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Abstract

Mathematical models are instrumental in controlling Chlamydia trachomatis
and other sexually transmitted infections (STIs). Modeling approaches that strat-
ify the population by the number of individuals’ sex partners often assume the
transmission risk per partner to be constant. Sexual behavior data shows, however,
that people with many partners share less sex acts per partner than people with
fewer partners. This should lower the risk of transmission per partner for highly
sexually active individuals and could have important epidemiological consequences
for STI transmission and the projected impact of control scenarios. We devise a
new epidemiological model that we fit to chlamydia prevalence data from Natsal-2
and CSF, two population-based probability sample surveys of sexual behavior in
Britain and France. Compared to a standard model where the transmission risk
per partner is constant, a model with realistic numbers of sex acts per partner
provides a better fit to the data. Furthermore, the improved model provides ev-
idence for strong assortative mixing among individuals with different numbers of
sex partners. Our results suggest that all chlamydia infected individuals with one
or more new heterosexual partners per year contribute to ongoing transmission,
underlining that control interventions should be aimed towards all sexually active
young adults.

Keywords: Chlamydia trachomatis, infection control, sexual mixing, mathematical
model, parameter inference
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1 Introduction

The spread of sexually transmitted infections (STIs) crucially depends on the number of
sex partners and the number of sex acts within a sexual partnership. Empirical studies
have shown that the number of sex partners within a given time period is a strong deter-
minant for the spread of curable STIs such as Chlamydia trachomatis [1–3] and Neisseria
gonorrhoea [4]. However, apart from a few noticeable exceptions, which are further dis-
cussed below, the number of sex acts as an additional factor for transmission has not
received as much attention. In particular, mathematical models of STI transmission
that are frequently used in guiding public health policy decision making often assume
the number of sex acts per partner to be constant and independent on the number of an
individual’s partners [5–9]. Neglecting realistic numbers of sex acts per partner could
have important implications for interpreting the results of STI transmission models, such
as predicting the impact of screening interventions for chlamydia.

Theoretical studies have shown that taking into account the number of sex acts in
models of STI transmission could be crucial [10, 11]. An important aspect was illustrated
in the study by Nordvik & Liljeros [12], where they showed that it is not only the number
of partners, but also the number of sex acts per partner, that is important for the
transmission of an infection. Garnett & Anderson [13] developed a generic framework to
include the heterogeneity in the number of sex acts between individuals and showed that
it can enhance the likelihood of persistence of STIs. Still, we lack a solid understanding
of the relationship between the number of sex acts and the number of sex partners.
Furthermore, it remains to be determined how this relationship can be appropriately
integrated into mathematical models of STI transmission that then can be validated by
data.

The results of probability sample surveys of sexual behavior allow us to formulate
some hypotheses on the relationship between the number of sex acts and the number of
sex partners. Blower & Boe [14] analyzed data from 1770 unmarried individuals aged
20–44 years collected in San Francisco (USA) from 1988–1989. They concluded that the
total number of sex act does not increase linearly with the number of sex partners and
that the number of sex acts should be seen as a ‘budget’ split between sex partners.
Nordvik & Liljeros [12] looked at the total number of sex acts in relation to the total
number of sex partners based on data from 1150 individuals aged 16–31 years collected in
Sweden in 1988. The authors found that the total number of sex acts remains constant,
or in women even decreases, in individuals with higher numbers of sex partners. In
principle, one can directly infer the relationship between sex acts and sex partners from
sexual behavior surveys, but there remain potential biases due to the self-reported data.
For example, it proves difficult to discriminate between protected and unprotected sex
acts in such surveys. To date, we still lack a quantitative picture of the relationship
between the number of sex partners and the number of sex acts, and its implications on
the epidemiology of STIs.

Another important aspect of taking the number of sex acts between sex partners into
account is its effect on the topology of the sexual contact network. If the number of sex
acts per sex partner is constant, each contact (edge) between susceptible and infected
individuals (nodes) is weighted equally, i.e., has the same transmission probability. This
is not the case if sex acts are explicitly accounted for [15]. However, network-based
models usually require computationally-intensive simulations, which is why mathemati-
cal models of STIs tend to adopt a simpler approach by stratifying the population into
subgroups with varying levels of sexual activity [5, 7, 8]. These models are often referred
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to as risk class models, though the stratification is based on the partner change rate that
does not necessarily correlate with risk. The level of sexual mixing between individuals
can vary between fully proportionate (to the number of sex partners individuals have),
completely assortative (individuals within a sexual activity or risk group mix only with
themselves) or somewhere in between. While some studies based on sexual behavior
data indicate a certain level of assortative mixing between individuals [16–19], the out-
put of STI transmission models is often only consistent with close to proportionate (or
random) mixing [8, 20]. This inconsistency illustrates the challenge in estimating the
degree of sexual mixing, and underlines the importance of considering the number of sex
acts per sex partner in models of STI transmission.

Our goal is to gain a more detailed picture of the relationship between the number of
heterosexual sex acts and the number of heterosexual sex partners and study its effect
on the transmission of chlamydia, the most common bacterial STI. To this end, we
make use of two data sets of sexual behavior: the British National Survey of Sexual
Attitudes and Lifestyles (Natsal-2) [21], and the ‘Contexte de la Sexualité en France’
(CSF 2006) [22, 23]. First, we directly infer the relationship between the number of
heterosexual sex acts and the number of heterosexual sex partners from Natsal-2. We
then fit a novel epidemiological model of STI transmission to chlamydia prevalence
data of both data sets and indirectly infer epidemiological parameters as well as the
relationship between the number of heterosexual sex acts and heterosexual sex partners.
Both methods support the notion that the number of heterosexual sex acts per partner
decreases with higher number of heterosexual sex partners. This is also consistent with a
high level of assortative mixing between individuals with similar number of sex partners.
Lastly, we show the implications of taking realistic numbers of sex acts into account on
modeling the heterosexual transmission dynamics of chlamydia and the impact of control
interventions.

2 Materials and methods

2.1 Data

2.1.1 Natsal-2

Natsal-2 is a population-based probability sample survey of sexual attitudes and lifestyles
conducted in Britain in 1999-2001 [21]. The sample consists of 11,161 women and men
aged 16–44 years. Urine samples for ligase chain reaction (LCR) testing for chlamydia
infection are available for a subset of 3569 sexually active respondents aged 18–44 years
[1]. We use the following variables: number of new heterosexual sex partners in the last
year, number of occasions of heterosexual sex in last 4 weeks, chlamydia test result from
urine sample. Individual weights are used for all variables to adjust for unequal selection
probabilities and to correct for the age and gender profile in the survey population.

2.1.2 CSF

‘Contexte de la Sexualité en France’ (CSF 2006) is a survey conducted in France among
12,364 randomly chosen individuals aged 18–69 years [22, 23]. Urine samples testing for
chlamydia infection are available for a subset of 7407 sexually active respondents. The
two variables we used are the number of new heterosexual sex partners in the last year
and the chlamydia test result from urine sample. As for the Natsal-2 data, individual
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weights are used to adjust for unequal selection probabilities and to correct for the age
and gender profile in the population.

2.2 Sex acts and sex partners

We stratify the population by the reported number of new heterosexual partners in the
last year which results in n different sexual activity classes with ci sex partners. The
average heterosexual activity of each individual during one year is assumed to be reflected
in the reported number of heterosexual sex acts during the last 4 weeks. For simplicity,
and in order to increase sample size, we pool data of women and men together.

The reported numbers of sex acts during the last 4 weeks are highly dispersed (figure
1A). Therefore, we assume that the observed number of sex acts during the last 4 weeks
(Z) for a given individual with ci new heterosexual partners during the last year is
negative binomially distributed. The negative binomial distribution is frequently used
to describe overdispersed data in biology and epidemiology [24, 25]. In the context of
data on the number of sex acts, it can be interpreted as a process of sequential Bernoulli
trials to reach sexual satisfaction with the parameters (k,p): for each of Z sex acts
there is a probability p that it will not be sexually satisfying and individuals engage in
new sex acts until satisfaction has been reached in k of them. The negative binomial
distribution can also be interpreted as a mixture of Poisson distributions where the rates
at which different individuals have sex are drawn from a gamma distribution with shape
parameter k and scale parameter p/(1−p). More generally, a single Poisson distribution
is obtained for k →∞ and the negative binomial distribution is reduced to a geometric
distribution for k = 1.

We assume that the mean of the negative binomial distribution is given by the
following functional relationship:

mi = d1 + d2 c
d3
i , (1)

where mi and ci are the average number of sex acts and the number of sex partners for
individuals of sexual activity class i, respectively. mi can then be scaled to obtain the
expected number of heterosexual sex acts per year (Mi).

We construct a series of nested models by fixing some of the parameters to specific
values. For example, if d2 = 0, the total number of sex acts does not increase with
higher numbers of sex partners. For d3 = 1, the number of sex acts changes linearly
with higher numbers of partners. The nested models then allow to perform hypothesis
testing about different functional relationships between the number of sex acts and sex
partners.

2.3 Epidemiological model

We assume the population to be stratified into n different sexual activity classes xi with
ci new heterosexual partners per year [5, 7]. xi denotes the proportion of individuals in
sexual activity class i. On average, individuals change their sexual activity after one year,
and are proportionally redistributed among all sexual activity classes. For simplicity,
we assume that sexual activity and the natural history and transmission of the infection
are the same in women and men. If yi is the proportion of infected individuals in sexual
activity class i, an SIS (susceptible-infected-susceptible) model (i.e., with no immunity)
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can then be written as follows:

dyi
dt

= µ
n∑
j=1

xjyj + (1− yi)ci
n∑
j=1

bijρijyj − (γ + µ)yi, (2)

where 1/γ and 1/µ denote the average duration of infection and the average time spent
in one sexual activity class, respectively. ρij represents the elements of the mixing matrix
that, following Garnett et al. [8], can be defined as

ρij = εδij + (1− ε) cjxj∑n
l=1 clxl

, (3)

where δij denotes the Kronecker delta (it is equal to 1 if i = j and to 0 otherwise).
Mixing can be varied between proportionate (ε = 0) and fully assortative (ε = 1).

The per partnership transmission probability bij can be considered as a Bernoulli
process of repeated transmission probabilities per sex act:

bij = 1− (1− β)aij (4)

where β denotes the transmission probability per sex act and aij the number of sex acts
in a partnership between an individual of sexual activity class i and j. To construct the
matrix aij, we use the following algorithm:

1. Define si = Mi

ci
as the available number of sex acts per partner for an individual of

sexual activity class i.

2. Set j = n, i.e., start with the highest sexual activity class.

3. Distribute sj among all partners of sexual activity class k = [1, j] proportional to
the sexual mixing matrix ρjk and to what the partners are willing to share (sk).

4. For k = [1, j − 1], update sk to only those available sex acts that have not been
shared with individuals of sexual activity class j or higher.

5. If j > 1, set j = j − 1 and go to step 3. Otherwise, stop.

We calculate the basic reproduction number, R0, for a given sexual activity class

as follows:
ci

∑n
j=1(bijρij)

γ
. R0 for the entire population is calculated using the next gen-

eration method [26, 27]. An overview of all parameters and variables to describe the
epidemiological model as well as the sexual behavior is given in table 1.

2.4 Maximum likelihood estimation

2.4.1 Direct method

The parameters d1, d2 and d3 that describe the functional relationship between the
number of sex acts and sex partners (Equation 1) and the dispersion parameter k from
the negative binomial distribution are estimated using maximum likelihood and the
function mle2 from the package bbmle [28] for the R software environment for statistical
computing [29].
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2.4.2 Indirect method

We fit the epidemiological model to chlamydia prevalence data to obtain maximum
likelihood estimates of behavioral and/or infection parameters [28]. Given a model-
predicted prevalence yi for sexual activity class i, the log-likelihood to find ki positive
tests in a sample of Xi individuals over all n sexual activity classes is

L(β, γ, ε, d1, d2, d3) =
n∑
i=1

(
log

(
Xi

ki

)
+ ki log yi + (Xi − ki) log(1− yi)

)
. (5)

The model predicted prevalences for each sexual activity class, yi, are obtained by
running Equation 2 into steady-state using the function ode from the R package deSolve
[30]. The parameter inference is performed using the function mle2 from the package
bbmle [28]. We use the minimization algorithm by Nelder & Mead [31] and the method
SANN, which is a variant of simulated annealing [32]. The first method is very robust
in finding local optima, whereas the latter usually performs better on rough likelihood
surfaces but is computationally slow.

3 Results

3.1 Sex acts and sex partners (direct method)

The reported number of heterosexual sex acts during the last 4 weeks in Natsal-2 show
an increasing trend for higher number of new heterosexual partners during the last
year (figure 1A). Fitting a series of nested models to the data suggests that a linear
relationship between the number of sex acts, mi, and the number of sex partners, ci,
describes the data best (table 2 and figure 1B, solid line). The model where the number
of sex acts for individuals with different numbers of sex partners is constant also fits the
data well (figure 1B, dashed line). In contrast, the commonly used assumption where
the total number of sex acts is strictly proportional to the number of sex partners is not
consistent with the data (figure 1B, dotted line). We also fit an exponential relationship
between the number of sex acts and sex partners (as suggested by Garnett & Anderson
[13]) to the data. This results in a poorer fit (AIC = 17380.1) compared to the models
in table 2.

3.2 Parameter inference (indirect method)

We perform two series of model fitting to indirectly infer parameters from chlamydia
prevalence data. First, we only consider epidemiological parameters: the per sex act
transmission probability β, the infectious duration 1/γ and the sexual mixing coefficient
ε. Second, we focus on inferring the shape of the functional relationship between the
number of sex acts and the number of sex partners (Equation 1) and estimate d1, d2, d3

and ε. For the second approach, we assume that β and γ are fixed and informed by the
literature. The rationale for choosing two separate approaches is that estimating all six
parameters simultaneously would result in overfitting of the model.

3.2.1 Epidemiological parameters

We fit two models to the Natsal-2 and CSF chlamydia prevalence data to estimate the
epidemiological parameters. In one model, the average number of sex acts for individuals
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with a specific number of sex partners is given by the best fit model from the direct
method (Linear). In the other model, we use the classical assumption where the number
of sex acts increases strictly proportional with the number of sex partners. Both models
fit the data well (figure 2) but vary in their estimates of the sexual mixing coefficient
(table 3). While the proportional model suggests that sexual mixing is proportionate
(ε = 0), the linear model estimates the mixing coefficient to be more assortative and
significantly different from zero (ε = 0.83 (95% CI: 0.46–0.96) and ε = 0.53 (95% CI:
0.38–0.68) for Natsal-2 and CSF, respectively). The estimated recovery rates and per sex
act transmission probabilities for the linear model are in good agreement with previous
estimates [33–36]. In contrast, the estimates of the per sex act transmission probability
for the proportional model are very low, which highlights that the number of sex acts
are not realistically taken into account.

3.2.2 Functional relationship

We infer the functional relationship of the number of sex acts and sex partners by fitting
the model to the Natsal-2 and CSF chlamydia prevalence data simultaneously (table
4). To this end, we set the per sex act transmission probability and the infectious
duration to values similar as estimated in table 3 (β = 3% and 1/γ = 1 year). We
find that the model where the number of sex acts does not increase with the number of
partners (Constant) describes the data best. As in section 3.2.1, we again find evidence
for assortative mixing (ε = 0.60, 95% CI: 0.28–0.85). The estimates of d2 or d3 are
close to zero for the model with no intercept, the linear model and the full model.
This indicates that the number of sex acts does not substantially increase with higher
numbers of partners. The proportional model clearly provides the worst fit to the data,
and is the only model that suggests random sexual mixing. Interestingly, the number
of estimated sex acts in the last four weeks is slightly higher than the estimate from
the direct method (10.6 vs.7̃.0 for the constant model, respectively). This could either
reflect an under-estimation of the per sex transmission probability or an under-reporting
of sex acts in Natsal-2.

Overall, our indirect method to infer the functional relationship between the number
of sex acts and sex partners corroborates the results from the direct method. Models
where the number of sex acts is constant or show a slight linear increase with the number
of sex partners provide the best and most parsimonious fit to the data. In contrast, the
classical assumption, which assumes strict proportionality between the total number of
sex acts and the number of sex partners is clearly worse in explaining the data.

3.3 Chlamydia transmission and control

We now investigate the effects of different assumptions about the number of sex acts
between partners on chlamydia transmission and control. We focus on the general pop-
ulation in Britain (Natsal-2) and use the linear relationship for the number of sex acts
as a function of sex partners from table 2. This ‘realistic’ model is contrasted to the
classical assumption where the number of sex acts increases strictly proportionally with
the number of sex partners. For both models, we use the best-fit estimates of the per
sex act transmission probability β, the recovery rate γ and the sexual mixing coefficient
ε from table 3.

For the linear model, distributing the number of sex acts to sex partners of different
sexual activity classes results in the sex acts matrix aij (figure 3A). aij then allows to
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calculate the per partnership transmission probabilities bij (equation 4) that range be-
tween 93.9% and 19.8% for partnerships between individuals with one and 10 partner(s),
respectively (figure 3B). In contrast, the proportional model with a constant number of
sex acts per partner results in a single per partnership transmission probability of 37.0%,
which is close to what has been estimated for mid-risk populations [34].

Differences in the per partnership transmission probability will affect the transmission
potential of individuals from different sexual activity classes. This is reflected in the basic
reproduction number R0 for each sexual activity class. In the classical scenario where
the number of sex acts per partner is constant and the sexual mixing between partners is
fully proportional, R0 is a linearly increasing function of the number of new heterosexual
partners per year (figure 4A, gray diamonds). The proportional model further suggests
that only those individuals with three or more new heterosexual partners per year, or
21.2% of those individuals that have had a new partner in the previous year, will infect
more than one additional person (R0 > 1). In the more ‘realistic’ linear model, the value
of R0 exceeds the threshold of one for all individuals with one or more new heterosexual
partners in the last year, and saturates around three for higher number of partners
(figure 4A, black squares). The differences of the models is also reflected in the value of
R0 for the entire population. In the classical model, the R0 for chlamydia is 1.26 while
it is 1.12 for the more ‘realistic’ model.

Screening for and treating of asymptomatic chlamydia infection is the primary strat-
egy to prevent disease transmission [37]. Ideally, screening will decrease R0 below the
threshold of one. The classical model predicts that low screening rates are sufficient to
prevent transmission in individuals with low numbers of partners but that more than
three tests per year on average would be necessary to prevent transmission in those in-
dividuals with many partners (right panel of figure 4, gray diamonds). Conversely, the
‘more realistic’ model illustrates that substantial screening (up to once every year) will
already be necessary for individuals with low numbers of partners per year (right panel
of figure 4B, black squares).

4 Discussion

This study provides insights into the relationship between the number of sex acts and
the number of heterosexual partners, and how it affects the transmission dynamics of
chlamydia and the projected impact of control interventions. We use direct and indirect
methods to infer this relationship from two population-based probability sample surveys.
Using the direct method, we find evidence that the number of sex acts increases only
marginally with the number of sex partners. This finding is corroborated using the
indirect method, where we show that a standard model in which the number of sex
acts increases strictly proportionally with the number of sex partners, is less consistent
with chlamydia prevalence data than most other models. Noticeably, the most ‘realistic’
model, where the number of sex acts are taken into account, provides strong evidence for
assortative mixing between individuals with different numbers of heterosexual partners.
The improved model also suggests that all individuals with one or more new heterosexual
partners in the last year contribute to chlamydia transmission (R0 > 1).

A major strength of this study is that we make use of two large data sets of sexual
behavior. This allows us to perform a model comparison and reject those models that
are not consistent with the data. We also use two methods to infer the relationship
between the number of sex acts and the number of sex partners. The indirect method
is based on chlamydia prevalence data and does not rely on self-reported number of sex
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acts. Furthermore, this method only estimates potentially infectious, or unprotected,
sex acts. Finally, we apply a novel epidemiological model of STI transmission that can
take into the movement of individuals between different sexual activity classes.

There are several limitations to our study. First, we pool heterosexual women and
men together, and do not take age-specific sexual behavior and different ethnic groups
into account. Those simplifying assumptions are driven by the aim to keep the number
of parameters small and the number of data points large enough to be able to statisti-
cally compare different models. This is also the reason why our analysis is focused on
heterosexuals only. Data from larger probability sample surveys could potentially im-
prove these limiting aspects. However, stratifying the population into women and men
in the analysis using the direct method does not reveal significant differences between
the two sexes (results not shown). Furthermore, we do not take concurrency of sexual
partnerships, condom use and potential sex-specific differences in infection parameters
into account.

We extend a commonly used STI transmission model, that stratifies the population
into different sexual activity classes, with a sex acts matrix that describes the average
numbers of sex acts between individuals of different sexual activity classes. The entries
of our sex act matrix are either directly or indirectly inferred from data. Others have
used similar models but could not derive the number of sex acts per partner in such
detail [38, 39]. Somewhat different modeling frameworks that investigate the importance
of sex acts by means of weighted contact networks have been developed by Britton
et al. [40] and Moslonka-Lefebvre et al. [15]. These models are arguably more realistic
than the more commonly used transmission models that stratify the population into
different sexual activity classes. However, network models have two major disadvantages.
First, the heterosexual contact networks for large populations are usually not known.
Second, we currently lack meaningful summary statistics for weighted networks, and
model results tend to rely on computationally expensive simulations. An alternative
extension of our analyses would be to use a recently developed framework, that manages
to derive analytical results for weighted networks by adopting a configuration network
approach and using joint probability distributions of number of sex partners and number
of sex acts [41].

Our study provides evidence for strong assortative mixing between heterosexual in-
dividuals of different sexual activity classes in the general population. Using the linear
relationship between the number of sex acts and sex partners from the direct method,
we estimate a sexual mixing coefficient of ε = 0.83 for Natsal-2 (table 3). An early
study based on partner notification data indicated that a proportional mixing model is
not an adequate description of the observed sexual mixing pattern [42]. Later, Renton
et al. [16] indicated that individuals with high rates of sexual partners preferentially
select other individuals with high rates as partners. Garnett et al. [18] also found that
sexual mixing was weakly assortative in patients attending sexually transmitted diseases
(STDs) clinics. In contrast, Stoner et al. [43] did not find evidence for assortative mixing
in members of gonorrhoea and chlamydia networks. This illustrates the difficulties in
quantifying the degree of sexual mixing, and that the estimates are likely to depend on
the studied population.

Our estimates of the basic reproduction number R0 for chlamydia are consistent with
values that were investigated in a recent theoretical study that introduced the concepts
of case and partnership reproduction numbers [44]. Another study based on contact
tracing data showed that individual reproduction numbers for chlamydia rarely exceed
3.0 [45]. Interestingly, this is exactly what we find for the host-specific basic reproduction
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numbers from the linear model (figure 4A, black squares) where R0 saturates around
3.0 for those individuals with a high number of sex partners.

We can show that taking into account the number of sex acts between partners
with different levels of sexual activity has important consequences for modeling the
transmission of STIs. First, we find strong evidence for assortative mixing between
individuals of different heterosexual activity classes. Second, our results suggest that
all chlamydia infected individuals with one or more new heterosexual partners per year
contribute to ongoing transmission. Both of those findings have important implications
for guiding public health decisions about chlamydia screening programs. A high level
of assortative mixing means that chlamydia can easily persist in those sub-populations
that are difficult to reach through screening. But our results also show that chlamydia
control interventions should be aimed towards all sexually active young adults as they
are likely to contribute to ongoing transmission.
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Table 1: Parameters and variables used to describe the sexual behavior and the epidemiolog-
ical model.

Notation Description
n Number of host classes with different sexual activity
ci Number of new heterosexual sex partners in the last year for individuals of host class i
mi Average number of heterosexual sex in the last 4 weeks for individuals of host class i
Mi Average number of heterosexual sex in the last year for individuals of host class i

d1, d2, d3 Parameters describing the functional relationship between ci and mi

xi Proportion of the host population in sexual activity class i
Xi Number of individuals in sexual activity class i
yi Proportion of infected individuals in sexual activity class i
µ Rate at which individuals change their sexual activity
γ Recovery rate of the infection
ρij Mixing matrix between individuals of sexual activity classes i and j
ε Sexual mixing coefficient (assortative index)
δij Kronecker delta (a function equal to 1 if i = j, and to 0 otherwise)
si Average number of sex acts per sex partner for an individual of host class i (Mi

ci
)

aij Number of sex acts in a partnership between individuals of sexual activity classes i and j
β Transmission probability per sex act
bij Transmission probability per partnership between individuals of sexual activity classes i and j
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Table 2: Maximum likelihood estimates of the functional relationship between the number
of sex acts and the number of sex partners (direct method). Fixed parameters are given in
squared brackets and estimates are shown together with 95% confidence intervals. The six
different models were sorted in increasing order of their AIC. Only models whose AIC were
within 10 from the best fit (Linear) model are shown together with the classical model where
the number of sex acts increases strictly proportional to the number of sex partners. Based on
likelihood ratio tests, the linear model is superior to the constant and full model (p < 0.05).

Model Parameters No. of free -2LogLik ∆AIC
d1 d2 d3 k parameters

Linear 6.64 (6.20, 7.09) 0.17 (0.01, 0.33) [1.00] 0.65 (0.61, 0.69) 3 16821.9 0.0
Full 6.77 (6.29, 7.25) 0.07 (-0.14, 0.28) 1.34 (0.31, 2.36) 0.65 (0.61, 0.69) 4 16821.4 1.6
Exponent 5.77 (5.40, 6.15) [1.00] 0.39 (0.13, 0.65) 0.65 (0.61, 0.69) 3 16824.3 2.4
No intercept [0.00] 6.81 (6.42, 7.20) 0.06 (-0.01, 0.13) 0.65 (0.61, 0.69) 3 16825.6 3.7
Constant 7.01 (6.67, 7.34) [0.00] – 0.65 (0.61, 0.69) 2 16828.4 4.6
Proportional [0.00] 5.08 (4.81, 5.35) [1.00] 0.54 (0.51, 0.57) 2 17296.0 472.2
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Table 3: Maximum likelihood estimates of epidemiological parameters. The relationship
between the number of sex acts and the number of sex partners is either based on the best
fit model from the direct method (Linear) or the classical assumption where the number of
sex acts increases strictly Proportional to the number of sex partners. Estimates are shown
together with 95% confidence intervals.

Model Data Parameters No. of free -2LogLik AIC
β 1/γ ε parameters

Linear Natsal-2 3.0% (1.9%, 4.1%) 1.12 y (0.83, 1.42) 0.83 (0.46, 0.96) 3 39.3 45.3
Linear CSF 3.4% (NA, NA) 0.96 y (NA, NA) 0.53 (0.38, 0.68) 3 85.2 91.2
Proportional Natsal-2 0.7% (0.3%, 1.1%) 1.16 y (0.44, 1.88) 0.00 (0.00, 0.00) 3 41.0 47.0
Proportional CSF 0.4% (0.2%, 0.5%) 1.04 y (0.45, 1.63) 0.00 (0.00, 0.00) 3 105.7 111.7
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Table 4: Maximum likelihood estimates of the functional relationship between the number of
sex acts and sex partners (indirect method). Fixed parameters are given in squared brackets
and estimates are shown together with 95% confidence intervals. The five different models are
sorted in increasing order of their AIC. The models are fitted with initial parameter values
from Table 2 and ε = 0.5.

Model Parameters No. of free -2LogLik AIC
d1 d2 d3 ε parameters

Constant 10.6 (8.54, 12.9) [0.0] [1.0] 0.60 (0.28, 0.85) 2 125.4 129.4
No Intercept [0.0] 10.4 (6.44, 15.2) 5.1e-4 (0, 1.46) 0.63 (0.16, 0.94) 3 125.4 131.5
Linear 10.0 (7.92, 12.4) 4.6e-3 (0, 0.15) [1.0] 0.69 (0.34, 0.89) 3 125.8 131.8
Full 6.72 (2.54, 12.8) 3.97 (0.59, 10.2) 1.1e-4 (0, 0.17) 0.59 (0.31, 0.82) 4 125.4 133.4
Proportional [0.0] 1.28 (1.23, 1.34) [1.0] 7.6e-3 (9.8e-5, 0.38) 2 153.2 157.2
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Figure 1: Number of heterosexual sex acts during the last 4 weeks as a function of the
number of new heterosexual partners during the last year. (A) Boxplot of the reported data
in Natsal-2 (n = 2824). The number of sex acts are positively correlated with the number of
sex partners (Pearson’s r = 0.07; p < 10−3). (B) Functional relationship between the number
of sex acts and the number of sex partners together with the means and standard errors of
the reported data. The best fit model (Linear, solid line) is shown together with the models
assuming the total number of sex acts (Constant, dashed line) or the number of sex acts per
partner (Proportional, dotted line) to be constant.
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Figure 2: Chlamydia prevalence and model fits. For both data sets, the model where the
total number of sex acts increases linearly with the number of sex partners (black squares)
provides a better fit to the data compared to the classical model where the number of sex acts
increases strictly proportional with the number of sex partners (gray diamonds).
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Figure 3: Average number of sex acts (left panel) and per partnership transmission probabil-
ities (right panel) between individuals of sexual activity class i and j. The matrices correspond
to the best-fit (Linear) model from section 3.2.1.
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Figure 4: Host-specific basic reproduction number (left panel) and required screening rate to
push R0 below one (right panel). The results from the best-fit linear model (black squares) are
compared to the classical model where the number of sex acts increases strictly proportional
with the number of sex partners (gray diamonds). Data are from Natsal-2 only.
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