
modification of subsequences of FASTA files. pyfaidx provides Python classes that expose a dictionary
interface where sequences from an indexed FASTA can be accessed by their header name and then
sliced by position without reading the full file into memory. pyfaidx includes an extensive test suite
to ensure correct and reproducible behavior. A command-line program (faidx) is also provided as
an alternative interface, with significant enhancements to functionality, while maintaining full index file
compatibility with samtools. The pyfaidx module is installable from PyPI (https://pypi.python.
org/pypi/pyfaidx), and development versions can be found at Github (https://github.com/
mdshw5/pyfaidx).

Keywords: fasta, python, api, bioinformatics

Please send correspondence to mdshw5@gmail.com
Software issues should be submitted to http://github.com/mdshw5/pyfaidx/issues

1 INTRODUCTION1

The FASTA file specification was originally developed as the input format for the FASTA sequence2

alignment software (Pearson and Lipman, 1988). Subsequently, the FASTA file format has become a3

ubiquitous exchange format for single-letter alphabet biological sequences such as DNA, RNA, and4

protein. Commonly FASTA files contain multiple sequences, with each sequence having a uniform line5

length before wrapping to the beginning of a new line, and with sequence identifiers separating each6

sequence. Genome assemblies are commonly distributed as FASTA files, with each sequence entry7

representing either a contiguous assembled scaffold, or an entire chromosome.8

Manipulation of sequences stored in a FASTA file can become problematic when the in-memory size9

of a sequence exceeds the physical memory available to a program. In such cases, it is common to break10

a sequence into smaller chunks and then apply a function to each of the smaller chunks in succession.11

Because many FASTA files are line-wrapped with a consistent number of characters per line, a line can12

provide a natural chunk size for reading a large sequence. While line-based iteration over a FASTA13

sequence can be memory efficient, many times random access to sub-sequences is desirable.14

For the common case of accessing specific sub-sequences in a line-wrapped FASTA file, samtools15

(Li et al., 2009) established an indexing scheme that relies on consistent line-lengths within individual16

sequence entries, consistent ASCII line terminator characters (Gorn et al., 1963) and removal of trailing17

white-space and blank lines. When these conditions are met, an index file can be generated which maps18

sequence coordinates to byte offsets in the FASTA file, facilitating memory and time-efficient retrieval of19

sub-sequences without reading the entire FASTA file from start to end. The pyfaidx module provides20

Python interfaces to build and utilize this index using a “dictionary” interface and memory-efficient21

sequence slicing that follows Python conventions, as well as a stand-alone program (faidx) suitable for22

use by non-programmers. This allows Python users to quickly leverage well-tested, highly compatible,23

and efficient code that would otherwise be duplicated in many independent projects.24

1

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.970v1 | CC-BY 4.0 Open Access | rec: 8 Apr 2015, publ: 8 Apr 2015

P
re
P
rin

ts

https://pypi.python.org/pypi/pyfaidx
https://pypi.python.org/pypi/pyfaidx
https://github.com/mdshw5/pyfaidx
https://github.com/mdshw5/pyfaidx
http://github.com/mdshw5/pyfaidx/issues

2 METHODS25

2.1 Installation26

The pyfaidx module supports Python 2, Python 3 and PyPy. Installation from the Python Package27

Index (PyPI) is supported via pip install pyfaidx.28

2.2 Fasta indexing29

The FASTA index file (.fai extension) consists of five columns with rows containing values for every30

sequence in the FASTA file:31

• sequence definition lines32

• sequence length in characters excluding newlines33

• the byte offset at start of the sequence34

• the wrapped line length both with and without newlines35

Both the faidx command-line utility and the Fasta class automatically generate this index file if36

it does not exist. Files with non-unique definition lines will raise an error. It is important to note that37

pyfaidx generates the FASTA index as a data stream, and therefore can index large FASTA files such as38

the NCBI non-redundant nucleotide database (Pruitt et al., 2005) without holding the entire index (or of39

course, the sequences) in memory, a shortcoming of other implementations such as40

textttsamtools (Li et al., 2009). FASTA index files generated by samtools, the faidx utility, and the41

pyfaidx module are compatible and interchangeable.42

2.3 Sequence retrieval43

The Fasta class provides access to indexed FASTA files with an interface that acts as a Python “dictio-44

nary” object. FASTA definition lines are used as dictionary keys, and for any key the sequence is returned45

as a Sequence object. Sequence objects have attributes for the string representation of the requested46

sequence, along with a header specifying 1-based start and end genomic coordinates (Figure 1). Note47

that slicing indices are 0-based and that negative indices are relative to the end of the sequence, which is48

consistent with the indexing behavior of Python sequence types.49

Figure 1. Dictionary lookup and string slicing methods using the Fasta class. Input lines are preceded
with >>>.

>>> from pyfaidx import Fasta
>>> hg38 = Fasta(’hg38.fa’)
>>> hg38[’chr1’][10000:10010]
>chr1:10001-10010
TAACCCTAAC
>>> hg38[’chr1’][-1000000:-999990]
>chr1:247956423-247956432
GTGGGCTCTC

Several existing methods for random FASTA access are available, and fall into three categories:50

1. biopython parses and reads the entire file into memory51

2. pyfasta copies the FASTA file, removes sequence identifiers, and creates a proprietary index52

3. samtools, pysam, and pyfaidx all generate a compatible index of the unmodified FASTA file53

Of the preceding methods, biopython, pyfasta and pyfaidx are implemented in pure Python54

and require no external dependencies. Samtools and pysam require a C compiler and interface with55

htslib, and pyfasta operates most efficiently using the Numpy backend, which is also implemented56

in C. A comparison of these methods (Table 1) demonstrates that pyfaidx is approximately as fast as57

2/4

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.970v1 | CC-BY 4.0 Open Access | rec: 8 Apr 2015, publ: 8 Apr 2015

P
re
P
rin

ts

pyfasta and much faster than calling htslib using pysam. Importantly, pyfaidx is the fastest58

method that leverages the memory-efficient and samtools compatible “*.fai” indexing scheme. Memory59

usage for pyfasta and biopython were significantly higher than pyfaidx.60

Software Init(index) (seconds) Fetch 1kb sequence (microseconds) Memory (max MB)
pyfaidx.Fasta (seek) 30.20 90.81 0.190
pyfaidx.Faidx (seek) 28.92 64.15 0.146
pyfasta.Fasta (numpy) 29.02 43.59 37.239
pyfasta.Fasta (seek) 27.18 160.94 37.239
Bio.SeqIO 29.35 4.58 2517.515
samtools faidx 20.08 168.11 NA
pysam.faidx 14.85 411.49 NA

Table 1. Benchmark of random 1000bp accesses to FASTA sub-sequences. Benchmarking was
performed in triplicate on a 2.4GHz Haswell Core i5 with a solid state disk drive using Python 3.4,
pyfaidx v0.3.9, biopython v1.64, numpy v1.9.1, pyfasta v0.5.2, and pysam v0.8.1. Average
timings are reported. Memory usage is reported using tracemalloc, and usage for samtools and
pysam was omitted due to difficulty profiling Python C-extensions. Benchmarks were performed using
https://github.com/mdshw5/pyfaidx/blob/v0.3.9/scripts/benchmark.py

2.4 In-place sequence masking61

“Masking” a FASTA file is a common step in many bioinformatics pipelines, used to indicate positions62

that are flagged for different treatment in downstream analysis. Certain characters or ranges of characters63

in FASTA file sequences are either replaced with a distinct character, or the case of the character is64

inverted. Existing FASTA masking tools (Quinlan and Hall, 2010) read a file from start to end, perform65

sequence masking, and then write the masked FASTA file to disk. This usually requires a list of regions66

sorted in the same order as the FASTA file, or that the regions are all stored in program memory. This67

approach is particularly inefficient for large FASTA files requiring a relatively small amount of masking.68

For this reason pyfaidx provides a “mutable” Fasta object for in-place modification of a FASTA file.69

The faidx utility also provides in-place masking capabilities that emulate the capabilities of bedtools70

maskfasta. In benchmarks against bedtools masking regions of low complexity (Li, 2014) faidx71

uses 3.2X less memory and runs in equal time with less CPU usage (Table 2).72

Software Memory (MB) CPU (%) Time (seconds)
bedtools 616 98 86
pyfaidx 194 70 88

Table 2. Benchmarking was performed in triplicate on a 2.4GHz Haswell Core i5 with a solid state disk
drive using Python 3.4, pyfaidx v0.3.9, and bedtools v2.22.0.

2.5 Splitting FASTA to separate files by region73

The faidx --split-files flag creates new output files for each region specified in either a bed file,74

or UCSC format “chr:start-end” (Figure 2).75

2.6 Sequence retrieval using definition line fields76

One common naming scheme for FASTA definition lines is to include information about the sequence such77

as accession number and a long description, in addition to a short identifier, such as a gene name. NCBI78

follows a convention (Madden, 2013) of separating fields in FASTA definition lines using | (pronounced79

“pipe”). Bioinformatics tools commonly use string comparison to determine if a feature maps to a reference80

sequence selected from a FASTA file or similar format. This requires pattern matching over special81

characters which is both inconvenient and error-prone. The faidx utility can split definition lines on82

a delimiter for retrieval of sequences by fields from such files (Figure 3). This may be used to quickly83

relabel sequences for downstream tools, or for sequence lookup using only a definition line field.84

3/4

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.970v1 | CC-BY 4.0 Open Access | rec: 8 Apr 2015, publ: 8 Apr 2015

P
re
P
rin

ts

https://github.com/mdshw5/pyfaidx/blob/v0.3.9/scripts/benchmark.py

Figure 2. Splitting FASTA sequences to individual files using faidx program. Input lines are prefixed
with ‘$’.

$ faidx --split-files hg38.fa
$ ls chr*
chr10.fa chr15.fa chr1.fa chr3.fa
chr8.fa chr11.fa chr16.fa chr20.fa
...

$ faidx --split-files hg38.fa chr1:100-1000
$ ls chr*
chr1.100.1000.fa

$ faidx --split-files hg38.fa --bed regions.bed
$ ls chr*
chr8.50000.55000 chrX:800000-1000000

Figure 3. Retrieval of zebrafish protein sequence accession via the shell. Input lines are prefixed with
‘$’. Ellipses (. . .) indicate lines truncated for display purposes.

$ head -n3 zebrafish.fasta
>gi|54400524|ref|NP_001006011.1| pleckstrin...
MLESGVLKEGALEKRSDGLLQLWKKKRCVLTEDGLVLHPHKHH...
FTVVMSEGREIDFRCLQDEGWNAEITLRMVQYKNRQAILAVKS...
$ faidx -d ’|’ zebrafish.fasta NP_001006011.1
>NP_001006011.1
MLESGVLKEGALEKRSDGLLQLWKKKRCVLTEDGLVLHPHKHH...
FTVVMSEGREIDFRCLQDEGWNAEITLRMVQYKNRQAILAVKS...

3 CONCLUSIONS85

The pyfaidx module provides a lightweight, easy to install, familiar and intuitive interface to FASTA86

files. Indexing, retrieval, and in-place file modification are implemented in a time and memory-efficient87

manner. pyfaidx is tested and supported under Linux, Mac OS, and Windows using Python 2.6, 2.7,88

3.2, 3.3, 3.4, and PyPy, and is installable via pip install pyfaidx.89

REFERENCES90

Gorn, S., Bemer, R. W., and Green, J. (1963). American standard code for information interchange.91

Communications of the ACM, 6(8):422–426.92

Li, H. (2014). Toward better understanding of artifacts in variant calling from high-coverage samples.93

Bioinformatics, 30(20):2843–2851.94

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin,95

R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16):2078–2079.96

Madden, T. (2013). The BLAST sequence analysis tool.97

Pearson, W. R. and Lipman, D. J. (1988). Improved tools for biological sequence comparison. Proceedings98

of the National Academy of Sciences, 85(8):2444–2448.99

Pruitt, K., Tatusova, T., and Maglott, D. (2005). NCBI Reference Sequence (RefSeq): a curated non-100

redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res, 33:D501–4.101

Quinlan, A. R. and Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic102

features. Bioinformatics, 26(6):841–842.103

4/4

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.970v1 | CC-BY 4.0 Open Access | rec: 8 Apr 2015, publ: 8 Apr 2015

P
re
P
rin

ts

	Introduction
	Methods
	Installation
	Fasta indexing
	Sequence retrieval
	In-place sequence masking
	Splitting FASTA to separate files by region
	Sequence retrieval using definition line fields

	Conclusions
	References

