Reef growth and limestone erosion

Because the shapes and forms of many coral reefs resemble karst (erosion landforms created by dissolution of limestone), it is widely believed that those reefs have grown on karst foundations, and that Holocene growth perpetuates the underlying topography. However, this concept has become difficult to reconcile with the growing amount of seismic and coring evidence demonstrating that several karst-like reef features are entirely constructional. Here I use cellular automata simulations to show that coral reefs resemble karst limestones not because they are built on karst foundations, but because reef growth and limestone erosion are fundamentally the same process, running in opposite directions. Coral reef landscapes are in fact *inverse* karst—the basic spectrum of reef growth forms mirrors the basic spectrum of limestone erosion forms. In both growth and erosion, the development of form is a self-organised phenomenon emerging from the cumulative action of small-scale processes. The essential morphological control in both cases is slope stability, which depends on the composition of each system: coral type in reefs and lithology (rock type) in limestones. Solid, well cemented reefs and limestones, which can maintain steep slopes without collapsing, produce nodular reefs and pinnacle karst respectively, whereas unconsolidated, friable reefs and limestones, which frequently collapse, produce cellular reefs and cone karst. The growth forms produced in the model should theoretically apply to all modular skeleton-building organisms growing in a fluid medium, and may therefore provide useful templates in the search for extraterrestrial life. While none of the model forms can be considered unequivocally diagnostic of life, because all could conceivably arise through inanimate crystallisation, the model's seemingly accurate rendition of biogenic carbonate morphology on earth suggests that it may provide a useful foundation for evaluating and exploring the range of macroscale self-organised biogenic structures that could arise on other planets.

- 1 Reef growth and limestone erosion
- 3 David Blakeway^{1, 2}

- ¹School of Earth and Environment, University of Western Australia, Perth, Western Australia
- ²Current address: Fathom 5 Marine Research, 17 Staines St, Lathlain 6100, Western
- 6 Australia, fathom5marineresearch@gmail.com

- With the discovery of glaciation and glacio-eustatic sea level change in the late 19th century,
- 8 it was recognised that the foundations of modern coral reefs had been alternately exposed and
- 9 submerged as the polar ice caps waxed and waned (Daly 1910, 1915; Davis 1915). This
- 10 recognition prompted an ongoing debate concerning the extent to which modern reef
- morphology is a product of construction during interglacial periods versus erosion during
- 12 glacial periods. Contemporary viewpoints in the debate see Holocene reef morphology as
- either primarily constructional, reflecting an interplay between reef-building organisms and
- their environment (Bloom 1974; Halley et al. 1977; Sammarco, Andrews & Risk 1991;
- Walbran 1994; Kennedy & Woodroffe 2002; Blanchon 2011), or primarily erosional,
- perpetuating the topography of underlying karst (erosion landforms created by dissolution of
- 17 limestone; Purdy 1974; Steers & Stoddart 1977; Purdy & Bertram 1993; Purdy & Winterer
- 18 2001; Purdy, Gischler & Lomando 2003; Davies 2011).
- 19 The karst hypothesis is based on compelling but circumstantial evidence, primarily the
- 20 remarkable morphological similarities between coral reefs and karst limestones. Yet, as
- 21 coring and seismic work over the last few decades has begun to reveal the internal structure
- of reefs, evidence for karst control has been at best equivocal and often contradictory, with
- several karst-like reef features shown to be entirely constructional. Cellular reefs are perhaps
- 24 the best example, because while they appear virtually identical to, and remain widely
- 25 interpreted as, karst doline terrains (fields of subcircular erosion depressions), coring and
- seismic work 20 to 30 years ago in the cellular reefs of Mataiva Atoll in the Tuamotu
- 27 Archipelago (GIE Raro Moana 1985; Rossfelder 1990) and the Houtman Abrolhos Islands in
- Western Australia (Collins et al. 1993; Collins, Zhu & Wyrwoll 1996; 1998) unambiguously
- 29 demonstrated their constructional origin. Thus the current status of the karst hypothesis is
- 30 paradoxical because it remains widely accepted despite crucial elements in the karst argument
- 31 having been falsified long ago.
- 32 Here I use cellular automata simulations to investigate the basic premise of the karst
- 33 hypothesis: that coral reefs resemble karst limestones too closely for coincidence. I show that
- 34 the resemblance is not coincidental, but arises because reef growth and limestone erosion are
- 35 fundamentally the same process, running in opposite directions. Coral reef landscapes
- resemble karst because they are in fact *inverse* karst—the basic spectrum of reef growth
- forms mirrors the basic spectrum of limestone erosion forms (Fig. 1). In both growth and
- erosion, the development of form is a self-organised phenomenon emerging from the
- 39 cumulative action of small-scale processes. The essential morphological control in both cases

- is slope stability, which depends on the composition of each system: coral type in reefs and lithology (rock type) in limestones. Solid, well cemented reefs and limestones, which can maintain steep slopes without collapsing, produce nodular reefs and pinnacle karst respectively, whereas unconsolidated, friable reefs and limestones, which frequently collapse, produce cellular reefs and cone karst (Video S1 and S2). Visual interpretation of both morphological spectra becomes more ambiguous as slope stability is reduced and the proportion of collapse increases. Pure growth and erosion forms appear straightforward and intuitively correct whereas collapse-controlled forms are difficult to visually parse as growth and erosion forms. This difficulty arises because collapse itself contains elements of both erosion and growth (deposition). Collapse-controlled landforms therefore present visually dissonant images; cellular reefs being growth forms with an element of erosion and cone karsts being erosion forms with an element of growth. The enigmatic appearance of cellular reefs and cone karst has probably been a significant factor impeding the conceptual understanding of their development.
 - The growth forms produced in the model should theoretically apply to all modular skeleton-building organisms growing in a fluid medium, and may therefore provide useful templates in the search for extraterrestrial life. The erosion forms are less direct indicators of life but, on earth at least, are best developed in biogenic rocks. This relationship may apply universally because organisms that build skeletons by precipitating dissolved compounds will tend to converge on compounds that are close to their saturation state and require relatively little transition energy, and such compounds will be liable to dissolution as external conditions change. While none of the forms produced in the model can be considered unequivocally diagnostic of life, because all could conceivably arise through inanimate crystallisation and dissolution, the model's seemingly accurate rendition of biogenic carbonate morphology on earth suggests that it may provide a useful foundation for evaluating and exploring the range of macroscale self-organised biogenic structures that could arise on other planets.

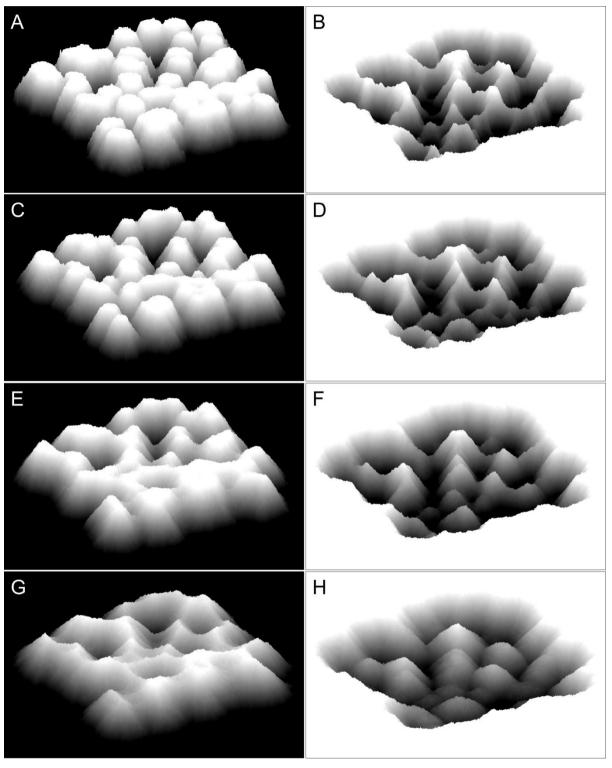


Figure 1. Basic reef growth and limestone erosion forms produced by incrementally reducing slope stability in the model. The left column shows the range of patch reef growth forms, from steep-sided nodular reefs (A) to gently-sloping cellular reefs (G) and the right column shows the range of limestone erosion forms, from steep-sided pinnacle karst (B) to gently-sloping cone karst (H). The limestone erosion forms are direct inversions of their growth counterparts.

Additional	author	comment
Auuluulai	aumoi	COMMICHE

76	This preprint is a summary of an article	I intend to develop and	submit to PeerJ for review.

- 77 While I'm reasonably confident in the growth aspect of the model, through the work
- described in Blakeway & Hamblin (2014), the erosion aspect is speculative, particularly the
- 79 conclusion that cone karst is a collapse-controlled landform. However, multiple lines of
- 80 evidence appear to support this conclusion, including apparently consistent correlations
- 81 between karst morphology and limestone lithology (cone karst occurring in weakly
- 82 consolidated, friable limestones), the very consistent low-gradient slopes recorded in cone
- 83 karst terrains (I interpret these as angle of repose slopes), visible evidence of collapse in some
- articles (see for example the collapse induced by artificial steepening in a road cut through
- the cone karst of Puerto Rico in Fig. 55 of Giusti 1978), and the close resemblance between
- cone karst (e.g. http://en.wikipedia.org/wiki/Chocolate_Hills) and known collapse-controlled
- 87 constructional landforms such as mullock heaps and cinder cones:
- 88 http://www.australiantraveller.com/coober-pedy/038-noodle-for-opals-at-coober-pedy/
- 89 http://marsmobile.jpl.nasa.gov/images/20070403_DianaBlaney4_070301105112-br2.jpg

74 75

- 91 Further supporting evidence comes from a comprehensive study of symmetrical cone-shaped
- 92 limestone hills on Abaco Island in the Bahamas by Walker et al. (2009). Walker et al. use
- 93 field observations and measurements to demonstrate that slope failure has been instrumental
- 94 in the morphological development of the Abaco cones. Walker et al. ultimately classify the
- Abaco cones as pseudokarst, not cone karst. With the backing of the model I feel on firmer
- ground (②) in claiming that the Abaco cones *are* cone karst, and that Walker et al. have hit
- 97 upon the mechanism—slope failure—by which all cone karsts develop.

- The model, and some testable predictions arising from it, are described in Blakeway &
- Hamblin (2014). That article presents the growth situation only, however the erosion situation
- is a direct inversion, with no other alterations.

102 References

103

Blakeway D, Hamblin MG. (2014) Self-generated morphology in lagoon reefs. PeerJ 104 PrePrints 2:e576v2 https://dx.doi.org/10.7287/peerj.preprints.576v2 105

- 106 Blanchon, P. 2011. Geomorphic zonation. In Hopley, D, ed. Encyclopedia of Modern Coral 107
- Reefs: Structure, form and process. Dordrecht: Springer: 469-486. 108

109

110 Bloom, AL. 1974. Geomorphology of reef complexes. In LaPorte, LF, ed. Reefs in Time and 111 Space: Selected Examples from the Recent and Ancient. Society of Economic Paleontologists and Mineralogists Special Publication 18: 1–8. 112

113

- 114 Collins, LB, Zhu, ZR, Wyrwoll, K-H, Hatcher, BG, Playford, PE, Chen JH, Eisenhauer, A,
- Wasserburg, GJ. 1993. Late Quaternary facies characteristics and growth history of a high 115
- latitude reef complex: the Abrolhos carbonate platforms, eastern Indian Ocean. Marine 116
- Geology 110: 203-212. 117

118

- Collins, LB, Zhu, ZR, Wyrwoll, K-H, 1996. The structure of the Easter Platform, Houtman 119 Abrolhos reefs: Pleistocene foundations and Holocene reef growth. Marine Geology 135: 1-120
- 121 13.

122

- 123 Collins, LB, Zhu, ZR, Wyrwoll, K-H. 1998. Late Tertiary-Quaternary Geological Evolution
- 124 of the Houtman Abrolhos Carbonate Platforms, Northern Perth Basin. In Purcell, R, Purcell,
- P. (eds.) The sedimentary basins of Western Australia, 2. Perth, Western Australia, Petroleum 125
 - Exploration Society of Australia: 647-663.

126 127

Daly, RA. 1910. Pleistocene glaciation and the coral reef problem. American Journal of 128 Science. 30: 297-308. 129

130

- Daly, RA. 1915. The glacial-control theory of coral reefs. *Proceedings of the American* 131
- 132 Academy of Arts and Sciences 51(4).

133

- Davis, WM. 1915. The origin of coral reefs. Proceedings of the National Academy of 134
- Sciences of the United States of America 1(3): 146-152. 135

136

137 Davies, PJ. 2011. Antecedent platforms. In Hopley, D, ed. Encyclopedia of Modern Coral Reefs: Structure, form and process. Dordrecht: Springer: 40-47. 138

139

- 140 GIE Raro Moana. 1985. The Phosphates from Mataiva. Proceedings of the Fifth
- International Coral Reef Symposium Volume 1: 317-319. 141

142

- Giusti, EV. 1978. Hydrogeology of the karst of Puerto Rico. United States Geological Survey 143
- Professional Paper 1012. pr.water.usgs.gov/public/online_pubs/pp_1012/pp1012.pdf 144

145

- Halley, R, Shinn, EA, Hudson, JH, Lidz, B. 1977 Recent and relict topography of BooBee 146
- patch reef, Belize: Proceedings of the Third International Coral Reef Symposium Volume 1, 147
- p. 53-96. 148

- Kennedy, DM, Woodroffe, CD. 2002. Fringing reef growth and morphology: a review. 150
- Earth-Science Reviews 57: 255-277. 151

- Purdy, EG. 1974. Reef configuration: cause and effect. In LaPorte, LF, ed. Reefs in Time and
- 154 Space: Selected Examples from the Recent and Ancient. Society of Economic
- Palaeontologists and Mineralogists Special Publication 18: 9-76.

152

- Purdy, EG, Bertram, GT. 1993. Carbonate concepts from the Maldives, Indian Ocean.
- 158 American Association of Petroleum Geologists Studies in Geology 34:1–56.

159

Purdy, EG, Winterer, EL. 2001. Origin of atoll lagoons. *Geological Society of America Bulletin* 113: 837–854.

162

Purdy, EG, Gischler, E, Lomando AJ. 2003. The Belize margin revisited 2. Origin of Holocene antecedent topography. *International Journal of Earth Sciences* 92:552–572.

165

- Rossfelder, A.M. 1990. The submerged phosphate deposit of Mataiva Atoll, French Polynesia. In Burnett, WC, Riggs, SR (eds.) *Phosphate deposits of the world. Volume 3*.
- 168 Neogene to Modern Phosphorites. Cambridge: Cambridge University Press, 195-203.

169 170

171

Sammarco, PW, Andrews, JC, Risk, MJ. 1991. Coral reef geomorphology as a function of seasonal prevailing currents and larval dispersal. *Palaeogeography, Palaeoclimatology, Palaeoecology* 88: 1-12.

172173174

Steers, JA, Stoddart, DR. 1977. The origin of fringing reefs, barrier reefs, and atolls. In Jones, OA, Endean, R (eds) *Biology and Geology of Coral Reefs volume 4. Geology 2*. New York: Academic Press.

176177

175

Walbran, PD. 1994. The nature of the pre-Holocene surface, John Brewer Reef, with
implications for the interpretation of Holocene reef development. Marine Geology 122(1-2):
63-79.

- Walker, LN, Mylroie, JE, Walker, AD, Mylroie, JR. 2009. Symmetrical cone-shaped hills,
- Abaco Island, Bahamas: karst or pseudokarst? *Journal of Cave and Karst Studies* 72(3): 137-
- 184 149. https://caves.org/pub/journal/PDF/.../cave-72-02-03.pdf