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Abstract 36 

Background: Taxonomic classification of marker-gene (i.e., amplicon) sequences 37 

represents an important step for molecular identification of microorganisms.  38 

Results: We present three advances in our ability to assign and interpret taxonomic 39 

classifications of short marker gene sequences: two new methods for taxonomy 40 

assignment, which reduce runtime up to two-fold and achieve high-precision genus-level 41 

assignments; an evaluation of classification methods that highlights differences in 42 

performance with different marker genes and at different levels of taxonomic resolution; 43 

and an extensible framework for evaluating and optimizing new classification methods, 44 

which we hope will serve as a model for standardized and reproducible bioinformatics 45 

methods evaluations.  46 

Conclusions: Our new methods are accessible in QIIME 1.9.0, and our evaluation 47 

framework will support ongoing optimization of classification methods to complement 48 

rapidly evolving short-amplicon sequencing and bioinformatics technologies. Static 49 

versions of all of the analysis notebooks generated with this framework, which contain all 50 

code and analysis results, can be viewed at http://bit.ly/srta-012. 51 
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Background 53 

High-throughput amplicon-sequencing methods have opened new frontiers in microbial 54 

ecology, transforming our understanding of complex microbial ecosystems ranging from 55 

our bodies(1) to our planet(2). Sequencing ‘universal’ marker genes (e.g., bacterial 16S 56 

rRNA and fungal internal transcribed spacer (ITS) amplicons) and comparing those 57 

sequences to annotated reference sequences allows complex biological communities to be 58 

characterized taxonomically. Many taxonomic classification algorithms have been 59 

developed, but different methods can provide markedly different results, even when the 60 

same query sequences and reference database are used(3).  61 

 62 

The problem of taxonomic classification of marker genes is described as follows. Given a 63 

short, possibly error-containing, fragment of a marker gene, the goal is to determine the 64 

taxonomy of the organism from which that gene was derived with the greatest possible 65 

taxonomic specificity. Accurate and specific taxonomic assignment of these reads is 66 

essential for many — but not all — aspects of microbiome analysis, but currently used 67 

methods have not been optimized on "modern" datasets (e.g., short-amplicon sequencing 68 

reads, here we used reads varying in length from 100-250 bases as described in 69 

Supplementary Table 1).  70 

 71 

Introducing a new taxonomy classification method requires benchmarking against pre-72 

existing methods to determine whether the new method is more computationally efficient 73 
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(e.g., faster and/or smaller memory requirements) and/or better than other methods (e.g., 74 

yields more specific taxonomic assignments and/or more sequences accurately classified). 75 

When comparing a new method to existing methods, developers must: 76 

○ identify and obtain test datasets; 77 

○ develop an evaluation framework; 78 

○ obtain and install pre-existing taxonomic assignment software; and 79 

○ determine the parameters to benchmark against in the pre-existing 80 

taxonomic assignment software. 81 

These steps are fundamental to any methods development project, but all are subject to the 82 

developers’ decisions and biases. Additionally, because the test data and evaluation 83 

framework are often not published, when a subsequent method is introduced all of these 84 

steps must be repeated by its author. This results in duplicated effort and inconsistent 85 

evaluation metrics, such that method benchmarks are often not directly comparable. Each 86 

new method is evaluated with a new, custom benchmarking pipeline.  87 

 88 

To address these needs, we developed a computational framework for evaluating 89 

taxonomic classifiers using standardized public datasets (Figure 1), and used it to compare 90 

the performance of existing and newly developed taxonomy-classification methods. This 91 

framework will be easily applied to new methods in the future by any bioinformatics 92 

method developer. Here we apply the framework to compare the performance of four 93 

marker-gene-agnostic taxonomy classifiers (i.e., those that can be trained on a reference 94 

database of any marker gene). Two of these are pre-existing classifiers, the RDP Classifier 95 
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(4) (version 2.2) and QIIME’s legacy BLAST-based classifier (version 2.2.22) (5, 6), which 96 

uses the MegaBlast parameter setting (-n T) and assigns the taxonomy of the single top 97 

BLAST hit. The other two classifiers are based on UCLUST (version 1.2.22q) (7) and 98 

SortMeRNA (8) (version 2.0 29/11/2014), which are newly implemented in QIIME and 99 

evaluated here for the first time. All of these are heuristic approaches to taxonomic 100 

classification.  101 

 102 

Our framework is available on GitHub at https://github.com/gregcaporaso/short-read-tax-103 

assignment and was used to generate all analysis results and figures in this paper (with the 104 

exception of the schematic in Figure 1). To illustrate the extensibility of our framework, we 105 

performed a subset of the analyses using the mothur (version 1.35.1) implementation of 106 

the RDP Classifier, and provide detailed descriptions in the GitHub repository of the steps 107 

we took to add this classifier that will provide users with a clear example of how to 108 

evaluate other classifiers.  We executed this framework on the QIIME 1.9.0 Amazon Web 109 

Services (AWS) virtual machine image, making the full analysis easily reproducible (see the 110 

repository’s README.md file). This approach is similar to that taken in several recent 111 

“executable papers” (9-11) (also see http://www.executablepapers.com/). 112 
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Results 113 

Standardized and extensible evaluation of taxonomic classifiers 114 

Our evaluation framework differs from others that we are aware of in that it can be reused 115 

to support standardized and extensible evaluation of taxonomic classifiers.  In this context, 116 

we consider a standardized evaluation framework to incorporate a consistent and 117 

appropriate set of metrics, defined in the same way (e.g., specificity, sensitivity, accuracy) 118 

with sufficient unit testing (for a discussion of unit testing, see (12)), and a consistent and 119 

appropriate set of data. Multiple datasets are needed to minimize overfitting. An extensible 120 

evaluation framework is one where it is easy for users (not only the initial developers) to 121 

add new methods, add new reference databases, and add new datasets and metrics. Testing 122 

new methods with standardized datasets and evaluation metrics will relieve developers of 123 

the time needed to perform these otherwise redundant steps, and allow direct comparison 124 

of new and pre-existing methods without repeating benchmarking efforts. Extensibility 125 

enables a framework to evolve over time, incorporating useful new datasets and metrics 126 

that meet the needs of changing methods and technologies and allowing conclusions to be 127 

rapidly updated in the light of new data. 128 

 129 

Our evaluation framework is based on IPython Notebooks(13), which facilitate generation 130 

of interactive, reproducible, and executable reports, and uses scikit-bio, pandas, and open-131 

source BSD-compatible software developed for this study 132 

(https://github.com/gregcaporaso/short-read-tax-assignment/). This framework 133 
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evaluates method and parameter combinations based on their performance on 134 

standardized amplicon sequence datasets derived from simulated communities and 135 

Illumina sequencing of artificially constructed (mock) communities. Simulated 136 

communities, where sequences are compiled from reference databases, allow us to assess 137 

the “best-case” performance of classifiers in the absence of real-world issues, such as 138 

sequencing and PCR bias and error. Mock communities(14) (in this case, precise 139 

combinations of 12 to 67 species; Supplementary Figures 1-5) allow us to quantitatively 140 

and qualitatively assess the accuracy of taxonomic profiles, since the actual community 141 

composition is known in advance, while retaining experimental issues that are difficult to 142 

model accurately. Our evaluation framework currently utilizes 10 mock communities to 143 

minimize overfitting to conditions specific to experimental conditions or community 144 

compositions.  145 

 146 

The framework currently employs the following strategies for evaluating and comparing 147 

classifier performance: 148 

1) Precision, recall, and F-measure scores are qualitative metrics, only assessing the 149 

accuracy of taxonomic composition but not abundance. 150 

2) Pearson (r) (15) and Spearman correlation coefficients (rho) (16) are quantitative 151 

measures of accuracy, incorporating accuracy of taxonomic composition as well 152 

as abundance. 153 

3) Computational runtime is measured for each classifier as a function of reference 154 

database size and number of query sequences. (All runtime computations should 155 
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be performed on the same system with a single job running at a time to control 156 

for runtime variance. The results presented here were all performed on a single 157 

AWS instance.)  158 

 159 

The framework identifies optimal parameter configurations for each classification method, 160 

the top-performing methods and parameter configurations for each test dataset, and 161 

generates publication-quality figures illustrating evaluation scores and distributions for 162 

each method, configuration, and dataset. 163 

 164 

Our evaluation framework, test datasets, and pre-computed taxonomic assignment results 165 

(for the methods and parameter combinations presented here) are hosted on GitHub, an 166 

online software revision control and collaboration tool  (for a discussion of revision control 167 

and its importance, see (12)). This provides a major benefit that should drive widespread 168 

adoption of this strategy in bioinformatics method evaluations: our analysis is not static. A 169 

developer of a new taxonomic classifier (call it Classifier X) can download our test dataset, 170 

generate taxonomic assignments for all simulated and mock communities, and quickly 171 

assess how Classifier X compares to pre-existing methods. If the developer determines that 172 

Classifier X is promising, they can submit the classification results to our repository as a 173 

Pull Request. The Classifier X results can then be merged with the pre-existing results, so 174 

that future methods developers can evaluate their tool in the context of pre-existing 175 

methods, which will now include the results generated by Classifier X. The evaluation of 176 

future methods therefore uses the same data used here (although new test datasets can 177 
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also be added using Pull Requests), and evaluators need not have working installations of 178 

all pre-existing methods, which can be difficult to configure and install.  179 

 180 

We applied this evaluation framework to compare the performance of two commonly used, 181 

pre-existing taxonomy classifiers (RDP Classifier(4) and BLAST(5)) across multiple 182 

parameter settings, and two new taxonomic classifiers presented here for the first time. 183 

The first is an adaptation of SortMeRNA (8), and the second is based on UCLUST (7) (see 184 

methods for more details on code, the taxonomic assignment algorithms, and data 185 

availability).  186 

 187 

Performance of classifiers on bacterial and fungal mock communities 188 

We first evaluated assignment accuracy of all classification methods using mock 189 

communities. As expected, assignment accuracy for all methods decreased with increasing 190 

assignment depth (Figure 2). From phylum to family level, different assignment methods 191 

(with optimized parameters) performed similarly, but selection became important for 192 

accurate genus- and species-level assignments. SortMeRNA achieved the highest precision 193 

and F-measures at these levels, though RDP yielded better recall scores and correlation 194 

coefficients for most mock communities (Figures 2-3; Supplementary Figures 6-7). RDP 195 

recall and correlation coefficients performed best at low confidence thresholds (c < 0.5), 196 

though precision and F-measure improved with increasing assignment confidence (Figure 197 

3; Supplementary Figures 6-7). UCLUST was not the top performer for any metric but 198 
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demonstrated good balance between recall (better than SortMeRNA) and precision (better 199 

than RDP), thus consistently delivering high-quality assignments (Figures 2-3; 200 

Supplementary Figures 6-7). BLAST assignments generally performed worse than low-201 

confidence RDP assignments of bacteria for all evaluation metrics except for Pearson r, but 202 

performed similarly to RDP for fungal assignments (Figure 3; Supplementary Figures 6-7). 203 

SortMeRNA performed best for fungal community assignments, delivering top precision, 204 

recall, and F scores through species level (Figure 3; Supplementary Figures 6-7).  205 

 206 

Performance of classifiers on bacterial and fungal simulated 207 

communities 208 

The mock communities currently available in the framework resemble human fecal 209 

(datasets B1-B8) or cheese microbial communities (datasets F1-F2), so only contain select 210 

clades. Thus, we tested classifier performance on simulated sequencing reads derived from 211 

the entire Greengenes (17) and UNITE (18) databases, representing all taxa currently 212 

annotated in those databases. Taxonomy assignments of simulated communities exhibited 213 

similar trends, indicating that classifiers and configurations performed similarly across 214 

taxa (Figure 4; Supplementary Figure 8). Simulated communities were generated from 215 

reference sequences randomly selected from the reference databases (see Methods for 216 

details). Taxonomy classifications were then made against either the remaining sequences 217 

in the reference database (as in a cross-validation scheme, referred to as “partial reference” 218 

classification, so the query sequences would not be included in the reference database) or 219 
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the full reference database (which includes exact matches to the query sequences, but 220 

ensures that all taxa present in the query data are represented in the reference database). 221 

The partial reference classification simulates a typical sequence assignment scenario, 222 

whereby many query sequences may not have perfect matches in the database. The full 223 

reference classification is still informative, as some sequences removed from the partial 224 

reference database may represent unique taxonomic lineages without nearby matches, 225 

particularly within the fungal database. 226 

 227 

Similar classifier performance and optimization behaviors were observed for classification 228 

of simulated communities (Figure 4; Supplementary Figure 8). Species-level assignment 229 

performed well on simulated sequences for bacteria, using both partial and full reference 230 

databases. Surprisingly, classification precision approached perfect scores for most 231 

methods, but precision was progressively degraded by low RDP confidence thresholds (c), 232 

SortMeRNA best alignments (b) = 1, and UCLUST max accepts (a) = 1 (Figure 4). As 233 

expected, precision demonstrated an inverse relationship to recall for simulated reads, and 234 

the same parameters that minimized precision maximized recall. Fungal assignment 235 

accuracy suffered using the partial reference database, indicating that many sequences 236 

removed for classification represent unique lineages: as expected, when the single 237 

sequence representing a specific taxonomic group (e.g., a species) was removed from the 238 

reference database, it was no longer possible to classify that organism at that taxonomic 239 

level, but only at higher taxonomic levels (e.g., its genus). On average, the approximate 240 

fraction of species represented in the full database were not represented in the partial 241 
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database was 3.7% for bacteria and 5.8% for fungi. These data are presented in 242 

Supplementary Figure 9 for all taxonomic levels.  Fungal assignment accuracies using the 243 

full reference database mirrored the bacterial assignments, and the same methods were 244 

optimal for both. Using the partial reference database, optimized UCLUST and SortMeRNA 245 

classifications yielded the best F-measure scores for bacterial communities; RDP and 246 

mothur tied as best for fungal communities (Table 1). Using the full reference database, 247 

UCLUST yielded best precision, recall, and F-measure scores for full-length simulated 248 

communities, while SortMeRNA performed best for 100-nt simulated reads (Table 1). 249 

 250 

Classifier parameter optimization is essential 251 

Parameter optimization was essential for all methods (Figures 3-4; Table 2, Supplementary 252 

Figures 6-7). For example, the F-measure of RDP results ranged from very low (with c ≥ 253 

0.8) to among the best (with c ≅ 0.4-0.5) with different confidence threshold settings on 254 

our simulated dataset (Figure 4, Table 2). These values align with the current 255 

recommendation for RDP-based classification of very short amplicon sequences (c = 0.5) 256 

(http://rdp.cme.msu.edu/classifier/class_help.jsp#conf) (3, 19). SortMeRNA and UCLUST 257 

displayed similar behavior, where different parameters resulted in very different method 258 

performance, and performed best with slightly reduced similarity thresholds (s= 0.8 for 259 

both). Only BLAST was relatively unaffected by different parameter configurations (in this 260 

case, e-values, which in experiments performed on a subset of test data due to practical 261 
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runtime constraints we varied to as low as 1e-30). Parameter sweeps of this type should 262 

therefore be considered an essential component of bioinformatics methods comparisons.  263 

Classifier runtime 264 

Classifier choice also substantially impacted computational runtime, as a function of both 265 

query sequence count and reference sequence count. Many classification methods first 266 

create an index of the reference sequence database prior to classifying query sequences, 267 

and thus indexing time in an important measure of a classifier’s scalability to both large 268 

and small reference databases. To measure the effects of reference sequence database size 269 

on runtime, a single query sequence is searched against the reference database (89,339 270 

total sequences of 302 ± 88 nt (mean ± SD)). This tells us how long it takes to assign 271 

taxonomy to the first query sequence, and therefore provides a measure of time needed to 272 

index the reference. To measure the effects of query sequence count on runtime, increasing 273 

numbers of query sequences (up to 998,300 total sequences of 302 ± 88 nt (mean ± SD)) 274 

were classified using the same reference sequence database. Since database indexing is 275 

included in all of these steps, we care most about the slope of the line and very little about 276 

the y-intercept (which represents how long the database takes to index, and is typically a 277 

process that can be performed once and the index re-used).  278 

 279 

UCLUST delivered the fastest query assignment (Figure 5A) and reference sequence 280 

indexing times  (Figure 5B), and the smallest slope for query sequence assignment (Figure 281 

5A). BLAST also demonstrated very little runtime increase in response to reference 282 
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database size, but exhibited a phenomenally high slope for query sequence count, 283 

indicating very slow performance relative to the other classifiers (Figure 5). RDP and 284 

SortMeRNA displayed comparable query sequence assignment times and slopes, but 285 

SortMeRNA required the most indexing time of any method, exhibiting increasing runtimes 286 

proportional to reference sequence count (Figure 5A). RDP required more indexing time 287 

than BLAST and UCLUST, but demonstrated little runtime increase as more reference 288 

sequences were added (Figure 5A). 289 

Applying the framework to other classifiers 290 

To illustrate the process of evaluating a “new” method in our framework, we tested the 291 

performance of the mothur classifier (a commonly used implementation of the RDP 292 

Classifier). We adapted one of our IPython Notebooks to generate taxonomic assignments 293 

using mothur 1.35.1, and then performed all of the simulated data analyses using mothur 294 

with small modifications to the evaluation notebooks. This analysis very clearly illustrates 295 

that the mothur classifier achieves nearly identical results to the RDP Classifier, as would 296 

be expected. These data are presented in Tables 1-2 and Supplementary Figure 10, and the 297 

notebooks are included in the mothur-evaluation directory of the GitHub repository. 298 

Documentation exists in that directory so it can serve as an example of how to apply the 299 

framework to other classifiers in the future. 300 
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Discussion 301 

Evaluating methods for taxonomic classification of different marker genes and read lengths 302 

is critical for interpreting taxonomic assignments, allowing us to determine if assignments 303 

at a specific taxonomic level, or for a specific taxonomic group, are reliable. Additionally, 304 

different features of taxonomic classifier performance may be important for different 305 

applications. For example, for a medical diagnosis based on indicator taxa, false positives 306 

may be preferred over false negatives (i.e., optimizing recall at the expense of precision) if a 307 

cheap, minimally invasive treatment is available. However, for forensic applications, false 308 

negatives may be preferred over false positives (i.e., optimizing precision at the expense of 309 

recall), if a false positive could lead to a wrongful conviction. For more general applications, 310 

users likely prefer balanced precision and recall (i.e., optimized F-measure), and we base 311 

our parameter recommendations on this assumption. Thus, understanding classifier 312 

performance and limitations, and how to optimize classifiers for different applications, are 313 

essential for the usefulness of these methods. 314 

 315 

Here we show that after parameter optimization, classification methods perform similarly 316 

for assigning taxonomy from phylum to family level, but performance decreased to 317 

different degrees for all methods at genus and species levels. This reflects the limitations of 318 

accurately classifying short marker-gene sequences, but indicates that some 319 

methods/configurations (detailed below) are superior for handling short reads. Using 320 

longer read lengths and less conserved marker genes, these performance differences may 321 
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become more or less distinct. Thus, methods should be re-evaluated as sequencing 322 

technologies continue to advance and longer read lengths become available. Our extensible 323 

evaluation framework easily supports the addition of test data sets, so these same method 324 

benchmarks could be performed on updated test data in the future. 325 

 326 

Performance also varied for fungal ITS and bacterial 16S rRNA sequences, indicating that 327 

no method is universally superior across organisms and marker genes. SortMeRNA (with 328 

optimized parameters, described below) delivered the most accurate fungal assignments to 329 

species level, even outperforming RDP for recall and correlation coefficients. However, RDP 330 

yielded better recall scores for bacterial sequences, indicating that performance depends 331 

on the target marker gene (and its corresponding reference database). As next-generation 332 

sequencing read lengths continue to grow, larger sections of the bacterial 16S rRNA and 333 

other marker genes will become promising targets for amplicon sequencing but may 334 

impact classifier performance. In addition, protein-coding genes have high potential for 335 

strain-level and functional profiling of microbial communities, but likely alter classifier 336 

behavior. Assignment methods should be re-evaluated for other existing and new marker 337 

genes and continuously be re-optimized with each update in molecular targets and 338 

sequence technology to maximize performance. 339 

 340 

Optimal method selection ultimately depends upon the priorities of the end user. For 341 

bacterial 16S rRNA and fungal ITS sequences, as analyzed here, no method is universally 342 

superior under all conditions or for all evaluation metrics. For maximum precision and F-343 
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measure scores, high-confidence RDP (c=1.0), UCLUST, and SortMeRNA perform best. For 344 

top recall and correlation coefficients, lower-confidence RDP (c≤0.6) performs best. For a 345 

consistent balance of recall and precision, UCLUST and medium-confidence RDP (c=0.4–346 

0.6) are reliable choices. For fungal ITS assignments, SortMeRNA performs best across all 347 

metrics, though RDP, UCLUST, and BLAST also perform well. When runtime is an important 348 

factor, such as with very large or high-diversity datasets, UCLUST performs faster than all 349 

other methods benchmarked here. Based on assignment accuracies, mock community 350 

reconstruction, computational runtime, simulated read classification, and availability of 351 

source code and minimal licensing restrictions, we recommend using the  SortMeRNA 352 

classifier, with 0.51 consensus, 0.8 similarity, and a maximum 1 best alignment, 0.8 353 

coverage, and an e value of 0.001. All methods tested here (and some additional methods) 354 

are also included and configurable in QIIME 1.9.0 to support the needs of QIIME’s diverse 355 

user base. The supplementary IPython Notebooks available in the project repository (and 356 

for static viewing at http://bit.ly/srta-012) contain detailed results on all parameter 357 

configurations tested here. 358 

 359 

Our current evaluation framework is designed for comparison of taxonomy classifiers, but 360 

the standardized mock communities and evaluation metrics would be equally useful for 361 

optimizing other aspects of short-amplicon sequence analysis and is readily adaptable for 362 

this purpose. This includes bioinformatics processing steps, such as quality filtering (14), 363 

OTU picking (20), paired-end and overlapping read alignment, and chimera filtering. The 364 

evaluation framework could also allow comparison of bench techniques that impact 365 
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microbial detection, such as sample storage/handling (21), DNA extraction (21), PCR (22), 366 

library preparation, sequencing platforms/technologies, reagent contamination (23), and 367 

technical precision by individual users, between users, and between laboratories. Any pre-368 

sequencing comparisons would require the generation of new, standardized mock 369 

communities, but these would in turn enrich our growing database of mock communities, a 370 

public asset that will support ongoing improvements in sequence analysis techniques, and 371 

could easily be added to the framework. 372 

 373 

The optimal methods for taxonomic assignment of a given marker gene or sequencing 374 

technology is unlikely to generalize across marker genes or sequencing technologies. The 375 

evaluation framework used here is not specific to a single marker gene, but instead 376 

provides immediately applicable information for optimizing taxonomic assignment of 16S 377 

and ITS sequences generated on the Illumina platforms, and can be adapted to the rapidly 378 

evolving needs of the next-generation sequencing community. The evaluation framework 379 

(Figure 1) facilitates iterative re-evaluation of these conditions as new classification 380 

methods, sequencing read lengths, marker-gene targets, and sequencing chemistries are 381 

released, and as additional metrics of performance are desired. We hope that this will 382 

become a model for standardized, extensible evaluation frameworks for bioinformatics 383 

method comparisons. 384 

 385 

  386 
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Methods 387 

Data availability 388 

Sequence data used in this study are publicly available in the Qiita database 389 

(http://qiita.microbio.me/) under the study identities listed in Supplementary Figure 1. 390 

Raw data are also available via links our GitHub repository: 391 

https://github.com/gregcaporaso/short-read-tax-assignment/blob/0.1.2/data/raw-data-392 

urls.txt. All other data generated in this study, and all new software, is available in our 393 

GitHub repository under the BSD license. Our GitHub repository can be found at: 394 

https://github.com/gregcaporaso/short-read-tax-assignment. 395 

Data Analysis 396 

All analyses were performed using QIIME 1.9.0 on the QIIME 1.9.0 AWS Virtual Machine 397 

Image (AMI: ami-ea2a7682) and the taxonomy classifier comparison workflow hosted on 398 

GitHub: https://github.com/gregcaporaso/short-read-tax-assignment (tag: 0.1.2). Static 399 

versions of all of our analysis notebooks, which contain all code and analysis results, can be 400 

viewed at http://bit.ly/srta-012. All specific notebooks referenced below can be viewed via 401 

this page. 402 
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Mock communities 403 

Mock communities analyzed in this study were generated by 10 separate sequencing runs 404 

on the Illumina GAIIx (n = 2), HiSeq2000 (n = 5), and MiSeq (n = 4) (Supplementary Figure 405 

1). These consisted of genomic DNA from known species isolates deliberately combined at 406 

defined rRNA copy-number ratios (Supplementary Figure 1). These sequencing runs were 407 

performed on different instruments at different sites—Illumina Cambridge Ltd (datasets 408 

B4, B6), Broad Institute (datasets B3, B5), Washington University School of Medicine 409 

(datasets B1-B2), and Harvard FAS Center Core Facility (datasets B7-B8, F1-F2)— with the 410 

goal of assessing the impact of filtering parameters across a broad set of sequencing 411 

conditions. 412 

DNA extraction, PCR, and sequencing for all sequencing runs were described previously 413 

(24). The only sample collections not published previously (mock communities F1-F2) had 414 

DNA extracted using the PowerSoil kit (MoBio) according to manufacturer instructions.  415 

PCR amplifications were performed in duplicate using primers ITS1-F (5’-416 

AATGATACGGCGACCACCGAGATCTACACTATGGTAATTCT CTTGGTCATTTAGAGGAAGTAA-417 

3’) and ITS4 (5’-418 

CAAGCAGAAGACGGCATACGAGATNNNNNNNNNNNNAGTCAGTCAGATGCTGCGTTCTTCATC419 

GATGC-3’) (24). Both oligonucleotides consisted of the actual primer sequence (boldface 420 

text) with an Illumina adapter (italics), pad, and linker sequences (both underlined) and a 421 

12-nt Golay error-correcting barcode (25) (represented by a poly-N region) in the reverse 422 

primer. Reaction conditions consisted of denaturing at 98˚C for 3 min, followed by 30 423 
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cycles of 98˚C for 45 s, 50˚C for 30 s, and 72˚C for 45 s, followed by a final extension of 72˚C 424 

for 5 min. Pooled amplicons were purified using the AMPure XP kit (Agencourt), quantified 425 

with Picogreen reagent (Invitrogen), combined at equimolar ratios, and gel purified 426 

(cutting out bands between 100-500 bp) using the Gel Gen Elute Gel Extraction kit (Sigma-427 

Aldrich) prior to sequencing. 428 

 429 

Raw Illumina fastq files were de-multiplexed, quality-filtered, and analyzed using QIIME (v. 430 

1.6.0-dev)(6). Reads were truncated at any site of more than three sequential bases 431 

receiving a Phred quality score < 20, and any read containing ambiguous base calls or 432 

barcode/primer errors were discarded, as were reads with < 75% (of total read length) 433 

consecutive high-quality base calls (14). Operational taxonomic units (OTUs) were assigned 434 

using the QIIME open-reference OTU-picking pipeline with the UCLUST-ref(7) wrapper. 435 

After prefiltering sequences with > 60% dissimilarity from its closest match in the 436 

reference database (listed below), sequences were clustered into OTUs based on their 437 

closest match in the reference collection with greater than 97% pairwise nucleotide 438 

sequence identity (97% ID). Sequences which failed to hit a sequence in the reference 439 

database at 97% ID we subsequently clustered de novo. The cluster centroid for each OTU 440 

was chosen as the OTU representative sequence. 441 

Simulated communities 442 

The simulated communities used here were derived from the reference databases using the 443 

“Simulated community analyses / Simulated community generation” notebook in our 444 
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project repository. Beginning with a full reference database (either Greengenes or UNITE), 445 

10% of the sequences were extracted at random and the corresponding primers were used 446 

to simulate amplification and slice out either the full region between those primers (B1 and 447 

F1) or the first 100 bases downstream (3’) of the forward primer (B2 and F2). The bacterial 448 

primers used were 515F/806R (26), and the fungal primers used were BITSf/B58S3r (27). 449 

The remaining 90% of the full-length database sequences were used as the “partial 450 

reference” database, and all of the database sequences were used as the “full reference” 451 

database. This process was performed in five iterations to generate twenty different 452 

simulated communities (five each of B1, B2, F1 and F2).  453 

 454 

Taxonomy classification 455 

OTU representative sequences were classified taxonomically using QIIME-based wrappers 456 

of the following taxonomy classifiers and confidence settings: 457 

1. Ribosomal Database Project (RDP) naïve Bayesian classifier(4), using 458 

variable confidence thresholds (c) for taxonomic assignment between c = 0.0 to c = 1.0 459 

in steps of 0.1. 460 

2. BLAST(5) using e-value thresholds (e) for taxonomic assignment of e = 1e-9, 461 

0.001, and 10000.0. 462 

3. SortMeRNA(8) with the following parameters: minimum consensus fraction 463 

(f), similarity (s), best N alignments (b), coverage, and e value. See description below. 464 
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4. UCLUST(7) with the following parameters: minimum consensus fraction (f), 465 

similarity (s), and maximum accepts (a). See description below. 466 

Reference Databases 467 

The bacterial and archaeal 16S rRNA reference sequence database for OTU picking and 468 

taxonomy-classifier retraining was the Greengenes 13_8 16S rRNA gene database(17) 469 

preclustered at 97% ID.  470 

 471 

The fungal ITS reference sequence database for OTU picking and taxonomy-classifier 472 

retraining was the UNITE+INSD database (9-24-12 release)(18) prefiltered at 97% ID, and 473 

from which sequences with incomplete taxonomy strings and empty taxonomy annotations 474 

(e.g., uncultured fungus) were removed, as described previously(27). 475 

Runtime analyses 476 

Taxonomy classifier runtimes were logged while performing assignments of the same 477 

random subset of 16S rRNA sequences, following the workflow described above. All 478 

runtimes were computed on a single AWS instance to control for runtime variance across 479 

cloud instances, and only one assignment process was run at a time during runtime 480 

benchmarking.  481 

 482 

The exact commands used for runtime analysis are presented in the “Runtime analyses” 483 

notebook in the project repository. 484 
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 485 

Performance analyses using mock and simulated communities 486 

Precision, recall and F-measure are used for qualitative compositional analyses of mock 487 

and simulated communities.  488 

At a given taxonomic level, a taxonomic assignment is a: 489 

○ true positive (TP), if that taxonomic assignment is present in the results and 490 

in the mock community 491 

○ false positive (FP), if that taxonomic assignment is present in the results, but 492 

is not present in the mock community 493 

○ false negative (FN), if a taxonomic assignment is not present in the results, 494 

but is present the mock community 495 

○ true negative (TN), if a taxonomic assignment is not present in the results, 496 

and is not present the mock community 497 

Classic qualitative methods for evaluating the retrieval of expected observations—in this 498 

case expected taxa—are precision, recall, and F-measure. Here these are defined as: 499 

○ Precision=TP/(TP+FP) or the fraction of taxonomic assignments that 500 

actually matches members of the mock community 501 

○ Recall=TP/(TP+FN) or the fraction of the mock community members that 502 

were observed in the results 503 
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○ F-measure = 2 × Precision × Recall / (Precision + Recall) 504 

Thus, precision and recall represent the relative recovery of relevant observations and 505 

expected observations, respectively. F-measure is the harmonic mean of both these scores, 506 

providing a balanced metric for simultaneously considering each score as an overall 507 

measure of accuracy. These three measures were used to evaluate the accurate recovery of 508 

expected taxa in sequenced mock communities and simulated communities, without 509 

regards to taxon abundance (i.e., qualitative). 510 

Pearson and Spearman correlations are used for quantitative compositional analyses of 511 

mock and simulated communities (15, 16). At a given taxonomic level, these compute the 512 

correlation between the relative abundances of the taxa as predicted by the taxonomy 513 

assigner, and the known community compositions. 514 

Mock communities cannot be considered accurately assigned on the basis of detection of 515 

expected species (i.e., qualitatively) alone. As defined collections of microbial species, 516 

assignment accuracy must be judged both on recovery of expected taxa and on the 517 

reconstruction of expected community composition. In other words, a good classification 518 

method should identify the expected community members in their known abundances. We 519 

compute this as the correlation between the relative abundances of observed taxa with 520 

their expected abundances as added to the mock community. The ideal correlation (r = 1.0) 521 

is highly unlikely under real-world conditions as, in addition to taxonomy 522 

misclassifications, primer bias, contamination, PCR error, sequencing error, copy number 523 

variation, and other procedural artifacts may all theoretically skew observations. 524 
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The exact commands used for the mock community and simulated community analyses are 525 

presented in the “Mock community analyses” and “Simulated community analyses” 526 

notebooks in the project repository. 527 

 528 

UCLUST-based and sortmerna-based consensus taxonomy assigners 529 

We introduce two new methods for taxonomic assignment, based on the uclust and 530 

sortmerna software packages.  531 

 532 

Our UCLUST-based taxonomy assigner (which differs from utax 533 

(http://drive5.com/usearch/manual/utax_algo.html)) is available in QIIME 1.9.0 534 

(assign_taxonomy.py and parallel_assign_taxonomy_uclust.py). Although UCLUST itself is 535 

not open source or free, it is licensed for free use with QIIME. QIIME’s uclust-based 536 

taxonomy assigner is open source, though it makes calls to uclust (note: the version 537 

implemented here is an older version than the current, closed-source USEARCH version). 538 

Internal to QIIME, query sequences are searched against the reference database with the 539 

command: 540 

 541 

uclust --libonly 542 

      --allhits 543 

      --id <similarity> 544 

      --maxaccepts <max-num-results> 545 

      --input <input-file-query-fasta> 546 

      --lib <input-file-reference-fasta> 547 
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      --uc <output-file-uc> 548 

 549 

The ma and similarity values (in addition to input-file-* and output-file-*) are specified by the 550 

user.  551 

Our sortmerna-based taxonomy assigner is also available in QIIME 1.9.0. sortmerna is open 552 

source, as is the QIIME wrapper that adapts this for taxonomic assignment. Internal to 553 

QIIME, query sequences are searched against the reference database with the command: 554 

 555 

sortmerna --ref <input-file-reference-fasta>,<input-file-reference-index> 556 

        -e <e-value> 557 

--aligned <output-file-bl9>  558 

-a 1  559 

--print_all_reads  560 

--log  561 

--blast 3  562 

--reads <input-file-query-fasta>  563 

-v  564 

--best <max-num-results> 565 

 566 

The e-value and max-num-results values (in addition to input-file-* and output-file-*) are specified by 567 

the user.  568 

 569 
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Both of these classifiers can potentially return up to max-num-results database hits per 570 

query sequence. Taxonomic classification of query sequence is then performed by computing a consensus 571 

assignment from those query results. This is achieved by starting at the highest taxonomic level (domain, 572 

in Greengenes for example) and determining if the classification at that level is present in at least 573 

min_consensus_fraction of the query results, where min_consensus_fraction is a user-defined value (default 574 

is 0.51, based on the results of our analyses). If so, the query sequence is given that classification at 575 

that level, and the classification of the query results are compared at the next taxonomic level. Once a 576 

classification is identified that is not present in at least of the min_consensus_fraction query results, 577 

the taxonomic classification for the query sequence is truncated. For example, if a query sequence q1 hit 578 

to three query results in the reference database with the classifications: 579 

 d__Bacteria; p__Proteobacteria; c__Alphaproteobacteria 580 

 d__Bacteria; p__Proteobacteria; c__Gammaproteobacteria 581 

 d__Bacteria; p__Cyanobacteria; c__Oscillatoriophycideae 582 

if min_consensus_fraction was 0.51, q1 would be classified as d__Bacteria; p__Proteobacteria. 583 

 584 
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 696 

Tables/Figures 697 

Table 1. Comparisons of Optimized Method Performance For Species Assignment of 698 

Simulated Community Datasets, Ordered Best to Worst 699 

 Partial Reference Full Reference 

Dataseta Method Configurationb Pc R F Method Configuration P R F 
B1 UCLUST 0.51:0.8:1 0.85 0.82 0.83 UCLUST 0.51:0.8:1 0.99 0.99 0.99 
 SortMeRNA 0.51:0.8:1:0.8:1.0 0.85 0.81 0.83 BLAST 0.001 0.99 0.99 0.99 
 BLAST 1.00E-09 0.85 0.81 0.83 SortMeRNA 0.51:0.8:1:0.8:1.0 0.99 0.98 0.98 
 RDP/mothur 0.4 0.81 0.84 0.82 RDP/mothur 0.5 0.92 0.97 0.95 
B2 SortMeRNA 0.51:0.8:1:0.8:1.0 0.83 0.77 0.8 SortMeRNA 0.51:0.8:1:0.8:1.0 0.96 0.93 0.94 
 UCLUST 0.51:0.8:1 0.81 0.77 0.79 UCLUST 0.51:0.8:1 0.96 0.93 0.94 
 BLAST 1.00E-09 0.83 0.76 0.79 BLAST 0.001 0.96 0.92 0.94 
 RDP/mothur 0.4 0.85 0.72 0.78 RDP/mothur 0.5 0.93 0.87 0.90 
F1 RDP/mothur 0.4 0.34 0.23 0.28 UCLUST 0.51:0.8:1 0.98 0.93 0.96 
 SortMeRNA 0.51:0.8:1:0.8:1.0 0.28 0.23 0.25 SortMeRNA 0.51:0.8:1:0.8:1.0 0.98 0.93 0.96 
 BLAST 1.00E-09 0.27 0.23 0.25 BLAST 0.001 0.98 0.93 0.95 
 UCLUST 0.51:0.8:1 0.27 0.21 0.24 RDP/mothur 0.5 0.96 0.90 0.93 
F2 RDP/mothur 0.4 0.36 0.19 0.25 SortMeRNA 0.51:0.8:1:0.8:1.0 0.95 0.90 0.93 
 BLAST 1.00E-09 0.27 0.2 0.23 BLAST 0.001 0.95 0.90 0.93 
 SortMeRNA 0.51:0.8:1:0.8:1.0 0.25 0.21 0.23 UCLUST 0.51:0.8:1 0.95 0.90 0.93 
 UCLUST 0.51:0.8:1 0.26 0.2 0.23 RDP/mothur 0.5 0.95 0.84 0.89 
aDatasets B1 and F1 represent simulated communities comprising full-length reference sequences; B2 and F2 700 

represent 100-nt simulated reads. 701 

bThe optimal parameter configuration tested in the between-method comparisons. See Table 2 for details. 702 

cP = precision; R = recall; F = F-measure. 703 
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Table 2. Within-Method Parameter Optimization Across Simulated Community 706 

Datasets Using Partial Reference Database, Ordered By F-Measure 707 

Method Configurationa Precision Recall F-measure 
SortMeRNA 0.51:0.8:1:0.8:1.0 0 20 20 
 0.76:0.8:1:0.8:1.0 0 20 20 

 1.0:0.9:1:0.9:1.0 0 20 20 

 1.0:0.9:1:0.8:1.0 0 20 20 

 1.0:0.8:1:0.9:1.0 0 20 20 

 1.0:0.8:1:0.8:1.0 0 20 20 

 0.76:0.9:1:0.9:1.0 0 20 20 

 0.51:0.8:1:0.9:1.0 0 20 20 

 0.76:0.8:1:0.9:1.0 0 20 20 

 0.76:0.9:1:0.8:1.0 0 20 20 

 0.51:0.9:1:0.9:1.0 0 20 20 

 0.51:0.9:1:0.8:1.0 0 20 20 

 0.51:0.9:3:0.9:1.0 13 8 19 

 0.51:0.9:3:0.8:1.0 13 8 19 

  0.51:0.8:3:0.8:1.0 10 5 14 
RDP 0.4 0 20 20 
 0.5 0 20 20 

 0.6 5 11 20 

 0.7 5 3 20 

 0.3 0 20 19 

 0.2 0 20 11 

 0.1 0 20 10 

 0 0 20 9 
mothur 0.4 0 20 20 
 0.5 0 20 20 

 0.6 5 10 20 

 0.3 0 20 19 

 0.7 5 3 19 

 0.2 0 20 11 

 0 0 20 10 

 0.1 0 20 10 
UCLUST 0.51:0.8:1 0 20 20 
 0.76:0.8:1 0 20 20 

 1.0:0.9:1 0 20 20 

 1.0:0.8:1 0 20 20 

 0.76:0.9:1 0 20 20 

 0.51:0.9:1 0 20 20 

 0.51:0.9:3 7 10 19 

 0.51:0.8:3 10 10 18 
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  0.51:0.9:5 20 0 12 

 0.51:0.8:5 20 0 10 

 0.76:0.8:3 20 0 0 

 0.76:0.8:5 20 0 0 

 0.76:0.9:3 18 0 0 
BLAST 1E-9 20 12 19 
 0.001 6 20 7 

  1E+4 6 20 7 
aParameter configurations used for classification. RDP/mothur = confidence threshold; 708 

BLAST = e-value threshold; SortMeRNA = minimum consensus fraction (f):similarity 709 

(s):best N alignments (b):coverage:e value; UCLUST = minimum consensus fraction 710 

(f):similarity (s):and maximum accepts (a). E.g., “SortMeRNA 0.51:0.8:1:0.8:1.0” indicates 711 

0.51 minimum consensus fraction, 0.8 similarity, 1 best alignment, 0.8 coverage, and e-712 

value threshold = 1.0. 713 

 714 

Figure 1. Evaluation framework for new taxonomic assignment methods. We provide test 715 

data and an evaluation framework, facilitating the benchmarking of future methods for 716 

short read taxonomy assignment in the context of the results presented here. All mock-717 

community and natural-community test data are provided in our data store (hosted on 718 

GitHub). The developer of a new method can assign taxonomy to these test data and 719 

generate BIOM(28) files (green). Those BIOM files can then be passed to the evaluation 720 

framework, where they will be compared to pre-computed BIOM files from the data store 721 

(red and blue) based on three evaluations of accuracy of the taxonomic assignments. If the 722 

new method does not outperform the pre-computed results, it should be abandoned or 723 

optimized before an attempt is made to apply or publish it. If it does out-perform the pre-724 

computed results, it indicates that the developer should pursue publication of the method. 725 
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Finally, the developer can submit their best BIOM tables to the data store using the GitHub 726 

Pull Request mechanism, so a comparison against their methods will be included in future 727 

evaluations by other method developers. 728 

 729 

Figure 2. Taxonomy classifier selection critically shapes assignment accuracy of mock 730 

communities. Violin plots illustrate the distribution of precision, recall, F-measure, Pearson 731 

r, and Spearman rho values across all mock communities and all parameter configurations 732 

for a given method for family-level (left), genus-level (middle), or species-level taxonomy 733 

assignments (right). Heavy dashed lines indicate median values, fine dashed lines indicate 734 

quartiles.  735 

 736 

Figure 3. Taxonomy classifier configuration and mock community composition alter 737 

assignment accuracy at genus-level. Heatmaps indicate the precision, recall, F-measure, 738 

Pearson r, and Spearman rho values for taxonomy classification of each mock community 739 

(columns) by each method configuration (rows). The shade of the intersecting box 740 

indicates the score for a given evaluation metric, as indicated in the color keys on the right. 741 

Bacterial mock communities B1-B8 are on the left side of each panel; Fungal mock 742 

communities F1-F2 appear on the right side of each panel. Parameters: e = BLAST e-value; c 743 

= confidence; f = minimum consensus fraction; d = similarity; b = best N alignments; a = 744 

maximum accepts. Not all SortMeRNA parameters/configurations are marked, as different 745 

coverage and e values did not measurably influence any scores. See the pre-computed 746 

repository results for fully annotated plots: http://bit.ly/srta-012. 747 
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 748 

Figure 4. Taxonomy classifier configuration alters assignment accuracy of simulated 749 

communities. Simulated reads were generated by randomly selecting 10% of the sequences 750 

from the reference sequence databases (Greengenes for bacteria, UNITE for fungi); 751 

taxonomy classifications were then made using either the full reference database (full 752 

reference) or the remaining 90% of the sequences as the reference database (partial 753 

reference). Heatmaps indicate the precision (P), recall (R), and F-measure (F) values for 754 

taxonomy classification of each simulated community (columns) by each method 755 

configuration (rows) at species levels. The shade of the intersecting box indicates the score 756 

for a given evaluation metric, as indicated in the color key on the right. Bacterial simulated 757 

communities B1-B2 are on the left side of each panel; Fungal simulated communities F1-F2 758 

appear on the right side of each panel. B1 and F1 represent classifications of full-length 759 

sequences, B2 and F2 represent classifications of simulated 100 nt sequencing reads. Four 760 

iterations for each classifier are shown for each simulated community. Parameters: e = 761 

BLAST e-value; c = confidence; f = minimum consensus fraction; d = similarity; b = best N 762 

alignments; a = maximum accepts. Not all SortMeRNA parameters/configurations are 763 

marked, as different coverage and e values did not measurably influence any scores. See 764 

the pre-computed repository results for fully annotated plots: http://bit.ly/srta-012. 765 

 766 

Figure 5. Classifier choice influences computational runtime. A) Computational runtime for 767 

each classifier was tested as a function of query sequence count (up to 998300 total 768 

sequences of 302 ± 88 nt (mean ± SD)). Subsets of query sequences were classified against 769 
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a single reference sequence database. As total runtime includes reference database 770 

indexing time (y-intercept), the slope of these curves is the best indicator of query 771 

sequence classification time. Note, full BLAST results are not shown due to the steep slope 772 

relative to other methods. B) Computational runtime as a function of reference sequence 773 

count (89339 total sequences of 302 ± 88 nt (mean ± SD)). A single query sequence was 774 

classified against increasingly large subsets of the reference sequence database to 775 

determine the how reference database size influences database indexing time for each 776 

classifier. Results also available at http://nbviewer.ipython.org/github/gregcaporaso/short-read-777 

tax-assignment/blob/0.1.2/ipynb/runtime/base.ipynb. 778 

 779 

Supplementary Material 780 

Supplementary Figure 1. Mock community datasets analyzed in this study. 781 

Supplementary Figure 2. Mock community A composition. 782 

Supplementary Figure 3. Mock community B composition. 783 

Supplementary Figure 4. Mock community C composition. 784 

Supplementary Figure 5. Mock community D composition. 785 

Supplementary Figure 6. Taxonomy classifier configuration and mock community 786 

composition alter assignment accuracy at family-level. 787 

Supplementary Figure 7. Taxonomy classifier configuration and mock community 788 

composition alter assignment accuracy at species-level. 789 
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Supplementary Figure 8. Taxonomy classifier selection critically shapes assignment 790 

accuracy of simulated communities. Violin plots illustrate the distribution of precision, 791 

recall, and F-measure values across all simulated communities and all parameter 792 

configurations for a given method for family-level (left), genus-level (middle), or species-793 

level taxonomy assignments (right). Heavy dashed lines indicate median values, fine 794 

dashed lines indicate quartiles.  795 

Supplementary Figure 9. Taxonomic lineages represented in reference databases 796 

Supplementary Figure 10. Evaluation of mothur taxonomy classifier. A, Distribution of 797 

F-measure scores across all partial-reference simulated communities and all parameter 798 

configurations for each method for species-level taxonomy assignments (right). Heavy 799 

dashed lines indicate median values, fine dashed lines indicate quartiles. SM = SortMeRNA. 800 

B, Confidence configuration and simulated community composition alter assignment 801 

accuracy at species-level. See figure 4 for full description of analysis and comparison to 802 

other classifiers and configurations. 803 
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