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Abstract 1 

As medical and molecular microbiologists who regularly read the scientific literature, it is our 2 

impression that many published papers contain data that is inappropriately presented and/or 3 

analysed. This is borne out by a number of studies which indicate that typically at least half of 4 

published scientific articles that use statistical methods contain statistical errors. While there are 5 

an abundance of resources dedicated to explaining statistics to biologists, the evidence would 6 

suggest that they are largely ineffective. These resources tend to focus on how particular 7 

statistical tests work, with reams of complicated-looking mathematical formulae. In addition, 8 

many statisticians are unfamiliar with the application of statistical techniques to molecular 9 

microbiology, instead telling us we need more samples, which can be difficult both ethically and 10 

practically in fields that include animal work and painstaking sample collection. In an age where 11 

performing a statistical test merely requires clicking a button in a computer programme, it could 12 

be argued that what the vast majority of biologists need is not mathematical formulae but 13 

simple guidance on which buttons to click. We have developed an easy to follow decision chart 14 

that guides biologists through the statistical maze. Our practical and user friendly chart should 15 

prove useful not only to active researchers, but also to journal editors and reviewers to rapidly 16 

determine if data presented in a submitted manuscript has been correctly analysed. 17 

18 
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 3 

It is estimated that around half of published papers in the biomedical literature contain mistakes 1 

in data presentation and analysis [1,2,3,4,5,6,7,8].  The most up-to-date review of such mistakes 2 

is for the journal “Infection and Immunity”, in which Dr Cara Olsen looked at all 141 articles from 3 

two issues, January 2002 (volume 70, no. 1) and July 2002 (volume 70, no. 7) [8]; her conclusions 4 

are in line with those of other journals similarly reviewed since 1979 [1,2,3,4,5,6,7]. Our reading 5 

of current literature in many biomedical journals suggests that the situation remains largely the 6 

same and we are certainly not the only researchers to find this concerning [9,10]. In Box 1, we 7 

highlight some of the most common mistakes being made by biomedical researchers. Such 8 

mistakes appear to be particularly prevalent when it comes to analysis of small data sets, to 9 

which many commonly used statistical analysis tools, such as t-tests for statistical analysis and 10 

presentation of means and standard deviations, are not well suited. 11 

 12 

Box 1. Common mistakes in data analysis and presentation in biomedical publications. 13 

1. Failure to adjust or account for multiple comparisons, which could lead to the 14 

presentation of false positive results. 15 

2. Reporting that a result is “significant” without conducting a statistical test. 16 

3. Use of statistical tests that assume a normal distribution on data that is skewed. 17 

4. Presenting data with unlabelled or inappropriate error bars/ measures of variability. 18 

5. Failure to describe the tests performed. 19 

 20 

To address this issue, we have developed a simple flow chart to help researchers avoid these 21 

common mistakes when handling their data. Called the BioStat Decision Tool (DT), the flow 22 

chart (summarised in Fig. 1) is freely available online 23 
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 4 

(http://flexiblelearning.auckland.ac.nz/biostat-tree/index.html), or for a small fee, as a 1 

smartphone application. The BioStat DT is a decision making tree, complete with handy tips and 2 

a glossary of terms to help scientists understand each step as they go along. The BioStat DT can 3 

be used to find out how best to analyse and present particular types of data, but could also be 4 

useful as a guide for journal reviewers and editors when assessing an author’s data presentation 5 

and analysis choices. The tool is aimed at biologists with small data sets, which are often 6 

encountered in research involving human samples or animal models due to practical and/or 7 

ethical considerations. It is important to note that the BioStat DT is simply a decision making 8 

tool; it does not tell researchers how to carry out a particular test with their software package, 9 

or allow users to input their own data. 10 

 11 

An example of using the BioStat DT to analyse and present a dataset 12 

In this section, we will use a thought experiment and simulated data to explore how the BioStat 13 

DT could help researchers avoid making the mistakes outlined in Box 1. Imagine a group of 14 

microbiologists are interested in the effect of two different bacterial gene deletions (let’s call 15 

them Δmut1 and Δmut2) upon transcription of geneX in a mouse infection model. The design for 16 

the thought experiment to test the mutants is outlined in Fig. 2. The researchers want to know 17 

whether expression of geneX in a tissue of interest is significantly different between vehicle 18 

(saline)-inoculated mice (from here-on-in termed controls) and mice infected with a wild type 19 

(WT) bacterium. This may have been shown previously in the literature. Furthermore, the 20 

researchers also want to know whether expression of geneX differs between mice infected with 21 

the WT bacterium and Δmut1 or Δmut2, and whether the expression of geneX differs between 22 

the two deletion strains. 23 
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 1 

Experimental set up and data 2 

The researchers use 4 mice per group in the first experiment, and repeat the entire experiment 3 

on a separate occasion, to give a total of 8 mice per test condition from two independent 4 

experiments and a total of 32 tissue samples to process, as outlined in Fig. 2.  They prepare RNA 5 

from the tissue of interest and make cDNA with random primers.  Although the PCR primers 6 

could be designed to cross introns in mammalian genes, so that they shouldn’t give 7 

amplification products with genomic DNA as template, RNA mixes lacking reverse transcriptase 8 

(RT) enzyme are prepared and tested for background amplification. Quantitative (q) RT-PCR is 9 

used to determine the levels of geneX transcript in each cDNA sample, normalized to the levels 10 

of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) transcript, chosen as an example of a 11 

relatively stably expressed gene in the majority of mammalian tissues (see for instance [11] for a 12 

discussion of qRT-PCR and relative-expression analysis). The double-stranded DNA produced by 13 

PCR amplification is detected using SYBR-green. Standard curves of differing template 14 

concentration are used to determine the linear range and efficiency of the primers, but are not 15 

discussed further here, except to say that CT (cycle threshold) values (where fluorescence comes 16 

above a background threshold) need to fall within the linear range to be reliable. GAPDH-17 

normalized geneX transcription is expressed relative to one calibrator sample from the control 18 

group. Each qRT PCR plate contains samples lacking RT (just one reaction for each) and the cDNA 19 

qRT-PCR reactions run in triplicate. One WT-infected cDNA sample, which would be expected to 20 

give a positive signal for geneX, is also included on every plate to allow normalization for inter-21 

plate variation. 22 
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 6 

Having worked through the experiment, the researchers determine the CT values that are below 1 

the background (the lower the cycle number at which product is detected, the more template 2 

was present in the sample) for both GAPDH and geneX for each sample.  Now we will use the 3 

BioStat DT to avoid making the data presentation and analysis flaws that are rife in the 4 

literature.  5 

 6 

Step 1. Identifying the type of data and replicates 7 

The BioStat DT begins with a question about the type of data that the researcher is working with 8 

(frequencies or measurements) (Fig. 3A). In the case of our thought experiment it is 9 

measurements. Within the smartphone application, there is a Glossary in which terms like this 10 

are defined. Selecting the measurements option leads to a question about ratios (Fig. 3B). If the 11 

data is expressed as a ratio then the data is not continuous, a prerequisite for many statistical 12 

tests which assume a normal/Gaussian distribution (Box 2). As the researchers plan to analyze 13 

the normalized CT values as relative amounts of gene expression compared to a calibrator 14 

sample, then the values will be ratios, so the answer to this question is YES. At this point, the 15 

BioStat DT suggests that the researcher should consider transforming the data to spread it into a 16 

more continuous distribution (Fig. 3C). We will come back to this later. 17 

After selecting CONTINUE, the tool next asks about the experimental replicates (Fig. 3D), and 18 

whether these are technical as well as biological replicates. In our thought experiment, the 19 

technical replicates are the triplicates that were plated for bacterial quantification (given as 20 

colony forming units [CFU]) and the triplicates carried out for each qRT-PCR reaction. As these 21 

technical replicates are essentially a measure of pipetting accuracy, they should be averaged to 22 

get the most accurate value for each test sample within the experimental design. The replicates 23 
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 7 

can be plotted on a scatter plot or one could just eyeball the numbers to see if there were any 1 

outliers due to pipetting and/or homogenization errors. If there are the odd erroneous values, 2 

having 3 samples and taking a median of the technical replicates will effectively cancel out these 3 

outliers and give a middle-of-the-evidence data point to work with. This is what the BioStat DT 4 

suggests (Fig. 3D), but if the replicates are evenly distributed then the mean and the median will 5 

be very similar and could be used interchangeably. For an inter-plate correction, the researchers 6 

take the median of the triplicates from the same cDNA on each plate and use this ratio to 7 

correct CTs for all other samples on the plate. The biological replicates are the individual mice; in 8 

this case there are two different bacterial inputs and two different sets of mice, in order to 9 

check reproducibility across experiments. It is recommended to pool these biological replicates, 10 

to give n=8 for each test group. If a researcher was to have problems with inter-experimental 11 

variation then they could normalize to a control group or show all of the data, so two lots of n = 12 

4 in this case, to show that the trends are consistent, even if the absolute values are not. 13 

Showing one “representative experiment” is not acceptable; all of the data will be needed in 14 

order to test for statistical significance and, if justified, to present something as a significant 15 

finding. This will avoid the common mistake of “Reporting that a result is “significant” without 16 

conducting a statistical test” (Box 1). Identification of biological and technical replicates and 17 

handling of these data appropriately can be a troublesome area and is covered specifically in 18 

reviews such as [12]. 19 

 20 

Step 2. Is the data normally distributed? 21 

In the thought experiment, the researchers have taken the median value for each of the 22 

triplicates, checked the input CFUs are reasonably consistent between the different bacterial 23 
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 8 

strains being studied and within the two experimental repeats (for example, within 10%), 1 

normalized the data and calculated CT values relative to both GAPDH levels and to a control 2 

calibrator sample, termed the 2-ΔΔCT method. Many excellent texts deal with the ins and outs of 3 

calculating 2-ΔΔCT and we won’t go into that further [13].  The researchers now have 8 data points 4 

for each test condition. The next question asked by the BioStat DT regards the distribution of the 5 

data (Fig. 3E). Answering this question is important to avoid making a mistake which is rife in the 6 

biomedical literature: “Use of statistical tests that assume a normal distribution on data that is 7 

skewed” (Box 1). It is especially important for scientists working with small datasets, such as 8 

those generated by the experiment described here, not to assume normality and present the 9 

data as means and standard deviations/standard errors, as such datasets can be dramatically 10 

skewed by outliers. A quick reminder of how to test for normality is given in Box 2. 11 

 12 

Box 2. Normal or not? 13 

A normal/ Gaussian, distribution is perfectly symmetrical around the mean, with a bell shaped 14 

curve when you plot the frequency of each value, and stretches infinitely in each direction. Data 15 

with this distribution allows many powerful assumptions to be made for testing of differences 16 

between groups, for instance using a Student’s t-test or One Way ANOVA. 17 

There are a number of ways to test a dataset for normal distribution: 18 

1. Using mathematical tests embedded within statistical software packages, in particular 19 

the D’Agostino-Pearson test is recommended, which looks at both how symmetrical 20 

(skewness) and how peaked or flat (kurtosis) the data distribution is compared to a 21 

perfect symmetrical Gaussian/normal distribution bell curve [14]. A large p value (close 22 

to 1) for these tests suggests that your sample is consistent with a Gaussian distribution, 23 
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i.e. it does not significantly deviate from normality. At least eight data points are 1 

required to carry out the D’Agostino-Pearson test. If you have less data you can’t look at 2 

the distribution mathematically, so we suggest using non-parametric tests that do not 3 

assume a normal distribution. 4 

2. Plotting the data as a scatter graph to see the shape of the distribution. Does it look like 5 

a bell-shaped normal curve? 6 

3. Analysing the column statistics, for example, what are the means and medians of each 7 

group and are they almost identical, suggesting a normal distribution (for example see 8 

Table 2 and Fig. 4A where mean ≠ median for WT and ∆mut2)? 9 

 10 

Analysing the simulated data (Table 1) from the thought experiment outlined in Fig. 2, which 11 

resembles the shape of many data sets that we have encountered for in vivo infection-induced 12 

host responses in our own experiments and in the literature, we can see that there are some 13 

individual mice with high responses that result in the WT and ∆mut2 infected groups not being 14 

normally distributed (Table 1 and Fig. 4A). This variation results in quite different values for the 15 

means and medians and the data fails the D’Agostino-Pearson normality test (Fig. 4A and Table 16 

2). For these two groups of data you can reject the null hypothesis that they conform to a 17 

normal distribution. 18 

Answering NO to the question “Is your data normally distributed” the BioStat DT then asks if the 19 

number of samples in each group (n) is 8 or greater, the cut off for the D’Agostino-Pearson test 20 

for normality (Fig. 3F). The limit exists because it is difficult to predict mathematically what a 21 

theoretical continuous infinite distribution of the data would look like with such a small number 22 

of data points to work with. Some normality tests can work with less than n=8 group sizes, such 23 
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 10 

as Kolmogorov-Smirnov, but these are not as well respected as the D’Agostino-Pearson test [14]. 1 

In this case, using the simulated dataset, answering YES to this question leads the BioStat DT to 2 

ask what the non-normal data looks like, with several options to choose from (Fig 3G). From Fig. 3 

4B the simulated data appears positively skewed in the groups that do not conform to a normal 4 

distribution. Selecting POSITIVELY SKEWED, the BioStat DT suggests performing a transformation 5 

(Fig. 3H). You may recall that a transformation of the data is also suggested because the data is 6 

in the form of ratios (Fig. 3C), so there are two reasons to transform the data prior to further 7 

analysis. In this case, carrying out a log10 transformation results in a tighter grouping of the data 8 

set on a scatter plot (Fig. 4B), the means and medians are closer and the transformed data now 9 

passes the D’Agostino-Pearson test for normality (Table 2). All subsequent statistical analysis 10 

should now be performed using log10-transformed data. Selecting CONTINUE leads the BioStat 11 

DT to ask if the transformed data is now normally distributed (Fig. 3I), to which the answer now 12 

is YES. This means that the transformed data can now be analysed using parametric tests and 13 

suggests presenting the data as means with either the 95% confidence interval (probably the 14 

most appropriate choice [9]) or standard deviation (Fig. 3J). With this advice, the BioStat DT 15 

attempts to address common mistake #4: “unlabelled or inappropriate error bars/measures of 16 

variability” (Box 1). For datasets such as the simulated one presented here, with a small number 17 

of samples, our preference is to present all of the data points individually, so that the reader can 18 

see the full spread of data for themselves. 19 

If the transformed data had still not passed the D’Agostino-Pearson test for normality, selecting 20 

NO would result in the BioStat DT advising that the data be analysed using non-parametric tests, 21 

and presented as medians and inter-quartile ranges, rather than using the mean and standard 22 

deviation or 95% confidence intervals. With this advice, the BioStat DT attempts to address 23 

common mistake #3: “Use of statistical tests that assume a normal distribution on data that is 24 
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 11 

skewed” (Box 1). It also serves to remind the user of data presentation options, and helps them 1 

to avoid another common mistake of carrying out non-parametric tests, but presenting the 2 

mean rather than the median, so that the presentation does not reflect the analysis carried out. 3 

 4 

Step 3. Selecting the appropriate statistical test to perform 5 

Selecting CONTINUE on the BioStat DT leads to the question “Are you looking for differences or 6 

associations?” (Fig. 3K). For the simulated dataset we are looking for differences, so selecting 7 

this option takes us to a question about the number of groups there are in the dataset (Fig. 3L). 8 

For the simulated dataset there are four groups: controls, WT-infected, Δmut1-infected and 9 

Δmut2-infected. Selecting MORE THAN TWO, the next question the BioStat DT asks is “Are you 10 

examining the effect of one factor or two?” (Fig. 3M). For the thought experiment the answer is 11 

ONE, that being geneX transcript levels. Next comes the question: “Are your data from 12 

independent samples, or from repeated measurements on the same sample?” (Fig. 3N). In this 13 

case, the data is from independent samples, so selecting this option leads the BioStat DT to 14 

suggest the “One way Analysis of Variance (ANOVA)” is the appropriate test for analyzing the 15 

simulated dataset (Fig. 3O). 16 

At this stage, the BioStat DT also explains why the selected test is appropriate, alongside a 17 

reminder of best presentation options and the need to state what test is carried out and what is 18 

presented (mean or median and the measure of variability) in figure legends and/or methods 19 

when publishing the data. In this particular example, the BioStat DT is addressing common 20 

mistake #1 “Failure to adjust or account for multiple comparisons…” (Box 1), by taking the user 21 

to the ANOVA and explaining why it is not appropriate to do multiple t-tests without correcting 22 

for false positives. The tool also helps the user to avoid mistakes #2 “Reporting that a result is 23 
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 12 

“significant” without conducting a statistical test”, #4 “Presenting data with unlabelled or 1 

inappropriate error bars/ measures of variability” and #5 “Failure to describe the tests 2 

performed” (Box 1). 3 

 4 

Step 4. Analysing and presenting the data 5 

While the BioStat DT does not tell researchers how to carry out a particular test with their 6 

software package, or allow users to input their own data, we will finish by describing the 7 

analysis of the simulated dataset from the experiment outlined in Fig. 2. Performing an ANOVA 8 

on the dataset yields an over-all probability (p)-value of <0.0001, indicating there are significant 9 

differences between the groups within our thought experiment (Table 3). Teasing out the 10 

groups within the dataset that are different from each other requires post-hoc testing with 11 

corrections for multiple comparisons, such as Bonferroni’s correction. These corrections are 12 

required to avoid false positives (type 1 errors) due to repeated testing of the same data [15]. 13 

Researchers can choose to make only the most biologically interesting comparisons, as every 14 

extra comparison results in an additional correction to the p-values. This increased stringency 15 

can therefore result in the researcher making what is known as a type 2 error, failing to detect a 16 

significant result where one exists. 17 

From the post-hoc tests performed on the simulated dataset, we find that all of our infection 18 

groups have significantly higher expression of geneX when compared to the uninfected controls 19 

(Table 4). Furthermore, the tests indicate that the expression of geneX is significantly lower in 20 

the Δmut1-infected group when compared to the WT-infected group. However, geneX 21 

expression by the Δmut2-infected group does not differ significantly from either the WT or 22 

Δmut1-infected groups. Interestingly, if we compare the results in Table 4 with a similar analysis 23 
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carried out on the untransformed dataset (Table 5), we see that there is now no longer a 1 

significant difference between the uninfected controls and the Δmut1-infected group. In this 2 

case, using the wrong analysis, i.e. ignoring the lack of a normal distribution in all groups and 3 

leaving the data un-transformed, would have resulted in the researchers getting a false-4 

negative, and accepting the null hypothesis that there was no significant difference between WT 5 

and ∆mut1, when in fact there was. 6 

In the final presentation of our simulated dataset, we could plot the 2-ΔΔCT values on a log10 7 

scale, so that readers can see the effect of the transformation that we carried out in order to 8 

make the data fit a more normal distribution, while retaining values that are easier to quickly 9 

understand (Fig. 5). We would state in the legend what statistical test was performed, what 10 

correction for multiple comparisons was chosen, and what the p values were (see Fig. 5 legend 11 

and Box 3). We would also state, in the legend or in the methods, the numbers of samples per 12 

group and more details of what we did to test reproducibility, such that two independent 13 

experiments were performed, with 4 mice in each to give a total of 8 samples per group, and 14 

that for data in the form of ratios statistical tests were carried out after log10-transformation. 15 

 16 

Box 3: Degrees of significance? 17 

More often than not, when scientists present a statistical analysis of their results they do so 18 

using adjectives such as “very significant” and “extremely significant”, or different numbers of 19 

asterisks. In contrast, many statisticians feel strongly that once a threshold significance level has 20 

been set (usually 0.05), a result can only be "statistically significant" or not "statistically 21 

significant", and so oppose the use of adjectives or asterisks to describe levels of statistical 22 
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significance. In reality, it can be useful to see whether the data would have passed a more 1 

stringent threshold for significance, which is perhaps why this practice persists. 2 

 3 

Conclusion 4 

In summary, the BioStat DT leads users step-by-step through data analysis and presentation 5 

decisions, describing in simple terms what the next step should be and why, as well as giving tips 6 

on how best to present the data. We hope that by providing user-friendly, maths-free statistical 7 

support to researchers, the BioStat DT will help raise the standards in data presentation and 8 

analysis and improve adherence to the guidelines provided for authors by many journals. 9 

It should be noted that the fact that many published papers fall short of the standards described 10 

in journal guidelines, suggests that many reviewers and editors are failing to identify errors 11 

during the peer review process. The BioStat DT could also provide a means for reviewers and 12 

editors to assess whether the guidelines for authors have been followed, and indeed, whether 13 

the appropriate statistical test has been performed. The tool also provides a means by which 14 

researchers can justify the analysis they performed by allowing them to generate a summary of 15 

the decision tree choices that were taken. 16 

17 
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Tables 9 

Table 1. Simulated data for relative expression of geneX given as 2-ΔΔCT and log10 2-ΔΔCT. 10 

Table 2. Column statistics for the untransformed and transformed simulated data of the 11 

relative expression of geneX. CI – confidence interval. 12 

Table 3. One-way analysis of variance (ANOVA) of the transformed and untransformed 13 

simulated data. F – ratio of between group variability to within group variability; R square – 14 

proportion of the variation in the dependent variable accounted for by the independent 15 

variable. 16 

Table 4. Post-hoc testing of the transformed simulated data using Bonferroni’s correction for 17 

multiple comparisons. t – ratio of the departure of an estimated parameter from its notional 18 

value; CI – confidence interval. 19 

Table 5. Post-hoc testing of the untransformed simulated data using Bonferroni’s correction 20 

for multiple comparisons. t – ratio of the departure of an estimated parameter from its notional 21 

value; CI – confidence interval. 22 

23 
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Figure legends 1 

 2 

Figure 1. Summary of the Biostat DT tree. 3 

 4 

Figure 2. Experimental design to determine the effect of two different bacterial gene deletions 5 

(Δmut1 and Δmut2) upon transcription of geneX in a mouse infection model. Key: GADPH, 6 

Glyceraldehyde 3-phosphate dehydrogenase; qRT PCR, quantitative reverse transcriptase PCR; 7 

CT, cycle threshold; 2–ΔΔCT, a method of relative gene expression where, for each sample, 8 

efficiency of amplification (for perfect amplification this is 2) is raised to the negative power of 9 

∆∆CT. Where, ∆∆CT is the test gene CT expressed relative to the control gene (in this case 10 

GAPDH) CT and relative to a calibrator sample arbitrarily chosen from a control condition (in this 11 

case saline). 12 

 13 

Figure 3. Summary of the BioStat DT questions and choices made to analyse the simulated 14 

dataset. 15 

 16 

Figure 4. Expression of geneX as determined by qRT-PCR normalized to GAPDH expression and 17 

relative to an arbitrarily chosen calibrator sample within the saline-control group. 18 

Data is shown before (A) and after (B) log10 transformation. Saline-inoculated negative controls 19 

(controls) are compared with mice X hours after infection wild type (WT), Δmut1 or Δmut2 20 

bacterial strains. Mean values per group are denoted by solid lines, while median values are 21 
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denoted by dashed lines. Each symbol represents a sample taken from an individual animal. 1 

Data is pooled from two independent experiments with four animals per group per experiment. 2 

 3 

Figure 5. Expression of geneX as determined by qRT-PCR normalized to GAPDH expression and 4 

relative to an arbitrarily chosen calibrator sample within the saline-control group.  5 

Saline-inoculated negative controls (controls) are compared with mice X hours after infection 6 

wild type (WT), Δmut1 or Δmut2 bacterial strains. Mean values per group are denoted by solid 7 

lines. Each symbol represents sample taken from an individual animal. Data is pooled from two 8 

independent experiments with four animals per group per experiment. Differences between 9 

groups were tested on log10-transformed data with One Way Analysis of Variance (ANOVA) and 10 

post-hoc t-tests using Bonferroni’s correction for multiple comparisons. Probability values are 11 

shown for significant (p<0.05) differences. 12 

 13 
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