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3Université de Toulouse; INSA, UPS, INP, LISBP
4INRA, UMR792 Ingénierie des Systémes Biologiques et des Procédés
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Abstract3

In response to environmental and genetic perturbations, micro-organisms may regulate4

their metabolism both metabolically – via metabolite–enzyme interactions – and hier-5

archically – via modulating enzyme capacities. In this report, we develop a combined6

metabolic and genetic regulatory model of E. coli that may be used to test this multi-7

scale response.8
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Metabolic module9

A number of kinetic models of E. coli metabolism are available in the literature [1, 2, 3, 4, 5],10

varying both in their level of detail and in their availability in standardised formats. As a11

scaffold, we use the metabolic model of Chassagnole et al. [1], available from the BioModels12

database [6] in SBML format [7] with accession number BIOMD0000000051. Some changes13

are made to this model, to enhance its use:14

• co-metabolites AxP and NAD/P/H are allowed to vary15

• dilution of intracellular pools due to growth, which have a negligible effect on system16

dynamics, are removed17

• glucose uptake is set to an experimentally-determined initial rate of 1.23 mM s−1, of18

which 22% enters the pentose phosphate pathway [8]19

• rMax values are rescaled to ensure the system starts at steady state, as was done in the20

original paper21

• biomass-producing branches (that is, those other than GPS, PDH and PPC) are coupled22

via a single reaction, to simulate growth at an initial rate of 1.67 × 10−4 s−1. This23

ensures that all the metabolic building blocks are used in stoichiometric proportions24

dictated by the cell composition, and links metabolism to overall cell physiology.25

Integration of metabolism with regulation of gene expression26

The model of Nishio et al. [5] contains a detailed description of the glucose phosphotransferase27

system (PTS) – the mechanism via which E. coli uptakes glucose – and its genetic regulation.28

We encoded their model in SBML format, now available from the BioModels database with29

accession number MODEL1501300000.30

We found that the Nishio model shows a non-monontonic response of glucose flux to changes31

in glucose levels: as glucose concentration increases beyond approximately 0.01 mM, glucose32

uptake rate decreases. This non-physiological response appears to be due to an imbalance33

between the “accelerator” and “brake” modules. Since this balance is controlled by the34

“computer” module, we focused on this module to rebalance the two others. By increasing35

the affinity of CYA for IIAP – changing the parameter kb in reaction binding IIA P Cya36

from 100 to 5000 mM−2 – this non-physiological behaviour is alleviated.37

We rescale glucose flux, as above, to rate 1.23 mM s−1. This means that Nishio, and the38

metabolic module set out above, are compatible models: their overlapping elements – the39

PTS system – have equal fluxes, and the two models may be easily merged by removing the40

simple PTS reaction from the metabolic model, and appending the entire Nishio model.41
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Expansion of the regulatory module42

The model is then expanded through inclusion of transcription and translation for all the43

metabolic enzymes. This is achieved by using the transcriptional and translational reactions44

of Nishio to guide us as to typical parameter values for these processes. The approach of45

building models using typical parameter values has been used previously to derive large-scale46

metabolic models [9, 10]; the justification is that model is largely driven by its structure, and47

hence approximate parameter values are often sufficient to produce correct overall behaviour.48

Typical parameter values are set out in Table 1.49

We finally added transcriptional regulation, in addition to that already in present in Nishio.50

Included regulatory interactions are set out in Table 2.51

Evaluation of predictive capabilities52

The model developed here simulates the steady-state metabolic operation of E. coli growing53

under abundant glucose. To test the predictive capabilities of this model, we simulate both54

the time-course response of E. coli to a sudden decrease of glucose level (from 2 mM to 10µM,55

Figure 1), and the steady-state reached by the system under a large range of glucose levels56

(from 10µM to 10 mM, Figure 2).57

Firstly, the metabolic and regulatory modules show different dynamics in response to a sudden58

decrease of glucose concentration. While the metabolic module responds rapidly (in the59

second to minute range), the regulatory module shows a slower response (in the minute to60

hour range), as expected.61

Secondly, both the steady-state glucose uptake and growth rates monotonically increase with62

the glucose level. This is qualitatively consistent with observations, although the predicted63

growth rate is higher than measured at low glucose levels. Expanding the model with addi-64

tional metabolic pathways and/or regulatory interactions, as well as performing a new round65

of calibration, may improve these predictions. Regarding intracellular fluxes, the partition66

of carbon at the glycolysis-pentose phosphate pathway node is stable for all glucose levels,67

which is in excellent agreement with experimental data [11].68

Conclusion69

We present a combined metabolic and genetic regulatory model of E. coli. Simulation results70

indicate that, while the model is developed and calibrated using experimental data collected71

under a unique metabolic steady-state, the predicted flux responses to perturbations are72

consistent with current knowledge. Its predictive capabilities will be improved by refining73

parameters and expanding it with additional metabolic and regulatory processes (e.g. post-74

transcriptional regulation).75

This model may be useful in the field of systems biology, to investigate the specific roles of76

metabolic and hierarchical regulation in the long-term response of E. coli to environmental77
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and genetic perturbations. It may also assist the design of more efficient and robust cell78

factories in biotechnology.79

The model outlined here is available from the BioModels database with accession number80

MODEL1503050000.81

Acknowledgements KS was funded by the EU FP7 (KBBE) grant 289434 “BioPreDyn:82

New Bioinformatics Methods and Tools for Data-Driven Predictive Dynamic Modelling in83

Biotechnological Applications”. PM acknowledges the support of INRA.84
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Table 1: Typical parameter values, derived from Nishio et al..

parameter value units

[gene] 2.43 × 10−7 mM
[mRNA] 10−4 mM
[protein] 10−2 mM

[regulator:metabolite] 10−4 mM
transcription 1 s−1

translation 0.183 s−1

mRNA degradation 2.43 × 10−3 s−1

protein degradation 1.83 × 10−3 s−1

effector:site binding 105 mM−1

Table 2: Transcriptional regulatory interactions included in the model. Those in the top
half are taken from Nishio et al..

regulator gene target effect

Mlc ptsG –
ptsH –
ptsI –

Crp:cAMP crp +
cyaA –
mlc +/–
ptsG +
ptsH +
ptsI +

Crp:cAMP pdh –
Cra pfk –

ppc –
ptsH –
pyk –
tpi –
zwf –

PdhR:PYR pdh –
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Figure 1: A sudden decrease of glucose levels (from 2 mM to 10µM) is applied to the model at t = 100 s. The glucose uptake flux
immediately decreases after the decrease of glucose concentration (A). This results in an increase of cAMP production (B) and of its
concentration (C). In turn, the concentration of Crp:cAMP complex increases (D) and regulates the transcription of genes encoding
metabolic enzymes (e.g. cyaA, E) and global regulators (e.g. crp, G). The dynamics of mRNA levels (e.g. cyaA, F, and crp, H) are
slower.
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Figure 2: Steady-state response of the glucose uptake rate (solid, mM s−1) and growth rate
(dashed, s−1) (A), and of the partition of carbon at the glycolytic (solid) – PPP (dashed)
node (B) when glucose concentration is varied between 10µM and 10mM.
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