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ABSTRACT

The study of concepts in animals is complicated by the possibility that performance reflects reinforcement
learning of discriminative cues, which might be used to categorize of stimuli. To minimize that possibility,
we trained seven rhesus macaques to respond, in a specific order, to four simultaneously presented
exemplars of different perceptual concepts. These exemplars were drawn at random from large banks
of images; in some conditions, the stimuli changed on every trial. Subjects nevertheless identified and
ordered these stimuli correctly. Three subjects learned to correctly order ecologically relevant concepts;
four subjects, to order close-up sections of paintings by four artists with distinctive styles. All subjects
classified stimuli significantly better than that predicted by chance, and outperformed a feature-based
computer vision algorithm, even when the exemplars were changed on every trial. Furthermore, six
subjects (three using ecological stimuli and three using paintings) transferred these concepts to novel
stimuli. Our results suggest that monkeys possess a flexible ability to form class-based perceptual
concepts that cannot be explained as the mere discrimination of physical features.
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INTRODUCTION
Over the last 50 years, considerable effort has been devoted to investigating how non-human animals

(hereafter, “animals”) perceive and categorize visual stimuli. The resulting literature has demonstrated
that animals have the ability to classify a bewildering range of stimuli, including organic forms, such
as faces (Marsh and MacDonald, 2008), plants, and animals (Roberts and Mazmanian, 1996; Vonk and
MacDonald, 2002; Vonk, 2013), as well as man-made objects, such as cars, chairs (Bhatt et al., 1988),
orthographic characters (Schrier et al., 1984), paintings (Watanabe, 2013), cartoons (Matsukawa et al.,
2001), and abstract forms (Vogels, 1999). Animals have also correctly identified never-before-seen
exemplars, showing that this ability is not limited to experiences with specific stimuli (Schrier and Brady,
1987; Sigala, 2009). These sophisticated abilities have been reviewed extensively elsewhere (Jitsumori
and Delius, 2001; Miller et al., 2003; Katz et al., 2007; Zentall et al., 2008).

The interpretations of such findings have stirred controversy because they challenge long-standing
assumptions about the nature of concepts, as distinguished from categories. Some authors have defined
concepts as necessarily linguistic a priori, ruling out mechanisms for non-linguistic concept formation
(Chater and Heyes, 1994). Others have argued that animals learn to categorize using reinforcement
learning and associative conditioning (Roberts, 1996). Under this hypothesis, an animal’s classification of
similar stimuli (as demonstrated by Herrnstein et al., 1976) relies on associative strength of discriminable
features common across a category (Lea, 1984).

Herrnstein (1990) attempted to integrate linguistic and associative accounts by proposing that animals
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use open-ended categories to classify stimuli, rather than concepts. The criteria for this distinction were
vague: a discrimination could be attributed to a concept only if a characteristic other than similarity
was used to classify novel exemplars. The inevitable skeptical retort argued that, because stimuli must
necessarily have some features in common (without which they would be indistinguishable), those features
must permit categorization on the basis of their similarity (Huber, 2000). Thus, Herrnstein’s proposal
leaves the issue unresolved, and enduring skepticism about concept learning in animals has assumed that
feature-based associations can explain performance.

Despite this skepticism, animals have nevertheless demonstrated sophisticated categorization aptitudes.
For example, monkeys can discriminate ecologically relevant objects (e.g. animals) from man-made
objects (e.g. umbrellas) (Bhatt et al., 1988; Crouzet et al., 2012). Moreover, this aptitude was not specific
to stimuli that may have previously had evolutionary significance. Manufactured objects were identified
with the same accuracy and speed as natural scenes and organisms (Roberts and Mazmanian, 1996). These
findings point to a highly general learning mechanism that can be used to learn discriminations never
found in an organism’s evolutionary niche.

The persistence of the controversy has been complicated by two methodological problems, described
by Jensen and Altschul (2015). One is that subjects may develop a tailor-made classifier during training,
which solves the discrimination using features as shortcuts. For example, discriminating between faces
and houses may require only attending to the squareness of windows vs. the roundness of eyes. Post-hoc
analysis cannot rule out non-conceptual feature-based strategies. However, as the number of categories is
increased, learning a correspondingly complicated list of rules becomes an inefficient strategy. A second
difficulty is that binary discrimination tests allow for educated guesses even when understanding falls
short of conceptual. When training and testing rely on dichotomous discriminations (e.g. Roberts and
Mazmanian, 1996; Vogels, 1999) performance can exceed chance using simple feature-based strategies.
More difficult test procedures can, however, dramatically reduce the false-positive rate.

A noteworthy exception to these design problems is a study reported by Bhatt et al. (1988). In a series
of experiments, pigeons learned to discriminate between four varieties of stimulus (e.g. photographs of
cats, flowers, cars, and chairs). Because these four conceptual groupings were trained in parallel, they
protected against tailor-made classifiers. Furthermore, selecting from four alternatives at test lowered the
false-positive rate of guessing to 25% (from the more typical 50%). To date, it serves as a landmark study,
and a high water mark for evidentiary rigor. But while this study is methodologically excellent, subjects’
performance could still have been based on consistent image features (eye, wheels, petals, etc.).

In an effort to provide more compelling evidence of an animal’s conceptual abilities, we trained
subjects to classify stimuli during a cognitively demanding task. Instead of training concepts one at a time,
we used a variation of the simultaneous chaining paradigm (or “SimChain”; Terrace, 1984) to train four
different stimulus categories simultaneously. Following training, subjects had to categorize four stimuli
that were randomly drawn from large banks of exemplars. In addition to training four concepts at once,
SimChain also provided a strenuous classification test, because the odds of completing a trial successfully
by chance alone are less than 5%. Rapid, accurate performance on this task would constrain claims made
by both proponents and skeptics of animal concept formation.

In Experiment 1, three rhesus monkeys were trained to classify four naturally occurring concepts:
birds, flowers, cats, and people. Exemplars were randomly drawn from large banks of photographs for
every trial. Subjects were then required to select exemplars (one for each concept) in a prescribed order.
In Experiment 2, four macaques were trained to classify cropped close-ups from works of four painters:
Claude Monet, Vincent van Gogh, Salvador Dalı́, and Jean-Léon Gérôme. These artificial stimuli had
no discrete features (e.g. faces, wings) in common. Accordingly, subjects had to attend to the gestalt
properties that distinguished each painterly style. The logic of this approach allowed us to assess a
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subject’s ability to classify exemplars of different concepts with high accuracy and fast reaction times
under conditions that rendered brute force strategies (e.g. memorization or discrete feature analysis)
inordinately costly and unreliable.

EXPERIMENT 1: PHOTOGRAPHS OF ECOLOGICAL CATEGORIES
Methods

Subjects: Data were collected from 3 male rhesus monkeys (Macaca mulatta), Augustus, Coltrane,
and Lashley. All subjects had extensive experience with the standard simultaneous chain task prior to
the experiment. Subjects were housed at the New York State Psychiatric Institute throughout the study.
Treatment conformed with the guidelines set by the U.S. Department of Health and Human Services
(National Institute of Health) for the care and use of laboratory animals. The study was approved under
protocol AC-AAAB1238 by the Institutional Animal Care and Use Committee at Columbia University. In
addition to pellets obtained during experimentation, subjects were given a mixed diet of primate chow and
fruit immediately following daily testing. Water was available ad libitum.

Apparatus: Subjects performed tasks in operant chambers made of Plexiglas and stainless steel (53
cm × 48cm × 53 cm) that were enclosed within sound-attenuated booths (127 cm high × 97 cm wide ×
97 cm deep). Each booth contained a pellet dispenser (Med Associates) that delivered 190-mg banana
pellets (Bioserv) and a closed-circuit camera. Subjects responded by touching stimuli that were presented
on a touch-sensitive 15-inch (38 cm) computer monitor in the chamber. All experimental tasks were
programmed using Real Studio (formerly RealBASIC) and were controlled by an iMac computer (model:
MA710xx/A).

Procedure: Subjects performed two closely related tasks. One was the simultaneous chaining task
(Terrace, 1984; Jensen et al., 2013a), hereafter identified as the “SimChain” task. The other was the newly
designed “Concept Chain” task. Sample trials for each task are depicted in Figure 1A.

In the SimChain task, four photographs were simultaneously presented on the screen. The positions of
the stimuli were scrambled from one trial to the next, but the same set of images was used throughout a
session. A reward was delivered after every item was touched in the correct order. However, any errors
(responses that deviated from the prescribed order) resulted in a 6 second time-out. Because no cues
indicated the next item to which an animal should respond, trial and error was the only way to learn
the order of an entirely unfamiliar set of stimuli. Examples of a correct trial and two incorrect trials are
depicted in Figure 1B. Sessions lasted 40 trials.

The Concept Chain task closely resembled the SimChain task in that subjects could earn rewards only
if they touched four stimuli in a prescribed order. Unlike a SimChain, however, some or all of the stimuli
in a Concept Chain changed randomly after every trial. For example, when the ‘flowers’ stimulus was set
to vary, a different flower was presented on each trial, drawn at random from a large image bank. Concept
Chain sessions also lasted 40 trials.

In Experiment 1, our stimulus sets consisted of 2867 pictures of people, 3032 pictures of flowers, 872
pictures of cats, and 3110 pictures of birds. Two exemplars from each set are shown in Figure 1C (for
others, see Figure ??). Our criteria for “ecologically valid” stimuli were broad: Photographs taken under
reasonably normal lighting conditions, depicting primarily organic content. For example, a picture of a
man wearing a shirt is considered ‘ecologically valid’ because it depicts a man, despite the artificial origin
of his shirt. The appendix provides a systematic analysis of low-level properties of the image sets.

Each subject was assigned a different “correct sequence” (Augustus: Flowers→ Cats→ People→
Birds; Coltrane: Birds→ Flowers→ Cats→ People; Lashley: Cats→ Birds→ People→ Flowers). This
order was maintained throughout the experiment.
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Figure 1. Procedures and stimuli used in Experiments 1 and 2. (A) Three trials of the SimChain and Concept Chain tasks.
The Simchain task scrambled stimulus positions on a trial-by-trial basis. The Concept Chain task scrambled positions, but also
selected new stimuli at random for some or all categories in every trial. (B) Examples of one correct and two incorrect trials.
Dashed boxes indicate the first stimulus touched by the animal, and the arrows show the subsequent touches. The top example
was “correct” because all items were touched in the prescribed order, and that trial ended in reward. The other two trials are
“incorrect” trials that resulted in a 6 s timeout. The middle example depicts an incorrect initial touch, ending the trial
immediately. The bottom example shows two correct touches, followed by an erroneous touch to the fourth list item. Note that
an incorrect trial only ends at the first incorrect touch, permitting animals to progress by trial and error. (C) Examples of
‘ecologically valid’ stimuli used in Experiment 1 and the ‘painting’ stimuli used in Experiment 2.

The Concept Chain task was introduced in stages. Subjects advanced to the next stage only after they
responded correctly to each four items in a session with 80% accuracy. Initially, only one stimulus varied.
In the first stage, the 4th item varied randomly, while the other three list items remained the same. In the
second stage, the 3rd category’s stimulus varied rather than the fourth. Subsequent stages varied the 2nd

item, then the 1st item.

Subjects were then trained with two concept stimuli varying: The 3rd and 4th items varied first, followed
by the 2nd and 4th, and so on (1st and 4th; 2nd and 3rd; 1st and 3rd; 1st and 2nd). Next, three items were
changed every trial (2nd, 3rd, and 4th; 1st, 3rd, and 4th; 1st, 2nd, and 4th; 1st, 2nd, and 3rd). During the final
stage, all stimuli changed on every trial. Once the 80% criterion was satisfied, an additional 25 sessions of
data were collected, again with all items changing. These 25 sessions are reported in the results as the
“Concept Chain” sessions.

Once the Concept Chain sessions were complete, subjects performed two version of the SimChain
task. In each of 25 sessions of the “Category SimChain” sessions, stimulus lists consisted of four fixed
stimuli that belonged to the learned categories but where novel to subjects. Performance was compared to
35 sessions of “Arbitrary SimChain,” which used stimuli unrelated to the trained classifications.
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Results
Each subject provided evidence that it could discriminate novel exemplars of four simultaneously

presented concepts. Performance (accuracy and progress on each lists) and reaction times (RTs) were
compared for three conditions: the Concept Chain task (using categorical exemplars that changed randomly
on each trial), the Category SimChain task (using a fixed list of four categorical exemplars), and the
Arbitrary SimChain task (using a fixed set of arbitrary stimuli).

Performance in both tasks was characterized using a learning curve originally identified by Thurstone
(1919):

y =
L (x+ P )

x+ P +R
(1)

Here, ‘average number of correct responses in a list’ y is predicted in terms of trial x and three parameters:
L (the maximum possible level of performance), R (the ‘learning cost,’ such that lower values correspond
to faster learning), and P (the prior knowledge, scaled according to R). In a 4-item SimChain, the value
of L is defined by the task to be 4.

Thurstone’s learning curve describes a diminishing-returns growth function. The learning cost R
governs curvature, such that each interval doubles the time it takes to make half the progress towards the
maximum L. It takes R trials to progress from y = 0.0 to 0.5L, but it takes an additional 2R trials to
subsequently progress from y = 0.5L to 0.75L.

The P parameter shifts the curve horizontally, allowing subjects with prior knowledge to exceed
chance performance on the first trial. Because the value of P is set relative to R, we use the standardized
metric P

R
. When subjects are naı̈ve, P

R
is expected to equal 0.0, whereas subjects bringing prior knowledge

to the task have higher values of P
R

, with no upper limit to its value.
This learning curve provides a description of overall performance, and is not a prediction of perfor-

mance in an individual session. Trial-by-trial progress in SimChain performance is often abrupt, as a
function of whether subjects make lucky or unlucky guesses (Jensen, 2013). The learning curves presented
here capture averages of performance across many lists, and therefore show a general aptitude for list
learning.

In order to estimate model parameters, the following linearization is used:(
L

y
− 1

)−1

=
x

R
+
P

R
(2)

Because Equation 2 does not have uniform residual variance, bootstrapping was used to obtain the sample
variance for each transformed dependent average, prior to a weighted regression, as described by Jensen
et al. (2013a).

Figure 2 shows performance for each subject in the Concept Chain task. The observed flat slopes (i.e.
very large R) and high P

R
ratios (consistently greater than 1) reflect ceiling levels of performance. Given

their successful completion of the training stages, the first trial in a session should be no different from the
last because each trial presents a new combination of stimuli. Performance substantially exceeded chance
levels, demonstrating proficient ordering of dynamic stimuli in an order prescribed by their category
membership.

Figure 3 compares performance on the two types of SimChain tasks following training. Category
SimChain performance (blue circles) consistently exceeded Arbitrary SimChain performance (green
diamonds) for all subjects. The confidence intervals for the regression parameters confirm these differences,
which manifested in several ways. According to post-hoc tests for the individual regression parameters,
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Figure 2. Performance during the Concept Chain task in Experiment 1. Points represent trial-by-trial averages of 25 sessions,
whereas the heavy lines represent the model fit of Equation 1 (parameters below each plot). The horizontal dashed line shows
chance performance.

Augustus had a significantly lower R parameter (t(76) > 6.12, p < .001) and a significantly higher P
R

(t(76) > 3.65, p < .001), both indicating better performance. Coltrane’s R parameter was significantly
lower (t(76) > 4.68, p < .001), but P

R
did not differ significantly (t(76) = 1.96, p = .053). Finally,

Lashley had a higher P
R
(t(76) > 6.35, p < .001), but R did not differ significantly (t(76) = 0.45, p =

.65).

Although it is straightforward to demonstrate that subjects exceeded chance levels of accuracy, it is
considerably more difficult to specify the performance expected under the null hypothesis that “subjects
responded only on the basis of feature associations.” Behavior driven only by feature-based associations
would certainly exceed chance, but it is unclear by how much. We therefore drew upon the machine
learning literature and used the “bag-of-features” image classifier (O’Hara and Draper, 2011) as a candidate
for this null hypothesis. The bag-of-features classifier is a sophisticated algorithm, but its discriminations
are ultimately only made on the basis of low-level statistical regularities. This makes it a reasonable
stand-in for a strictly associative model. Insofar as subjects outperformed the algorithms, we take this as
evidence that subjects’ strategy was more than merely feature-based.

Like subjects, the bag-of-features classifier was trained on all four categories of images simultaneously.
Half of the images were used as a training set, and classifier performance was then validated using the
other half (as described by Jensen and Altschul, 2015). This yielded the following “confusion matrix,”
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Figure 3. Performance during SimChain tasks in Experiment 1, given categorical stimuli (blue circles) or arbitrary stimuli
(green diamonds). Points represent trial-by-trial averages of 25 categorical and 35 arbitrary sessions. The heavy curved lines
represent the model fit of Equation 1 (parameters below each plot). The horizontal dashed line shows chance performance.

which provides the odds of correctly categorizing any single stimulus:

Guessed Category

True Category


birds cats flowers people

birds 0.64 0.10 0.11 0.15
cats 0.13 0.62 0.15 0.10

flowers 0.11 0.15 0.62 0.11
people 0.11 0.10 0.14 0.66

 (3)

Thus, if the algorithm was presented with a photo of a bird, there was a 0.64 probability of correctly
identifying it as a bird stimulus, and a 0.15 probability that it would be misidentified as a photo of a person.
This constitutes a moderate level of identifiably for such an algorithm: Performance is well above chance,
but there were nonetheless many errors.

In order to perform the SimChain task, the algorithm had to identify all four stimuli simultaneously,
which it had a probability of 0.16 of doing perfectly. However, if more than one stimulus was identified
as belonging to a given category, the algorithm guessed and, if the guess was made correctly, continued
on the remaining stimuli by process of elimination. When this kind of guessing was taken into account,
the algorithm was able to complete the SimChain and earn a reward on approximately 36% of trials
(depending on the order of the categories).

Figure 4 shows the conditional probability of responding correctly to the nth item in a list (with 95%
confidence intervals) for Category SimChain trials (blue circles), Concept Chain trials (red squares), and
Arbitrary SimChain trials (green diamonds). Also shown is the simulated performance of the bag-of-
features algorithm (black squares), given the confusion matrix presented in Eq. 3 and the stimulus order
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Figure 4. Conditional probability of correct response to items at each list position for each subject in Experiment 1. Plotted is
response accuracy for Category SimChain trials (blue circles), Concept Chain trials (red squares), and Arbitrary SimChain
trials (green diamonds). Lines connect averages that are conditional upon one another. Overall accuracy (next to the legend
entry for each task type) indicates a subject’s probability of successfully earning a reward at the end of a trial. Each line’s
shaded region represents the 95% confidence interval for the mean.

experienced by that animal. The legend of Figure 4 also indicates the proportion of trials resulting in a
reward in each case. For example, although Augustus had a 0.153 probability of completing an Arbitrary
SimChain trial, his probability of making a correct response to the last item exceeded 0.9, conditional on
correct responses to the first three items. For each subject, each overall proportion correct was significantly
different from all others, according to an omnibus chi-square test (Augustus: χ2 > 568, df = 2, p < .001;
Coltrane: χ2 > 152, df = 2, p < .001; Lashley χ2 > 151, df = 2, p < .001) and post-hoc pairwise
chi-square tests (p < .001) corrected for multiple comparisons using the Holm-Šidák procedure. All
subjects also earned rewards on a significantly greater proportion of trials than did the bag-of-features
algorithm in both the Concept Chain and the Category SimChain trials, according to a binomial test
(p < .001).

Figure 5 shows the mean of subjects’ log-scaled reaction times (RTs) of responses at each position in the
chain (+/- 1 standard error). The sum of these four time intervals constitutes the time needed to complete
one trial. RTs accelerated as subjects progressed through the list, consistent with the process-of-elimination
character of the SimChain task. Every subject showed a significant difference in RT as a function of list
position (Augustus: F (3, 9248) > 1136, p < .001; Coltrane: F (3, 10421) > 1366, p < .001; Lashley:
F (3, 7327) > 2281, p < .001). The effect size of these differences was substantial (Augustus: ω2 = 0.244;
Coltrane: ω2 = 0.273; Lashley: ω2 = 0.460), dominating the proportion of variance explained. Although
significant differences for task type were observed (Augustus: F (2, 9248) > 123, p < .001; Coltrane:
F (2, 10421) > 18.4, p < .001; Lashley: F (2, 7327) > 79.3, p < .001), the effect sizes for these
differences were negligible (Augustus: ω2 = 0.018; Coltrane: ω2 = 0.001; Lashley: ω2 = 0.011).
Similarly, although a significant interaction between these two main effects was observed (Augustus:
F (6, 9248) > 41.2, p < .001; Coltrane: F (6, 10421) > 19.3, p < .001; Lashley: F (6, 7327) > 19.7, p <
.001), the corresponding effect sizes were very small (Augustus: ω2 = 0.017; Coltrane: ω2 = 0.004;
Lashley: ω2 = 0.008).

All three subjects performed well above chance on the Concept Chain task, and also performed better
on Categorical SimChain lists than Arbitrary SimChain lists. These results show that monkeys are capable
of simultaneously distinguishing between four distinct ecological concepts. Additionally, reaction times
were similar in each of the tasks, suggesting that recognizing exemplars of familiar perceptual concepts
was no more time-consuming than recognizing familiar items, even when the stimuli changed for every
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Figure 5. Average of log-scaled reaction times conditional on progress in each trial of Experiment 1. For example, List
Position 1 times show to interval prior to the first touch, whereas List Position 2 times correspond to reaction times given that
the first touch was correct. Plotted is response accuracy for Category SimChain trials (blue circles), Concept Chain trials (red
squares), and Arbitrary SimChain trials (green diamonds), with shaded regions depicting one standard error. Included are 9254
RTs from Augustus, 10427 RTs from Coltrane, and 7333 RTs from Lashley.

trial.
Subjects’ conceptual proficiency was impressive given the diversity of stimuli. The category ‘cats’ not

only included housecats but also the larger wild species, such as tigers. ‘People’ included close-ups of
human faces in portrait and profile, as well as photos of crowds. Although most stimuli in each set were in
color, black-and-white stimuli were also included. Consequently, no single feature-based rule could be
relied upon as a shortcut to execute the sequences required by the Concept Chain task.

Nevertheless, statistical regularities existed within each image set, and these might have been exploited
as discriminative cues. As described in the appendix, each set had a distinct distribution of image hue and
saturation. To evaluate whether the subject performance and RTs necessarily depended on these image
properties, we performed a second experiment using samples from the works of four prolific painters. The
resulting sets of images could not be distinguished on the basis of either their discrete features (which
varied too much within set to provide usable cues), or on the basis of their low-level image characteristics
(which were sufficiently similar to prevent straightforward classification).

EXPERIMENT 2: ABSTRACT STIMULI FROM CANVAS PAINTINGS
Methods

Subjects & Apparatus: Subjects were 4 male rhesus monkeys, Benedict, Horatio, Macduff, and
Prospero. These subjects were housed under identical conditions, and were trained using the same
apparatus as those in Experiment 1. Although subjects were familiar with the SimChain task from previous
experiments, they were otherwise naı̈ve.

Procedure: The SimChain and Concept Chain tasks were employed with four new categories of
stimulus: Exemplars were samples from painted artworks. High-resolution images were obtained of
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Figure 6. Performance during the Concept Chain task in Experiment 2. Points represent trial-by-trial averages of 25 sessions.
The heavy curved lines represent the model fit of Equation 2 (parameters below each plot). The horizontal dashed line shows
chance performance.

paintings by four artists with very different styles of painting (Jean-Léon Gérôme, Vincent van Gogh,
Claude Monet, and Salvador Dalı́). These were sampled to produce close-up exemplars, each 140px by
130px in size (see Figures 1C and 10). The size of the stimulus sets was 203 for Dalı́, 406 for Gérôme,
283 for Monet, and 232 for van Gogh.

As in Experiment 1, each subject had a different prescribed order (Benedict: Dalı́→ Gérôme→Monet
→ van Gogh; Horatio: van Gogh→Monet→ Gérôme→ Dalı́; MacDuff: Monet→ Dalı́→ van Gogh→
Gérôme; Prospero: Gérôme→ van Gogh→ Dalı́→Monet).

Stimuli could be classified on the basis of brush stroke, texture, contour sharpness, and other aspects
of style. Lacking any training in art history, the monkeys needed to become sensitive to these gestalt
properties in order to make correct classifications. An analysis of low-level image properties (provided
in the supplemental information) confirms that the stimulus sets in Experiment 2 were more internally
diverse than those in Experiment 1. This analysis also shows that the four sets were more difficult to
discriminate on the basis of simple image statistics alone.

Training proceeded as in Experiment 1, except that additional training stages were added. During the
first stage of training, in which a single stimulus varied, the changing stimulus was first selected at random
from two images in the stimulus set, then three, five, ten, twenty-five, fifty, and finally a hundred. Subjects
advanced through these “set size” stages whenever they satisfied a 70% accuracy criterion for each item.
Once subjects reached the stage at which two items were allowed to change, training proceeded exactly
as in Experiment 1. Subjects culminated their Concept Chain training with 25 sessions in which every
stimulus varied on every trial. These were then followed by 25 sessions of Categorical SimChain using
novel painting stimuli, and 35 sessions of the Arbitrary SimChain task.

Results
As in Experiment 1, SimChain performance was modeled using Thurstone’s learning curve (Equation 1)

and its linearization (Equation 2). Again, the variance of each transformed value y was estimated by
bootstrapping in order to allow parameters to be fit using a weighted least squares regression.

Figure 6 shows Concept Chain performance as a function of trials for each subject, averaged over the
25 final sessions of the task. Performance consistently exceeded chance levels, but subjects also made
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Figure 7. Performance during SimChain tasks in Experiment 2, given categorical stimuli (blue circles) or arbitrary stimuli
(green diamonds). Points represent trial-by-trial averages of 25 categorical and 35 arbitrary sessions, whereas the heavy curved
lines represent the model fit of Equation 1 (parameters below each plot). The horizontal dashed line shows chance performance.

more errors than in Experiment 1. This was consistent with the intuition that the stimuli in Experiment 2
were considerably more difficult to classify than those in Experiment 1.

Figure 7 compares Category SimChain performance (blue circles) to Arbitrary SimChain performance
(green diamonds). Two subjects (Benedict and Horatio) benefitted from prior concept learning, while a
third (MacDuff) showed elevated initial responding but a shallower slope. The fourth subject (Prospero)
did not appear to use the concept information in these static SimChains, despite having performance
comparable to other subjects during training.

A comparison of model residuals confirmed that concept training helped improved Benedict and
Horatio’s performance. According to post-hoc tests of regression parameters, Benedict had a significantly
lower R parameter (t(76) > 6.96, p < .001) and a significantly higher P

R
(t(76) > 4.14, p < .001).

Horatio had a significantly higher P
R
(t(76) > 3.40, p < .001), but his R parameter was not significantly

different (t(76) = 0.89, p = .38). MacDuff’s parameters benefitted only partially: a significantly higher P
R

(t(76) > 5.46, p < .001) but also a significantly higher (i.e. less efficient) R parameter (t(76) > 4.80, p <
.001). Finally, Prospero showed no difference in either parameter (t(76) > 0.48, p > .40).

As in Experiment 1, the bag-of-features algorithm was trained to classify the stimuli from the four
painters. This analysis revealed that although the algorithm was effective at identifying Monet, it did
poorly with Dalı́ and van Gogh (performing below chance in the latter case), as shown in Equation 4:

Guessed Category

True Category


Dalı́ Gérôme Monet van Gogh

Dalı́ 0.46 0.36 0.07 0.11
Gérôme 0.17 0.61 0.14 0.07
Monet 0.04 0.04 0.86 0.07

van Gogh 0.16 0.19 0.43 0.22

 (4)

Because the difficulty of identification was so different from one artist to the next, the prescribed order of
the categories mattered a great deal in terms of simulating performance.
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Figure 8. Conditional probability of correct response to items at each list position for each subject in Experiment 2. Plotted is
response accuracy for Category SimChain trials (blue circles), Concept Chain trials (red squares), and Arbitrary SimChain
trials (green diamonds). Lines connect averages that are conditional upon one another. Overall accuracy (next to the legend
entry for each task type) indicates a subject’s probability of successfully earning a reward at the end of a trial. The shaded
regions around each line correspond to the 95% confidence interval for the mean.

Figure 8 shows conditional probabilities of responding correctly to the nth item in a list (with 95%
confidence intervals) for categorical SimChain trials (blue circles), Concept Chain trials (red squares), and
arbitrary SimChain trials (green diamonds). The simulated performance of the bag-of-features algorithm
is shown in black, and the overall proportion of trials resulting in a reward for each condition is shown
next to the legend. The effects of the differential difficulty of the artists for the bag-of-features algorithm
is highly evident in these graphs. For example, Horatio’s first required response was to Van Gogh (the
most difficult), followed by Monet (the least difficult), leading to a dramatic fluctuation in the algorithm’s
conditional probabilities. Consequently, the algorithm was rewarded anywhere from 14% to 28% of the
time, depending on the order of the stimuli.

The accuracy of two subjects was significantly higher for the Categorical SimChain task than for the
Arbitrary SimChain task, both overall (Benedict: P

R
> 301, df = 2, p < .001; Horatio: P

R
> 70.1, df =

2, p =< .001) and in post-hoc pairwise comparisons (p < .001, corrected for multiple comparisons using
the Holm-Šidák procedure). These subjects’ accuracy was also significantly lower for the Concept Chain
task. The accuracy of the remaining subjects was not significantly different as a function of task (Macduff:
P
R
= 0.83, df = 2, p = .65; Prospero: P

R
= 4.65, df = 2, p = .09). According to binomial tests, Category

SimChain and Concept Chain performance for all subjects (as defined by proportion of trials ending in
reward) exceeded that of the bag-of-features algorithm (p < .01).

Figure 9 shows mean log-scaled reaction times for each list position (+/- 1 standard error). As
in Experiment 1, every subject showed a significant difference in response speed as a function of list
position (Benedict: F (3, 10231) > 1373, p < .001; Horatio: F (3, 8391) > 345, p < .001; Macduff:
F (3, 6649) > 408, p < .001; Prospero: F (3, 8298) > 1441, p < .001). These differences displayed
a substantial effect size (Benedict: P

R
= 0.237; Horatio: P

R
= 0.334; Macduff: P

R
= 0.426; Prospero:

P
R
= 0.333) that dominated the proportion of variance explained. Although significant differences for

task type were observed (Benedict: F (2, 10231) > 54.4, p < .001; Horatio: F (2, 8391) > 1.62, p < .001;
Macduff: F (2, 6649) > 2.24, p < .001; Prospero: F (2, 8298) > 32.0, p < .001), their effect sizes were
negligible (Benedict: P

R
= 0.006; Horatio: P

R
= 0.009; Macduff: P

R
= 0.001; Prospero: P

R
= 0.011).

Similarly, we observed a significant interaction between these two main effects (Benedict: F (6, 10231) >
33.8, p < .001; Horatio: F (6, 8391) > 21.0, p < .001; Macduff: F (6, 6649) > 8.78, p < .001; Prospero:
F (6, 8298) > 9.33, p < .001), but the effect sizes of these differences were also very small (Benedict:
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Figure 9. Average of log-scaled reaction times conditional on progress in each trial in Experiment 2. For example, List
Position 1 times show to interval prior to the first touch, whereas List Position 2 times correspond to reaction times given that
the first touch was correct. Plotted is response accuracy for Category SimChain trials (blue circles), Concept Chain trials (red
squares), and Arbitrary SimChain trials (green diamonds), with shaded regions depicting one standard error. Included are
10237 RTs from Benedict, 8391 RTs from Horatio, 6655 RTs from MacDuff, and 8304 RTs from Prospero.

P
R
= 0.011; Horatio: P

R
= 0.040; Macduff: P

R
= 0.018; Prospero: P

R
= 0.009).

Unlike Experiment 1, performance in Experiment 2 was not uniformly better on concept lists than
control lists. Although subjects performed at above chance levels in the Concept Chain task, they also
performed either below or at comparable levels to their SimChain performance. During the transfer test,
two monkeys displayed clear benefits of concept training. A third monkey showed mixed benefits, and the
fourth treated category members as if they were arbitrary stimuli.

Although these macaques demonstrated an ability to form concepts based on highly abstract stimuli,
discriminating between painterly styles was nevertheless more difficult than categorizing ecological stimuli.
This may in part stem from the perceptually salient features that ecological stimuli typically possess
(Marsh and MacDonald, 2008). The painting stimuli lacked discrete identifiable features on a scale that
would permit such a strategy. Despite this, reaction times were very similar for each of the tasks. This fact
suggests that both tasks demanded similar perceptual processing.

GENERAL DISCUSSION
Our results provide evidence that monkeys can accurately identify four simultaneously presented

stimuli, belonging to ecological and stylistic groupings and selected from large and highly disparate
stimulus sets. Subjects’ performance cannot be explained by treating each stimulus as a percept whose
categorization is subject to associative learning. This conclusion follows from a comprehensive analysis
of response accuracy and reaction times, as well as from a detailed image analysis of our stimuli (provided
in the online supplement) and by simulated performance using the bag-of-features classifier.

Having ruled out reinforcement learning as a sufficient explanation for performance, we propose that
subjects made use of conceptual representations (Newen and Bartels, 2007). A conceptual representation is
a non-linguistic form of conceptual learning that is more generalized and flexible than mere feature-based
reinforcement learning. Three characteristics are required for a representation to qualify as conceptual:
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identification (stimuli are consistently classified), independence (selection is not based on task-related
discriminative cues), and abstraction (it is impossible to categorize stimuli by feature generalization alone).
These requirements collectively provide a reasonable framework for conceptual learning that doesn’t
require language. Perceptual classification by way of conceptual representation therefore helps to fill the
theoretical gap between reinforcement learning and linguistic concepts identified by Herrnstein (1990).

Our procedure was more challenging than any previous task used to assess concept learning because it
required subjects to learn four concepts in parallel, and to then classify corresponding stimuli simulta-
neously. If subjects were required to identify only one concept at a time, it could be argued that some
representative features of the stimulus (or of the task itself) functioned as a conditioned cue. This argument
is not valid when four exemplars are presented simultaneously in a paradigm in which the subject must
respond to them in a specific order before a reward is delivered. This feature, which is integral to the
SimChain task, was designed to rule out associative accounts of serial learning (Terrace, 1984). The
Concept Chain renders reinforcement learning even less likely because stimuli change from one trial to
the next. Taken together, these variations of the SimChain task provide an effective method for addressing
the problems of dichotomous training and testing described by Jensen and Altschul (2015).

The stimulus sets used in this study were larger and more diverse than those used in previous studies
of concept learning in animals. Instead of making the stimuli as uniform as possible, we deliberately used
diverse stimulus sets. In particular, the painting stimuli used in Experiment 2 are difficult for feature-based
strategies to identify. This distinguishes them from stimuli depicting man-made objects used in earlier
studies (Sigala, 2009; Fize et al., 2011), because those objects had consistent features (such as wheels or
windows). The painting stimuli also satisfy the “abstraction” requirement of the conceptual representation
construct.

The painting stimuli engendered lower performance (in both the monkeys and the bag-of-features
algorithm) than did the ecological stimuli. The availability of easily distinguished features likely facilitates
stimulus classification, which may explain higher performance in Experiment 1. It is also possible that
ecologically relevant photographs have higher salience than paintings, as a result of evolutionary pressures
(New et al., 2007; Fize et al., 2011; Crouzet et al., 2012). However, subjects’ success in Experiment 2,
as well as past studies using symbolic or artistic stimuli (Schrier et al., 1984; Matsukawa et al., 2001;
Watanabe, 2013), strongly suggest that discrete features such as eyes are not a necessary prerequisite for
concept formation.

Other studies have found that macaques reliably and rapidly classify images that have been system-
atically degraded (Macé et al., 2010; Basile and Hampton, 2013). This undermines speculations that
classification is exclusively feature-driven and reliant on visual search. Reaction times in our study were
consistent with this literature: Trial-to-trial changes in the stimuli did not yield qualitatively different
response speeds than did the SimChain task. Reaction times were also similar when comparing ecological
and painterly stimuli. The consistency of reaction times suggests a common cognitive architecture for both
perceptual and conceptual learning (Goldstone and Barsalou, 1998), which challenges the assumptions
underlying many skeptical claims about concept formation in animals.

A better account of this consistency is offered by grounded cognition (Barsalou, 2008), wherein an
animal’s various conceptual aptitudes are grounded in and arise from common perceptual machinery.
Recent animal studies of the neural architecture of conceptual representations reveal highly specialized and
modality-specific networks. For example, the location and organization of networks dedicated to visual
representations are pre-specified (Srihasam et al., 2014). Furthermore such networks stretch back into the
sensory-motor regions of the modality through which the concept was initially learned (Martin, 2008).
Although parsimony is often invoked when arguing in favor of reinforcement learning, the neural networks
responsible for stimulus classification must also be taken into account. In an evolutionary context, skeptics
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must acknowledge evidence that aptitudes for these forms of learning are built on the foundations of the
brain’s perceptual processes. Given similarities in performance, it seems unlikely that Experiments 1 and
2 recruited distinct neural networks. More likely, performance in both depended on the same conceptual
machinery.

Given the positive results reported in the literature’s most rigorous studies of animal concept learning
(e.g. Bhatt et al., 1988), it should come as no surprise that non-human primates can flexibly classify stimuli
according to abstract properties. Much as an average museum visitor does not possess technical language
to describe a painting, but may still have a hunch who painted it, monkeys need not understand the subject
matter, nor even the art of painting, in order to be able to distinguish the work of one painter from another.
Our study highlights the need for additional research on how non-verbal subjects learn concepts that
are not linguistic, as conceptual representations of this sort are likely held by humans (Younger, 2010;
Fize et al., 2011). Nevertheless, a gap remains in accounting for the flexibility of animals’ perceptual
concepts, following from the undefined distinction between the most advanced open-ended categorization
and simplest abstract concepts (Roberts, 1996).

Given the positive results we obtained with 4-item Concept Chains, we anticipate that future investi-
gations will benefit from more demanding test procedures. Using larger stimulus sets will help rule out
memorization. Training subjects on a wider range of categories (e.g. by using 7-item SimChains Terrace
et al., 2003) would further reduce problems inherent in binary testing. Using more difficult tasks, as well
as demonstrating transfer of knowledge between tasks (e.g. Jensen et al., 2013a) should also clarify the
nature of subjects? representations, including their limitations. Such studies should help to better define
concepts, and to distinguish abstract relations from more basic discriminative processes (Zentall et al.,
2002).
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APPENDIX: STIMULUS ANALYSIS
Although comparative studies of primate cognition very often use photographic stimuli, systematic

analyses of the stimuli are rarely undertaken. This is unfortunate, because skepticism about surprising
results often relies on speculation about stimulus characteristics that might have been used as discriminative
cues. A subject might, for example, be suspected of identifying pictures of birds solely on the basis of a
blue backdrop at the top of the images (i.e. the sky). Rather than speculate about the putative properties
of the stimuli, a comprehensive analysis can determine whether bird stimuli contain disproportionate
amounts of blue.

Our analysis of stimulus images focuses on low-level features like image entropy and color histograms.
This approach has the advantage of being entirely automatic and replicable, which is especially important
given the large number of stimuli we employed. The overarching question that these analyses seek to
inform is this: “To what extent are low-level properties sufficient to categorize stimuli correctly?” The
more diverse the stimuli in each grouping, the more difficult it is to specify criteria for category inclusion.
At the same time, the more each of the categories resembles the others overall, the more difficult it is to
specify criteria for category exclusion.

Stimuli
The stimuli used in this study were selected in a fashion that differs from the conventions used in

typical psychophysical experiments. Rather than select stimuli according to strict inclusion criteria, or
modifying images before use (e.g., turning them grayscale or giving them uniform spectra), we included
images solely on the basis of the question, “Is this a picture of X?” For example, our photographs of
people included both extreme close-ups of faces and wide-angle views of crowds. We also included both
color and black-and-white images.

Figures 10 depict a representative set of exemplars for each of the conceptual categories used in
Experiment 2. For reasons associated with image and likeness rights, exemplars from Experiment 1 are
not included. However, representative images may be obtained from the Caltech-UCSD Birds 200 Dataset
(Welinder et al., 2010) for the ‘birds’ category, from the Oxford-IIIT Pet Dataset (Parkhi et al., 2012) for
the ‘cats’ category, from the Oxford 102 Category Flower Dataset (Nilsback and Zisserman, 2008) for the
‘flowers’ category, and from the Caltech 256 Dataset (Griffin et al., 2007) for the ‘people’ category. In
all cases, these stimuli were selected for this study. Subjects with prior experience using the SimChain
paradigm were not previously exposed to these specific images.
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Dalí

Gérôme

Monet

van Gogh

Figure 10. Exemplars of the stimuli drawn from the works of four painters, used in Experiment 2.
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Stimulus Analysis: Pixel Entropy
Prior research has shown that primates possess the ability to discriminate stimuli based on visual

entropy Flemming et al. (2013); Wasserman et al. (2001), an ability also demonstrated in pigeons Young
and Wasserman (2002). Because the entropy estimation can be done mechanically by simple systems,
doing so falls considerably short of the criteria for a ”conceptual representation.” Consequently, an analysis
of pixel entropies gives an idea of whether the sets of stimuli differ sufficiently to be discriminated on that
basis.

Here, pixel entropy is taken to be the Shannon entropy Jensen et al. (2013b), computed over all possible
combinations of red, blue, and green intensities:

H =
255∑
r=0

255∑
g=0

255∑
b=0

p (r, g, b) ˙log2 (p (r, g, b)) (5)

The maximum possible entropy H that a bitmap image could possibly display is 24, provided each of
the 256× 256× 256 pixel values appears equally. However, such an entropy would require a 4096× 4096
pixel image, much larger than our stimuli. Because our stimuli were only 140× 130 pixels in size, the
highest possible entropy that a color stimulus could possess was 14.15 bits. Grayscale images had a
maximum entropy of 8 bits.

Figures 11 and 12 show kernel density estimates of the distributions of pixel entropies displayed in
Experiments 1 and 2, respectively, as well as each distribution’s quartiles. In general, stimuli tended to
show high entropies of between 12 and 14 bits, such that a 13-bit image could easily belong to any of
the categories. However, the stimuli used in Experiment 1 do show clear distributional differences. For
example, many more of the images of birds have entropies below twelve than the other stimuli, while the
images of flowers routinely have higher entropies than the other stimuli.

The stimuli used in Experiment 2 tend to have higher entropies overall than those in Experiment 1.
Here, too, however, there are notable similarities. Dalı́ and Gérôme both resemble one another closely, as
do Monet and van Gogh, but these two clusters appear distinct from one another. Importantly, however,
because stimuli in each of these pairings are distributed so similarly, it would be very difficult for subjects
to distinguish each group precisely on the basis of pixel entropy alone.

We do not rule out the possibility that pixel entropy facilitated identification in some fashion. This
analysis is merely intended to demonstrate that pixel entropy alone would not have been sufficient to
precisely classify each stimulus.
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Figure 11. Kernel density estimates of pixel entropy in the four categories used for Experiment 1. The median image is
indicated by the solid blue line, while the first and third quartiles are indicated by the blue dashed lines.
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Figure 12. Kernel density estimates of pixel entropy in the four categories used for Experiment 1. The median image is
indicated by the solid blue line, while the first and third quartiles are indicated by the blue dashed lines.
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Stimulus Analysis: HSV Histograms
Another method by which images can be compared is on their HSV distributions. Just as each image

may be represented as a collection of pixels that have values of red, blue, and green, each pixel may also
be represented by the orthogonal dimensions of hue, saturation, and value (the last corresponding to the
luminosity of the pixel). HSV histograms are often more subjectively informative than RGB histograms,
as they are better at revealing effects such as tint, brightness, and color intensity Lee et al. (2005).

For this analysis, the histograms of hue, saturation, and value were obtained for each stimulus. Then,
these stimuli were sorted according to similarity by performing a principal component analysis Jolliffe
(2002) and ordering the histograms according to the first component. This yields a 3D map of frequencies
across stimuli, in which each row represents a single stimulus and each column represents a particular
index in the histogram.

Figure 13 plots this multi-image histogram as a heat map for the hues of all stimuli in Experiment 1.
In addition to the histograms for each individual image, Figure 13 also plots the marginal frequencies
across all stimuli in each category. Here, we can see quite clearly that the different categories reliably have
properties that can be used to distinguish one category from the next. Pictures of birds very frequently
have green and cyan elements (because of leaves or sky), and flowers have a greater representation of
yellow and purple. Photographs of people tend to be more reddish, while cats tend to be more orange.

Note that the apparently ”blank bands” visible in these heat maps are black-and-white images. Since a
black-and-white image cannot reasonable be described as having a particular hue, the frequency distribution
for those images were uniform.

Figure 14 plots the histogram for saturation of stimuli in Experiment 1, and here, too, patterns of differ
visibly. Photographs of flowers are typically highly saturated, while photos of cats and birds tend to have
low saturation. However, an examination of the distributions of individual stimuli suggest that there is an
overall level of heterogeny in most cases, as evidenced by the lack of consistent vertical bands in the heat
maps.

Figure 15 plots the histogram for value (i.e. brightness) of stimuli in Experiment 1, showing clear
differences. Flowers and people tend to be spread across the range, while birds and cats tend to cluster
toward the center. As in the case of saturation, there is a great deal of variation across stimuli, such that
these would not be strongly selective signals.

Figure 16 plots the histogram for hue of the painting stimuli in Experiment 2, and a much greater
degree of uniformity is observed here than in Experiment 1. In all cases, painters favored colors in the
orange-yellow and cyan ranges. This similarity across painters, combined with the heterogeny of the
images (in which many had no blue to them at all) ensures that hue could not be used as a reliable cue in
Experiment 2.

Figure 17 plots the histogram for saturation of the painting stimuli in Experiment 2. Here, heterogeny
dominated, with all painters having images that were spread across the full range of saturations. While
there were some differences (Dalı́ tended to be the most likely to have highly saturated colors, for example),
the spread across the range prevented saturation from being a reliable cue.

Figure 18 plots the histogram for value of the painting stimuli in Experiment 2. As in the case
of saturation, the painters were highly heterogeneous, tending to favor intermediary values. This is
unsurprising, as artists routinely avoid using pure white and pure black, instead favoring intermediate
values that give an impression of contrast Escher (1989).
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Figure 13. Hue histograms for each stimulus used in Experiment 1, sorted using principal component analysis. The histogram
at the bottom depicts the marginal frequency across all images.
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Figure 14. Saturation histograms for each stimulus used in Experiment 1, sorted using principal component analysis. The
histogram at the bottom depicts the marginal frequency across all images.
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Figure 15. Value histograms for each stimulus used in Experiment 1, sorted using principal component analysis. The
histogram at the bottom depicts the marginal frequency across all images.
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Figure 16. Hue histograms for each stimulus used in Experiment 2, sorted using principal component analysis. The histogram
at the bottom depicts the marginal frequency across all images.
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Figure 17. Saturation histograms for each stimulus used in Experiment 2, sorted using principal component analysis. The
histogram at the bottom depicts the marginal frequency across all images.
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Figure 18. Value histograms for each stimulus used in Experiment 2, sorted using principal component analysis. The
histogram at the bottom depicts the marginal frequency across all images.
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