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Currently, monomeric fluorescent proteins (FP) are ideal markers for protein tagging. The
prediction of oligomeric states is helpful for enhancing live biomedical imaging.
Computational prediction of FP oligomeric states can accelerate the effort of protein
engineering to create monomeric FPs by saving time and money. To the best of our
knowledge, this study represents the first computational model for predicting and
analyzing FP oligomerization directly from their amino acid sequences. An exhaustive
dataset consisting of 397 unique FP oligomeric states was compiled from the literature. FP
were described by 3 classes of protein descriptors including amino acid composition,
dipeptide composition and physicochemical properties. The oligomeric states of FP was
predicted using decision tree (DT) algorithm and results demonstrated that DT provided
robust performance with accuracies in ranges of 79.97-81.72% and 80.76-82.63% for the
internal (e.g. 10-fold cross-validation) and external sets, respectively. This approach was
also benchmarked with other common machine learning algorithms such as artificial
neural network, support vector machine and random forest. A thorough analysis of amino
acid sequence features was conducted to provide informative insights into FP
oligomerization, which may aid in engineering novel monomeric fluorescent proteins. The
following differentiating characteristics of monomeric and oligomeric fluorescent proteins
were derived from DT: (i) substitution of any amino acid to Glu led to the reduction of
aggregated proteins and (ii) oligomerization of FP appears to be stabilized by several
hydrophobic contacts. Datasets and R source code are available at
http://dx.doi.org/10.6084/m9.figshare.1348575.
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Abstract 
 
Currently, monomeric fluorescent proteins (FP) are ideal markers for protein tagging. The 
prediction of oligomeric states is helpful for enhancing live biomedical imaging. Computational 
prediction of FP oligomeric states can accelerate the effort of protein engineering to create 
monomeric FPs by saving time and money. To the best of our knowledge, this study represents 
the first computational model for predicting and analyzing FP oligomerization directly from their 
amino acid sequences. An exhaustive dataset consisting of 397 unique FP oligomeric states was 
compiled from the literature. FP were described by 3 classes of protein descriptors including 
amino acid composition, dipeptide composition and physicochemical properties. The oligomeric 
states of FP was predicted using decision tree (DT) algorithm and results demonstrated that DT 
provided robust performance with accuracies in ranges of 79.97-81.72% and 80.76-82.63% for 
the internal (e.g. 10-fold cross-validation) and external sets, respectively. This approach was also 
benchmarked with other common machine learning algorithms such as artificial neural network, 
support vector machine and random forest. A thorough analysis of amino acid sequence features 
was conducted to provide informative insights into FP oligomerization, which may aid in 
engineering novel monomeric fluorescent proteins. The following differentiating characteristics 
of monomeric and oligomeric fluorescent proteins were derived from DT: (i) substitution of any 
amino acid to Glu led to the reduction of aggregated proteins and (ii) oligomerization of FP 
appears to be stabilized by several hydrophobic contacts. Datasets and R source code are 
available at http://dx.doi.org/10.6084/m9.figshare.1348575. 
 
Keywords: fluorescent protein; FP; green fluorescent protein; GFP; oligomeric state; data mining 
 
Introduction 
 

Many coral fluorescent proteins (FP) are observed in anthozoans and because of their 
tertiary structures homologous to the Aequorea victoria jellyfish, they are termed green 
fluorescent protein (GFP)-like. These FPs represent an important class of bioluminescent 
proteins because of their immense utility for biomedical imaging in the life sciences. Such 
popularity lies in the diversity of their spectral colors and their lack of requiring co-factors 
because of the autocatalytic post-translational modifications of the chromophore from three or 
four amino acid precursors. Although the inherently weak dimerization of Aequorea GFP does 
not hinder its usage as a protein tag, the obligate tetramerization of DsRed has greatly impeded 
its utilization as a genetically encoded fusion tag because of possible perturbations to the tagged 
protein. Although oligomeric FPs in corals can serve as “sunscreen” to prevent coral bleaching, 
steric conflicts and stoichiometric clashes can occur when DsRed is tagged to oligomeric 
proteins of interest (i.e., actin, tubulin, connexin or histone) (Baird et al. 2000).   

Despite being the essential tagging tool for live biomedical imaging, the oligomerization of 
FPs hinders their utilization, problems have been reported, such as abnormal localizations, 
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perturbing normal functions, interfering with signaling cascades, and preventing normal 
oligomerization fusion products within specific organelles. Shcherbo et al. (2007) stressed that 
Katushka, the dimeric far-red mutants of FPs from the sea anemone Entacmaea quadricolor, 
formed abnormal localization in Phoenix eco cells. Mizuno et al. (2001) demonstrated that 
aggregation of DsRed disturbs normal function of calmodulin in the cytosol. Zacharias (2002) 
stressed that oligomerization of FPs interfered with target protein signaling cascades when using 
them as tagging probes for Fluorescent Resonance Energy Transfer (FRET). Lauf et al. (2001) 
stressed that tetrameric DsRed tagged with connexins creates problems because DsRed cross-
linked between different connexins, negative affecting connexin function. Jane et al. (2001) 
reported that in the secretory pathway of endocrine cells, EGFP oligomerized through the 
disulphide-linkage of Cys 49 and Cys 71. Typically, there are two ways to overcome 
oligomerization problems: to modify the FPs to monomeric states through rational and/or 
random mutagenesis and to look for natural monomeric FPs from other organisms. Zacharias et 
al. (2002) rationally created the monomeric FP of A. victoria by carefully looking at the crystal 
structure of GFP and modifying hydrophobic interactions into polar charged amino acids by 
changing Ala 206, Leu 221 and Phe 223 to Lys, Lys and Arg, respectively. Campbell et al. 
(2002) developed an mRFP1 containing 33 mutations in which Ile 125, a hydrophobic amino 
acid, was changed to Arg, a positively charged amino acid, to develop a dimeric FP before a 
cycle of random mutagenesis was performed. Shagin et al. (2004) screened for FPs from 
hydrozoan species from the ocean and observed that one in six discovered copepoda FPs were 
monomeric. 

For computational investigations on protein oligomerization properties, Garian (2001) first 
implemented a DT algorithm using primary sequences from the SWISS-PROT database (Release 
34) for classifying a particular protein into homodimers or non-homodimers. Afterwards, several 
computational models implementing support vector machines (SVM) (Qiu et al. 2011; Song & 
Tang 2005; Zhang et al. 2003), Function of Degree of Disagreement (FDOD) (Song & Tang 
2004), k-NN algorithm (Song 2007), and probability approaches (Carugo 2007) were proposed to 
improve prediction results. Currently, although many predictive models have been proposed to 
enhance performances on various databases, no computational studies have been performed for 
specifically analyzing and investigating FPs. Details of existing methods for predicting protein 
oligomerization properties (Carugo 2007; Chou & Cai 2003; Garian 2001; Qiu et al. 2011; Shen 
& Chou 2009; Shi et al. 2005; Song 2007; Song & Tang 2004; Song & Tang 2005; Sun et al. 
2012; Xiao & Lin 2009; Xiao et al. 2011; Zhang et al. 2007; Zhang et al. 2003) are provided in 
Table 1. 

This study proposes the first computational model based on DT for predicting FP 
oligomeric states directly from protein sequences. Figure 1 illustrates the flowchart of the 
workflow used to predict and analyze the oligomerization of FPs. Three types of protein 
descriptors, including amino acid composition, dipeptide composition and physicochemical 
properties, were used to extract descriptors from primary sequences. The prediction results 
demonstrated that our proposed method performed well, with testing accuracy of 82.63%. 
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Furthermore, the use of a DT algorithm is easily interpretable and capable of predicting FP 
oligomerization, which is potentially helpful in engineering novel monomeric FPs.  
 
 
 
Materials and Methods 
 
Datasets 
 
In this study, we compiled a large dataset consisting of 397 FP oligomeric states from the 
primary literature as provided in the supplementary file available at 
http://dx.doi.org/10.6084/m9.figshare.1348575. Monomeric FPs are ideal tools for fluorescent 
tagging in biomedical imaging, whereas dimeric, trimeric and tetrameric FPs hinder their usage 
as tagging labels because of their tendencies to aggregate. Therefore, we aimed to classify the 
397 FPs as either monomeric or oligomeric states. To develop and validate the ability of the 
prediction model, the 397 FP oligomeric states were randomly divided into internal (80%) and 
external (20%) sets in which the former set was used for constructing predictive models as full 
training and 10-fold cross-validation (10-fold CV) while samples in the latter set was predicted 
using the aforementioned trained model. This data splitting was performed for 100 iterations 
followed by computing the mean prediction performance (as will be described in the subsequent 
section). 
 
Protein descriptor extraction 
 
There are many protein descriptors for the analysis of protein functions. In this study, easy and 
interpretable features consisting of amino acid composition (AAC), dipeptide composition 
(DPC) and physicochemical properties (PCP) were utilized to encode FPs. The potential ability 
of these descriptors to predict protein functions has been previously demonstrated (Huang et al. 
2011; Liaw et al. 2013; Tung et al. 2011).  

AAC is the proportion of each amino acid in a protein sequence, which was expressed as 
a fixed length of 20. Given a protein sequence of FP oligomeric states with length l, the 
occurrence frequency of the ith amino acid ( ia ) is calculated as follows: 

lAAa ii /=  (1) 

where iAA  is the number of occurrences in the sequence for the the ith amino acid. 
DPC was used to provide global information for each protein sequence, which was a 

fixed length of 20×20 = 400. DPC encompassed information regarding amino acid composition 
along the local order of amino acids. In case of DPC, the occurrence frequency of the ith 
dipeptide ( idp ) is calculated as follows: 
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lDPdp ii /=  (2) 

where iDP  is the number of occurrences in the sequence for the ith amino acid.  
PCP has been demonstrated to be essential for the prediction and analysis of many 

protein structures in bioinformatics studies because of its interpretability (Charoenkwan et al. 
2013; Liaw et al. 2013; Tung et al. 2011). Analysis of the correlation between PCPs and FP 
oligomeric states can therefore provide insights that can further our biological knowledge of 
these systems. Each physicochemical property is represented as a set of 20 numerical values for 
amino acids. After removing 13 physicochemical properties with ‘NA’ in their amino acid 
indices, a total of 531 physicochemical properties were attained (Kawashima et al. 1999). 
 
Multivariate analysis 
 
A DT algorithm was utilized for constructing a computational model to predict FP oligomeric 
states. Since, the DT method affords interpretable rules for estimating feature importance 
pertaining to FP oligomeric states, therefore it is helpful in revealing the different characteristics 
between monomeric and oligomeric states. The construction of a DT model requires the 
following: (i) all samples in the internal set belong to a single class; (ii) the tree depth is close to 
maximum; and (iii) the number of classes in the terminal node is less than the minimum number 
of classes of the parent nodes. In general, the root node is a variable with the highest information 
gain, whereas the other internal nodes provide the second and subsequent highest information 
gain thereafter. The information gain of variable v (Gainv ) is calculated as follows: 
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where Gainv  is the information gain of feature v on the remaining data DDv ⊂ , and p(Cj )  is the 

probability of the relative frequency of class j ( jC ). In this study, j=2 was denoted as monomeric 

or oligomeric states. The prediction model was constructed using the J48 algorithm as 
implemented using the RWeka package (Frank et al. 2004). Important parameters consisted of 
the confidence factor used for pruning (confidenceFactor), the minimum number of instances per 
leaf (minNumObj), and the amount of data used for reduced-error pruning (numFolds). Herein, 
the confidenceFactor, minNumObj, and numFolds were set to default values (Che et al. 2010; 
Neugebauer et al. 2007; Yan et al. 2007). Furthermore, our proposed prediction model was 
compared with other well-known computational methods, such as artificial neural networks 
(ANN), support vector machines (SVM) and random forests (RF). In ANN, the back-propagation 
algorithm was implemented using the Weka software package (Frank et al. 2004). For SVM, the 
optimal parameters (gamma and cost) must be estimated to build the optimal SVM model 
(Dimitriadou et al. 2008). The most frequently used radial basis function kernel was selected as 
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the kernel function (Frank et al. 2004). Finally, a RF model was constructed with 500 trees 
(Frank et al. 2004). 
 
Validation of predictive model 
 
For any empirical model, model validation is an important process. Four measurements were 
used to evaluate the prediction performances of the proposed model: accuracy (Acc), sensitivity 
(Sen), specificity (Spec), and the Matthews’ correlation coefficient (MCC). These parameters are 
defined as follows:  

Accuracy = 100
)(
×

+++

+

FNFPTNTP
TNTP  (4) 

Sensitivity = 100
)(
×

+ FNTP
TP

 

(5) 

Specificity = 100
)(
×

+ FPTN
TN

 

(6) 

MCC = 
))()()(( FNTNFPTNFNTPFPTP

FNFPTNTP
++++

×−×

 

(7) 

where TP, TN, FP and FN are the numbers of true positives, true negatives, false positives and 
false negatives, respectively. In this study, a 10-fold CV procedure was used to confirm the 
reliability and robustness of the QSPR models using the training set (Kohavi 1995). 
Additionally, an external validation set was used to assess the generalizability of our proposed 
model for predicting unknown samples. 
 
Results and Discussion 
 
Protein oligomerization 

There are many advantages of association between subunits of proteins to exist in 
oligomeric states. Biological activities of proteins can depend on oligomerization because a 
single subunit alone can be unstable and unable to exert its functions. Oligomerization  also 
extends protein flexibility by mutual coupling to enhance biological activities. Oligomerization is 
useful in regulating activities because it can prevent the binding of unnecessary substrates to 
their allosteric sites. However, disadvantages of oligomerization also exist. Oligomerization 
creates a larger protein that places evolutionary pressure on its substrate to become smaller, thus 
increasing the probability of unnecessary binding of related substrates. Oligomerization also 
slows down rotational and translational diffusion which are important factors for random 
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collisions (Nooren & Thornton 2003). In some cases, protein oligomerization can have a 
devastating effect on health, as observed in many neurological diseases (Cleary et al. 2005). 

Oligomeric protein states arise from interfacial residues that have great electrostatic, polar, 
hydrophobic geometrical shape, hydrophobic and hydrogen bonding complementarity, thus 
resulting in interaction specificity. Approximately one third of cellular proteins are oligomeric. 
Oligomeric proteins can be hetero-oligomeric, forming from different subunits, or homo-
oligomeric, composed of the same subunits. For example, transthyretin (TTR), phenylalanine 
hydroxylase (PAH) and L-rhamnulose-1-phosphatase aldolase are homo-oligomeric proteins, 
whereas hemoglobin, immunotoxin and coagulation factor IX/X-binding protein are hetero-
oligomeric proteins. The associations between subunits of oligomeric proteins depends on their 
strengths and durations which are influenced by factors including, pH, concentration and 
temperature (Ali & Imperiali 2005). Hydrophobic interactions are responsible for defining ‘hot 
spots’ because two-thirds of amino acid residues are nonpolar at oligomeric interfaces (Miller 
1989). Conversely, increased polarity at interfaces is common with weakly associated and 
transient oligomerization of proteins. Particularly, these interfaces are rich in polar residues that 
are primarily noncovalent interactions (i.e. hydrogen bonding and electrostatic interactions) that 
stabilizes the oligomeric interfaces and which can be easily solubilized to individual subunits 
(Janin et al. 1988). Although oligomeric proteins can be broadly classified according to subunit 
type, strength and voracity of subunit association, Levy and Teichmann (2013) proposed a 
classification based on protein morphology. Thus, oligomeric states of FPs can be conceptually 
classified according to their number of units as being monomers or oligomers (e.g. dimers, 
trimers or tetramers). 
 
Performance of oligomeric states prediction 

The internal set was used to construct a predictive model based on the J48 algorithm to 
discriminate FPs into either monomer or oligomer. The predictive model was performed using 
10-fold CV as to prevent overtraining on the internal set and then tested on an external set in 
order to assess its ability to accurately predict unknown samples. Table 2 provides mean 
performance comparisons among the various types of features in the terms of 10-fold CV and 
external validation.  

In the case of using single features, the highest performance on the external set using DPC 
exhibited Acc=82.63±4.06%, Sen=80.97±6.62%, Spec=84.20±6.57 and MCC=0.66±0.08. 
Meanwhile, using AAC afforded the second highest performance with Acc=81.23±4.06%, 
Sen=79.62±7.30%, Spec=82.76±6.51 and MCC=0.63±0.08. We also considered the four 
possible combinations of feature types in the construction of predictive models. Table 2 indicated 
that the combination of PCP with AAC and DPC could provide improvements to Acc (from 
80.76% to 81.91%), Sen (from 80.92% to 81.74%), Spec (from 80.61% to 82.49%) and Mcc 
(from 0.62 to 0.64). These results demonstrated that using combination of three feature types 
could lead to better predictive performance. It was found that DPC is highly relevant for 
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predicting the FP oligomeric states and was therefore used in further benchmarking studies with 
other machine learning algorithms. 

The DT algorithm was benchmarked against other commonly used machine learning 
algorithms (using empirically determined optimal parameters) namely ANN (with 2 hidden 
nodes), SVM (with gamma=32 and cost =1) and RF (with 100 trees) using DPC. As described 
previously, 397 FPs were randomly divided into internal (80%) and external (20%) sets for 100 
times. It can be seen from Table 3 that the best performance with Acc=86.54±3.30%, 
Sen=86.79±5.03%, Spec=86.29±5.49 and MCC=0.73±0.07 was obtained from the RF model. 
The second best model was obtained using SVM with Acc=84.45±3.57%, Sen=84.87±5.24%, 
Spec=84.05±6.46 and MCC=0.69±0.07. Thus, the first and second highest prediction result was 
reasonably obtained from RF and SVM models, respectively. It is well known that the RF model 
is established from several decision trees while SVM model is obtained from complex 
procedures both of which afford minimal interpretability (aside from the Gini index that could 
potentially afford evaluation of the feature importance but from several trees). It can be deduced 
from these results that our proposed DT model afforded comparable performance level with 
those of RF and SVM models while also maximizing both the prediction results and 
interpretability. 
 
Identifying informative composition features and physicochemical properties 

Investigating feature importance of each type of protein descriptor can provide insights 
into FP oligomerization. Herein, the efficient built-in feature importance selector of the J48 
algorithm was used. In the J48 algorithm, the estimation of feature importance is calculated from 
feature usage based on information gain. The feature with the highest feature usage score is the 
most important feature because it maximizes the prediction performance. Feature importance is 
provided in Figure 2 as three subplots corresponding to the three classes of protein descriptors. 

Figure 2 demonstrates that the top-three informative amino acids were Glu (100.00), Leu 
(36.52) and Gln (25.69). It could be well recognized that Glu is a negatively charged amino acid. 
Several previous studies in protein engineering suggested that the substitution of single-site 
amino acids X→Glu (replacing any given amino acid X by Glu) affected the reduction of 
aggregated proteins. Yanushevich et al. generated non-aggregating mutants of Anthozoa FPs 
from drFP583, zFP506, zFP538, amFP486 and asFP595 by using site-directed mutagenesis of 
Lys→Glu at the N-terminus of the protein (Yanushevich et al. 2002). Similarly, generation of the 
monomeric Azami-Green (mAG) FP from tetrameric AG of Galaxeidae also involved Lys→Glu 
to obtain reduced aggregated protein (Karasawa et al. 2003).  

As for DPC, the top-four informative dipeptides were AS, FI, QP and MV with feature 
usage scores greater than 40. Notably, 2 out of 4 of these informative dipeptides (FI and MV) 
were composed of single hydrophobic amino acids. Results indicated that hydrophobic amino 
acids are important for oligomerization of FPs. This finding is well consistent with the 
experimental results of Yarbrough et. al. (2001) in which the crystal structure of DsRed from 
Discosoma sp. indicated that the oligomeric interfaces of subunits A and B consists of 
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hydrophobic interactions with few hydrogen bonds and salt bridges. In a similar manner, the first 
discovered photoconvertible Kaede from Trachyphyllia geoffroyi displayed dominant 
hydrophobic interactions between the oligomeric interface at the A and C subunits (Hayashi et 
al. 2007). Additionally, Heteractis crispa HcRed, the commercially available dimeric FP from 
the company Clontech, was converted to a dimer from a tetramer by changing the hydrophobic 
Leu residue at position 123 to the aromatic His residue within the hydrophobic interface to 
perturb the tetrameric hydrophobic interface (Wilmann et al. 2005).  

PCP has been shown to be crucial for predicting protein functions (Huang et al. 2011; Liaw 
et al. 2013; Tung et al. 2011). The identification of informative physicochemical descriptors of 
FPs was thus used for providing insights into the mechanism of FP oligomerization. The rank of 
feature importance for PCPs is shown in Figure 2, while Table 3 presents the 5 top-ranked 
informative PCPs according to their feature usage scores. It is observed that the five top-ranked 
PCPs (and their corresponding feature usage scores) consisted of AAindex IDs: FUKS010109 
(100), ARGP820101 (15.62), OOBM770104 (15.62), ROSM880101 (ROSM880101) and 
FASG760102 (6.8). Remarkably, 3 out of 5 informative PCPs having AAindex IDs of 
ARGP820101, ROSM880101 and FASG760102 pertained to hydrophobicity properties (Huang 
et al. 2011). As mentioned above, the hydrophobicity was responsible for stabilizing the 
oligomeric states of FPs (Hayashi et al. 2007; Wilmann et al. 2005; Yarbrough et al. 2001). 
Particularly, ARGP820101, ROSM880101, and FASG760102 corresponded to (i) 
Hydrophobicity index, (ii) Side chain hydropathy (uncorrected for solvation) and (iii) Melting 
point, respectively. Thus, this suggests that FP oligomerization are stabilized by several 
hydrophobic contacts. These finding are consistent with the experimental work in which 
hydrophobic residues at the interface were substituted with polar residues in attempt to create 
monomic FPs (Campbell et al. 2002; Hayashi et al. 2007; Wilmann et al. 2005; Yarbrough et al. 
2001). Along with hydrophobic contacts, several other interactions including the formation of 
coordination bonds, ionic interactions, van der Waals’ contacts, electrostatic interactions, 
hydrogen bondings and π-π stackings may mediate the oligomerization of FP at the “hot spot” 
sites. 
 
Conclusion 
 

This study represents the first attempt in the development of a computational model for 
predicting and analyzing FP oligomerization from protein sequences using amino acid 
composition, dipeptide composition and physicochemical properties. The experimental results 
demonstrated that a DT algorithm utilizing dipeptide compositions and physicochemical 
properties performed well on both internal and external sets with accuracies of 81.69% and 
82.63%, respectively. By identifying the informative features obtained from the feature usage 
scores of DT, the composition of Glu is important for the reduction of aggregated proteins. 
Moreover, we observed that hydrophobic amino acids were also important for FP 
oligomerization. Finally, the analysis of the most important physicochemical properties also 
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revealed that hydrophobic properties are important for protein oligomerization. These findings 
can aid biologists in designing novel monomeric FPs. 
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Figure 1. Schematic representation of the computational workflow. 
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Figure 2. Feature importance analysis of amino acid composition, dipeptide composition and 
physicochemical properties. 
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Table 1. Summary of existing studies for predicting oligomeric states from protein sequences. 
 

AAC is defined as amino acid composition. 
DPC is defined as dipeptide composition. 
PCP is defined as physicochemical properties. 
PseAAC is defined as pseudo amino acid composition. 
PsePSSM is defined as pseudo position-specific scoring matrix. 
FDOD is defined as function of degree of disagreement. 
FunD is defined as functional domain composition. 
AACD is defined as amino acid composition distribution. 
MSE is defined as multi-scale energy. 
OET- k-NN is defined as optimized evidence-theoretic k-NN algorithm. 
DWT_DT is defined as discrete wavelet transform and decision tree. 
 

Dataset Method Internal 
set size  

External 
set size 

Sequence Features Source 

SWISS-PROT database 
(Release 34)   

DT 1639 N/A PCP Garian 2001 
SVM 1639 N/A AAC, AC Zhang 2003 
FDOD 1639 N/A Quasi-Sequence-Order Song 2004 

SWISS-PROT database 
(Release 34) after 
removing 
similar protein sequence 

SVM 1568 N/A Quasi-Sequence-Order Song 2005 
SVM 1568 N/A AAC, DPC, AACD Shi 2005 
k-NN 1568 N/A Quasi-Sequence-Order Song 2007 
SVM 1568 1283 PseAAC Qiu 2011 

SWISS-PROT databank DA 3174 332 PseAAC Chou 2003 
SVM 3174 N/A Factor Scores, MSE Zhang 2007 
NN 3174 332 PseAAC Xiao 2009 

UniProtKB (Release 
15.6) 

Probability 5495 N/A AAC, DPC Carugo 2007 
Fuzzy k-NN 5495 N/A PseAAC,  Xiao 2011 

SWISS-PROT database 
(Release 55.3) 

OET- k-NN 6702 N/A FunD, PsePSSM Shen 2009 
DWT_DT 6702 N/A PseACC, PCP Sun 2012 

FP dataset DT 318 79 ACC, DPC,PCP This study 
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Table 2. Summary of the predictive performance as a function of various protein descriptor class as assessed by10-fold CV and external 
validation. 

Descriptors 
10-fold CV 

  
External validation 

Acc (%) Sen (%) Spec (%) MCC Acc (%) Sen (%) Spec (%) MCC 

AAC 80.65±1.82 78.99±2.75 82.23±2.67 0.61±0.04 
 

81.23±4.06 79.62±7.30 82.76±6.51 0.63±0.08 

DPC 81.69±2.19 79.95±3.13 83.35±2.69 0.63±0.04 

 

82.63±4.06 80.97±6.62 84.20±6.57 0.66±0.08 

PCP 79.97±1.91 80.01±2.48 79.94±2.51 0.60±0.04 80.76±4.13 80.92±6.23 80.61±6.24 0.62±0.08 

AAC+DPC 81.72±2.19 80.30±3.09 83.08±2.66 0.63±0.04 
 

82.60±4.10 80.74±6.36 84.37±6.38 0.65±0.08 

AAC+PCP 80.66±1.85 80.79±2.57 80.54±2.62 0.61±0.04 
 

81.68±3.79 81.56±6.62 81.78±6.31 0.64±0.08 

DPC+PCP 80.82±2.15 80.52±2.78 81.11±2.81 0.62±0.04 
 

81.58±3.64 81.74±6.54 81.41±6.18 0.63±0.07 

AAC+DPC+PCP 81.55±2.04 80.91±3.04 82.17±2.49 0.63±0.04   81.91±3.82 81.31±6.02 82.49±6.27 0.64±0.08 
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Table 3. Comparison of the proposed method with related computational models. 
 

Methods 
10-fold CV 

  
External validation 

Acc (%) Sen (%) Spec (%) MCC Acc (%) Sen (%) Spec (%) MCC 

ANN 82.11±1.51 82.26±2.34 81.98±2.41 0.64±0.03 
 

83.01±4.25 81.97±6.32 84.00±6.40 0.66±0.09 

SVM 82.64±1.19 82.97±2.31 82.33±2.38 0.65±0.02 

 

84.45±3.57 84.87±5.24 84.05±6.46 0.69±0.07 

RF 86.36±1.32 87.51±1.72 85.27±1.61 0.73±0.03 86.54±3.30 86.79±5.03 86.29±5.49 0.73±0.07 

DT 81.72±2.19 80.30±3.09 83.08±2.66 0.63±0.04 
 

82.60±4.10 80.74±6.36 84.37±6.38 0.65±0.08 

        ANN, SVM and RF were constructed with 2 hidden nodes, gamma=32/cost =1 and 100 trees, respectively. 
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