A peer-reviewed version of this preprint was published in PeerJ on 5 November 2015.

<u>View the peer-reviewed version</u> (peerj.com/articles/1382), which is the preferred citable publication unless you specifically need to cite this preprint.

Whitlock BK, Daniel JA, Amelse LL, Tanco VM, Chameroy KA, Schrick FN. 2015. Kisspeptin receptor agonist (FTM080) increased plasma concentrations of luteinizing hormone in anestrous ewes. PeerJ 3:e1382 https://doi.org/10.7717/peerj.1382

Kisspeptin receptor agonist (FTM080) increased plasma concentrations of luteinizing hormone in anestrous ewes

Brian K Whitlock, Joseph A Daniel, Lisa L Amelse, Valeria M Tanco, Kelly A Chameroy, F Neal Schrick

Kisspeptin receptor (KISS1R) agonists with increased half-life and similar efficacy to kisspeptin in vitro may provide beneficial applications in breeding management of many species. However, many of these agonists have not been tested in vivo. These studies were designed to test and compare the effects of a KISS1R agonist (FTM080) and kisspeptin on luteinizing hormone (LH) in vivo. In experiment 1 (pilot study), sheep were treated with FTM080 (500 pmol/kg BW) or sterile water (VEH) intravenosuly. Blood was collected every 15 min before (1 hr) and after (1 hr) treatment. In experiment 2, sheep were treated with KP-10 (human Metastin 45-54; 500 pmol/kg BW), one of three dosages of FTM080 [500 (FTM080:500), 2500 (FTM080:2500), or 5000 (FTM080:5000) pmol/kg BW], or VEH intravenously. Blood was collected every 15 min before (1 hr) and after (4 hr) treatment. In experiment 1, FTM080:500 increased (P < 0.05) plasma LH concentrations when compared to VEH. The area under the curve (AUC) of LH following FTM080:500 treatment was also increased (P < 0.05). In experiment 2, plasma LH concentrations increased (P < 0.05) following treatment with KP-10 and FTM080:5000 when compared to VEH and FTM080:500. The AUC of LH following KP-10 was greater than (P < 0.05) all other treatments and the AUC of LH following FTM080:5000 was greater than (P < 0.05) all treatments except KP-10. These data provide evidence to suggest that FTM080 stimulates the gonadotropic axis of ruminants in vivo. Any increased half-life and comparable efficacy of FTM080 to KP-10 in vitro does not appear to translate to in vivo in sheep.

1

TITLE

KISSPEPTIN RECEPTOR AGONIST (FTM080) INCREASED PLASMA
CONCENTRATIONS OF LUTEINIZING HORMONE IN ANESTROUS EWES

Brian K. Whitlock*1, Joseph A. Daniel², Lisa L. Amelse¹, Valeria M. Tanco¹, Kelly A. Chameroy¹, and F. Neal Schrick³

¹Department of Large Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996 USA

²Department of Animal Science, Berry College, Mt. Berry, GA 30149

³Department of Animal Science, The University of Tennessee, Knoxville, TN 37996

Correspondence: Brian K. Whitlock

Department of Large Animal Clinical Sciences

College of Veterinary Medicine

The University of Tennessee, Knoxville, TN 37996 USA

Tel:(865)974-5701; Fax:(865)974-5773

email:bwhitloc@utk.edu

Key Words: Kisspeptin, Agonist, Luteinizing hormone, Sheep

ABSTRACT

Background/Aims: Kisspeptin receptor (KISS1R) agonists with increased half-life and similar efficacy to kisspeptin *in vitro* may provide beneficial applications in breeding management of many species. However, many of these agonists have not been tested *in vivo*.

These studies were designed to test and compare the effects of a KISS1R agonist (FTM080) and kisspeptin on luteinizing hormone (LH) *in vivo*.

Methods: Experiment 1 (pilot study): Sheep were treated with FTM080 (500 pmol/kg BW) or sterile water (VEH) intravenosuly. Blood was collected every 15 min before (1 hr) and after (1 hr) treatment. Experiment 2: Sheep were treated with KP-10 (human Metastin 45-54; 500 pmol/kg BW), one of three dosages of FTM080 [500 (FTM080:500), 2500 (FTM080:2500), or 5000 (FTM080:5000) pmol/kg BW], or VEH intravenously. Blood was collected every 15 min before (1 hr) and after (4 hr) treatment.

Results: Experiment 1: FTM080:500 increased (P < 0.05) plasma LH concentrations when compared to VEH. The area under the curve (AUC) of LH following FTM080:500 treatment was also increased (P < 0.05). Experiment 2: Plasma LH concentrations increased (P < 0.05) following treatment with KP-10 and FTM080:5000 when compared to VEH and FTM080:500. The AUC of LH following KP-10 was greater than (P < 0.05) all other treatments and the AUC of LH following FTM080:5000 was greater than (P < 0.05) all treatments except KP-10.

Conclusions: These data provide evidence to suggest that FTM080 stimulates the gonadotropic axis of ruminants *in vivo*. Any increased half-life and comparable efficacy of FTM080 to KP-10 *in vitro* does not appear to translate to *in vivo* in sheep.

INTRODUCTION

Kisspeptin and the kisspeptin receptor (KISS1R) are integral to central regulation of the gonadotropic-axis [1-3]. Intravenous infusion of kisspeptin to sheep in the non-breeding season elevated gonadotropin secretion and caused ovulation [4]. The demonstration that intravenous infusion of kisspeptin can stimulate ovulation in seasonally anestrous female sheep offers a means of manipulating the reproductive axis. However, kisspeptin may be of limited clinical use because of the short circulating half-life [5-8]. Rational modification of KISS1R agonists were synthesized to be resistant to matrix metalloproteinase (MMP) activity and found to have increased half-life in murine serum, and to have comparable binding affinity and efficacy *in vitro* to kisspeptin [9]. However, *in vivo* activities of these peptides have not yet been studied. Thus, the present experiments were designed to determine and compare the effect of a novel KISS1R agonist and kisspeptin on plasma LH concentrations in seasonally anestrus female sheep.

MATERIALS AND METHODS

All procedures were approved by the Berry College (Rome, GA) Institutional Animal Care and Use Committee (Protocol No. 2011/12-010). Sheep were housed at the Ruminant Research Unit at Berry College (Latitude = 34°18'8.33"N; Longitude = 85°11'45.29"W), exposed to average ambient temperature (25°C average daily temperature) and summer photoperiod (14:10 [L:D] hr) throughout the experiments (June), and fed a maintenance diet calculated to meet 100% of daily requirements [10]. During the experiments sheep were kept in individual pens (1.2 X 1.2 m) to facilitate IV injection and serial blood collections.

The effects of a novel KISS1R agonist (FTM080: 4-fluorobenzoyl-Phe-Gly-Leu-Arg-Trp-NH₂; Graduate School of Pharmaceutical Sciences, Kyoto University) [9, 11] and KP-10 (a biologically active C-terminally amidated cleavage fragment of kisspeptin, human Metastin 45-54, 4389-v, Peptide Institute Inc., Osaka, Japan) on plasma LH concentrations in anestrous sheep was tested. To reduce the influence of sex steroids on the kisspeptin-KISS1R system, studies were conducted during a long photoperiod to increase the likelihood of ewes being anestrous [12]. In addition, blood samples were collected before and after the experiments (7 days between samples) and assayed to determine progesterone concentrations. Data from animals with circulating progesterone concentrations greater than 1 ng/mL (indicating active luteal tissue and therefore cyclicity) were excluded from the analysis. To facilitate treatment administration and blood sampling, each animal was fitted with an indwelling intravenous jugular catheter the day before experimentation.

Experiment 1: Eight adult parous Katahdin female sheep [41.6 ± (SEM) 1.3 kg] were used in this experiment. Sheep were treated with FTM080 (500 pmol/kg BW; FTM080:500) or sterile water (Vehicle; VEH) in a 2-mL bolus via the jugular cannula. Serial blood samples (every 15 min; 3-mL each) were collected before (for 1 hr) and after (for 1 hr) treatment. Blood was collected into tubes containing 7.5 mg EDTA. Plasma was stored at -20°C for radioimmunoassay (RIA) of LH and progesterone.

Experiment 2: Twenty-one adult parous Katahdin female sheep [48.2 ± 5.1 kg] were used in this experiment. Sheep received one of five treatments [sterile water (VEH), KP-10 (500 pmol/kg BW), or FTM080 [500 (FTM080:500), 2500 (FTM080:2500), or 5000 (FTM080:5000) pmol/kg BW)] in 2-mL bolus via the jugular cannula. Samples were collected and handled in the

same manner as described in Experiment 1 except blood samples were collected for a total of 4 hr after treatment.

Plasma LH concentrations were assayed by double-antibody RIA using materials supplied by the National Hormone and Pituitary Program of NIDDK as previously described [13]. Limit of detection and intra-assay and inter-assay coefficient of variance were 0.125 ng/ml and 5.5% and 9.9% for the LH assays, respectively. Plasma progesterone concentrations were determined using the Coat-a-Count® Progesterone RIA kit (Siemens, Los Angeles, CA, USA) [14-17]. Limit of detection and intra-assay coefficients of variance for the progesterone assay were 0.1 ng/mL and 14.9%, respectively.

For Experiments One and Two circulating concentrations of LH were tested for effect of treatment, time, and treatment by time interaction using ANOVA procedures for repeated measures with JMP Software (version 7 SAS Inst. Inc., Cary, NC). Area under the LH concentration curve pre (-60 to 0 min) and post (0 to 60 min) treatment was calculated using the trapezoid method with MSExcel Software. Area under the LH curve was tested for effect of treatment, period (pre- or post-treatment), and treatment by period interaction using ANOVA procedures for repeated measures with JMP Software (version 7, SAS Inst. Inc., Cary, NC). Means separation was performed using Student's T test when appropriate.

RESULTS

Experiment 1: Two ewes (one per treatment) were excluded from the analysis and results because their plasma progesterone concentrations were greater than 1 ng/mL (2.60 and 1.70 ng /

mL) thus plasma LH concentrations from six ewes (three ewes per treatment group) were analyzed and reported. Plasma progesterone concentrations for the remainder of the animals were less than 1 ng/mL [0.12 ± 0.08 (SEM) ng / mL] before and after the experiment. Mean \pm SEM plasma LH concentrations before treatment were 0.31 ± 0.16 ng/mL and 0.14 ± 0.06 ng/mL for animals treated with VEH and FTM080:500, respectively. Mean plasma LH concentrations after treatment were 0.21 ± 0.08 ng/mL and 0.97 ± 0.72 ng/mL for animals treated with VEH and FTM080:500, respectively. There was an effect of time (P = 0.0019) and a treatment by time interaction (P = 0.0009) on plasma LH concentrations. Plasma LH concentrations for FTM080:500 treated animals were greater than (P < 0.05) VEH from 0 to 45 minutes following treatment (Figure 1A).

An effect of period (pre- and post-treatment) (P = 0.0464) and a period by treatment interaction (P = 0.0150) was found when analyzing the area under the LH curve. The area under the curve of LH for FTM080:500 treated animals was greater than (P < 0.05) VEH from 0 to 60 minutes following treatment (Figure 1B).

Experiment 2: One ewe (VEH group) was excluded from the analysis and results because of high plasma progesterone concentrations (7 days post-experiment; 2.50 ng/mL). Plasma LH concentrations from a total of 20 ewes (representing 4 ewes per treatment group) were analyzed and reported. Plasma progesterone concentrations for the 20 animals included in the analysis were less than 1 ng/mL (0.16 ± 0.01 ng/mL) before and after the experiment. Mean \pm SEM plasma LH concentrations were 0.59 ± 0.37 ng/mL, 0.78 ± 0.38 ng/mL, 0.43 ± 0.24 ng/mL, 0.58 ± 0.37 ng/mL, and 0.53 ± 0.28 ng/mL before treatment with VEH, KP-10, FTM080:500, FTM080:2500, and FTM080:5000 pmol/kg, respectively. Mean plasma LH

concentrations were 1.35 ± 0.20 ng/mL, 1.93 ± 0.37 ng/mL, 0.97 ± 0.13 ng/mL, 0.94 ± 0.13 ng/mL, and 1.29 ± 0.29 ng/mL after treatment with VEH, KP-10, FTM080:500, FTM080:2500, and FTM080:5000 pmol/kg, respectively. There was an effect of treatment (P = 0.0134) on mean plasma LH concentrations. Mean plasma LH concentration following treatment with KP-10 (1.93 \pm 0.37 ng/mL) was greater than all treatments except FTM080:5000. There was also an effect of time (P < 0.0001) and an interaction of treatment and time (P < 0.0001) on plasma LH concentrations. Plasma LH concentrations following treatment with KP-10 were greater than (P < 0.05) the VEH through the 45-min sample, FTM080:500 at the 30- and 45-min samples, and FTM080:2500 at 30-min (Figure 2A). Plasma LH concentrations following FTM080:5000 was greater than (P < 0.05) VEH through the 30-min sample and FTM080:500 at the 15-min samples (Figure 2A).

There was an effect of treatment (P < 0.0001), period [pre-treatment (-60 to 0 min); 1 hour post-treatment (0 to 60 min); P < 0.0001], and an interaction of treatment and period (P < 0.0001) on area under the curve (AUC) of plasma LH concentrations. The 1 hour post-treatment AUC of LH following KP-10 was greater than (P < 0.05) all other treatments and the 1 hour post-treatment AUC of LH following FTM080:5000 was greater than (P < 0.05) all treatments except KP-10 (Figure 2B). The AUC of LH in the 1 hour post-treatment period was greater than (P < 0.05) the AUC of LH in the pre-treatment period (-60 to 0 min) for FTM080:500 and FTM080:2500 (Figure 2B).

DISCUSSION

FTM080 was recently identified as a potent KISS1R agonist by structure-activity relationship studies on kisspeptin [11, 18]. It has been reported that kisspeptin is inactivated by the cleavage of the Gly-Leu peptide bond in the C-terminal region by MMPs [19]. Since kisspeptin and FTM080 share a common sequence (Phe-Gly-Leu-Arg) of the MMP-mediated cleavage site, FTM080 would be also deactivated by MMP-mediated digestion. However, the half-life of FTM080 in murine serum (6.6 h) is greater than that of KP-10 (completely digested within 1 h) and substitution of the Gly-Leu dipeptide moiety in FTM080 with appropriate dipeptide isosteres resulted in peptides (e.g. FTM145) resistant to degradation by MMP-2 and -9, more stable in murine serum (e.g. compound FTM145 half-life = 38 h), while maintaining bioactivity for KISS1R *in vitro* [9]. However, *in vivo* activities of these peptides were not studied. Studies on pentapeptides derived from C-terminal kisspeptin fragments have been mainly focused on the design of analogs with superagonistic properties *in vitro*. Many previously developed pentapeptides, with apparent full agonistic activity at the KISS1R in cellular models, have not been evaluated in terms of gonadotropin secretion *in vivo*.

Results of the present study revealed that intravenous FTM080 stimulated plasma LH concentrations in anestrous sheep. In Experiment 1 (pilot study), plasma LH concentrations increased approximately 7-fold between 0 and 45 minutes following intravenous treatment with FTM080 (from 0.14 to 0.97 ng / mL). The magnitude and duration of the LH-response following treatment with FTM080 in Experiment 1 was similar to previous observations in ovariectomized sheep given comparable doses of KP-10 [4, 20].

In Experiment 2 (a comparison of the effects of FTM080 and KP-10 on plasma LH concentrations in sheep) KP-10 stimulated the greatest magnitude and duration of LH-response

(0.64 to 5.55 ng / mL and 45 min, respectively). Caraty et al., [4] reported that an intravenous bolus of KP-10 of approximately half the molar dose used in this experiment (500 pmol / kg) increased concentrations of LH in plasma of seasonally acyclic ewes from 0.2 ng / mL to 8.0 ng / mL which was similar to the response observed here. Although FTM080 did elicit a comparable LH-response (0.76 to 4.58 ng / mL), the dose necessary was 10-fold greater than the dose of KP-10 used (5000 versus 500 pmol/kg, respectively). Moreover, although the *in vitro* half-life of FTM080 was greater than KP-10 [9], the duration of the LH-response following an intravenous dose of FTM080 was less than the duration following a 10-fold lesser dose of KP-10 (30 min versus 45 min, respectively).

In vitro screening and assays are useful to select agonist analogs for further *in vivo* studies. By improving biological stability while maintaining *in vitro* agonistic and receptor binding activity to KISS1R Asami et al., [23] identified the potent kisspeptin agonist analogue, TAK-683. TAK-683 was administered in several mammalian species including goats [24] and men [25] demonstrating excellent gonadotropin releasing activity *in vivo* at low doses. However, *in vitro* and *in vivo* activity/potency of KISS1R agonists do not always agree [21, 22]. For instance, while KP-10 analog [dY]¹KP bound to the KISS1R with a 4-fold lower affinity and had similar potency *in vitro* it had a more potent effect (4-fold) on LH than KP-10 *in vivo* [22]. Alternatively, another KP-10 analog, ANA5, bound with higher affinity to the KISS1R than kisspeptin but it was not more potent *in vitro* and less potent *in vivo* than KP-10 [22]. Thus although some kisspeptin analogs may act as KISS1R superagonists in specific *in vitro* systems, they may not have greater activity than kisspeptin *in vivo*.

It is interesting to speculate on mechanisms for the different responses obtained between TOM080 and KP-10 and why responses to TOM080 in sheep do not agree with those observed in vitro. There is the possibility that shorter kisspeptin analogs (FTM080 is pentapeptide) have some limitation in terms of efficacy. The C-terminal amino acids of KP-10 (decapeptide that is a biologically active C-terminally amidated cleavage fragment of kisspeptin) are critical for efficient KISS1R binding [26] resulting overall in a greater focus on the screening of decapeptide instead of pentapeptide analogs of kisspeptin as potential KISS1R agonists. The difference in response observed here might also be the result of the animal model used for the in vivo experimentations. While previous in vitro assays with FTM080 were conducted with human KISS1R [11, 18] the activity of FTM080 to sheep KISS1R has not been investigated. Contrarily, similar doses of kisspeptin have been administered to various species and various routes resulting very often in similar and comparable responses [27]. Differences in tissue distribution of KP-10 and FTM080 may be another possibility to explain differential in vivo efficacy. Only centrally, but not peripherally, administered KP-10 increased serum concentrations of growth hormone in sheep [20]. Likewise, only centrally, but not peripherally, administered KP-10 induced c-Fos in GnRH neurons, suggesting that differential site of action of kisspeptin causes differential gonadotropin releasing efficacy in vivo [28]. Differences in tissue distribution, especially at the hypothalamus, of FTM080 and KP-10 were not determined in this study. Pharmacokinetic profiles, including but not limited to clearance, is another possible explanation for the different response observed between FTM080 and KP-10. Higher clearance of FTM080 from the sheep circulation than KP-10 could be hypothesized to rationalize the lesser in vivo activity.

11

In conclusion, these data provide evidence to suggest that FTM080, a KISS1R agonist, stimulates the gonadotropic axis of ruminants *in vivo*. However, the increased half-life and comparable efficacy of FTM080 to KP-10 *in vitro* [9] does not appear to translate to longer duration of efficacy *in vivo* in sheep.

REFERENCES

- Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS, Jr., Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O'Rahilly S, Carlton MB, Crowley WF, Jr., Aparicio SA, Colledge WH: The gpr54 gene as a regulator of puberty. N Engl J Med 2003;349:1614-1627.
- de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E: Hypogonadotropic hypogonadism due to loss of function of the kiss1-derived peptide receptor gpr54. Proc Natl Acad Sci U S A 2003;100:10972-10976.
- Funes S, Hedrick JA, Vassileva G, Markowitz L, Abbondanzo S, Golovko A, Yang S, Monsma FJ, Gustafson EL: The kiss-1 receptor gpr54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun 2003;312:1357-1363.
- 4 Caraty A, Smith JT, Lomet D, Ben Said S, Morrissey A, Cognie J, Doughton B, Baril G, Briant C, Clarke IJ: Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes. Endocrinology 2007;148:5258-5267.
- Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M: The metastasis suppressor gene kiss-1 encodes kisspeptins, the natural ligands of the orphan g protein-coupled receptor gpr54. J Biol Chem 2001;276:34631-34636.
- 6 Hori A, Honda S, Asada M, Ohtaki T, Oda K, Watanabe T, Shintani Y, Yamada T, Suenaga M, Kitada C, Onda H, Kurokawa T, Nishimura O, Fujino M: Metastin suppresses the motility and growth of cho cells transfected with its receptor. Biochem Biophys Res Commun 2001;286:958-963.
- 7 Dhillo WS, Chaudhri OB, Patterson M, Thompson EL, Murphy KG, Badman MK, McGowan BM, Amber V, Patel S, Ghatei MA, Bloom SR: Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males. J Clin Endocrinol Metab 2005;90:6609-6615.
- 8 Plant TM, Ramaswamy S, Dipietro MJ: Repetitive activation of hypothalamic g protein-coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (macaca mulatta) elicits a sustained train of gonadotropin-releasing hormone discharges. Endocrinology 2006;147:1007-1013.

- 9 Tomita K, Oishi S, Ohno H, Peiper SC, Fujii N: Development of novel g-protein-coupled receptor 54 agonists with resistance to degradation by matrix metalloproteinase. J Med Chem 2008;51:7645-7649.
- NRC: Nutrient requirments of sheep, ed 6th rev. ed. Washington, DC, Natl. Acad. Sci., 1985.
- Tomita K, Oishi S, Cluzeau J, Ohno H, Navenot JM, Wang ZX, Peiper SC, Akamatsu M, Fujii N: Sar and qsar studies on the n-terminally acylated pentapeptide agonists for gpr54. J Med Chem 2007;50:3222-3228.
- Smith JT, Clay CM, Caraty A, Clarke IJ: Kiss-1 messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season. Endocrinology 2007;148:1150-1157.
- Coleman ES, Elsasser TH, Kemppainen RJ, Coleman DA, Sartin JL: Effect of endotoxin on pituitary hormone secretion in sheep. Neuroendocrinology 1993;58:111-122.
- Minton JE, Coppinger TR, Spaeth CW, Martin LC: Poor reproductive response of anestrous suffolk ewes to ram exposure is not due to failure to secrete luteinizing hormone acutely. J Anim Sci 1991;69:3314-3320.
- Srikandakumar A, Ingraham RH, Ellsworth M, Archbald LF, Liao A, Godke RA: Comparison of a solid-phase, no-extraction radioimmunoassay for progesterone with an extraction assay for monitoring luteal function in the mare, bitch, and cow. Theriogenology 1986;26:779-793.
- Reimers TJ, Lamb SV, Bartlett SA, Matamoros RA, Cowan RG, Engle JS: Effects of hemolysis and storage on quantification of hormones in blood samples from dogs, cattle, and horses. Am J Vet Res 1991;52:1075-1080.
- 17 Colazo MG, Ambrose DJ, Kastelic JP, Small JA: Comparison of 2 enzyme immunoassays and a radiimmunoassay for measurement of progesterone concentrations in bovine plasma, skim milk, and whole milk. Canadian Journal of Veterinary Research-Revue Canadienne De Recherche Veterinaire 2008;72:32-36.
- Niida A, Wang Z, Tomita K, Oishi S, Tamamura H, Otaka A, Navenot JM, Broach JR, Peiper SC, Fujii N: Design and synthesis of downsized metastin (45-54) analogs with maintenance of high gpr54 agonistic activity. Bioorg Med Chem Lett 2006;16:134-137.
- Takino T, Koshikawa N, Miyamori H, Tanaka M, Sasaki T, Okada Y, Seiki M, Sato H: Cleavage of metastasis suppressor gene product kiss-1 protein/metastin by matrix metalloproteinases. Oncogene 2003;22:4617-4626.
- Whitlock BK, Daniel JA, Wilborn RR, Maxwell HS, Steele BP, Sartin JL: Interaction of kisspeptin and the somatotropic axis. Neuroendocrinology 2010;92:178-188.
- Gutierrez-Pascual E, Leprince J, Martinez-Fuentes AJ, Segalas-Milazzo I, Pineda R, Roa J, Duran-Prado M, Guilhaudis L, Desperrois E, Lebreton A, Pinilla L, Tonon MC, Malagon MM, Vaudry H, Tena-Sempere M, Castano J: In vivo and in vitro structure-activity relationships and structural conformation of kisspeptin-10-related peptides. Mol Pharmacol 2009
- Curtis AE, Cooke JH, Baxter JE, Parkinson JRC, Bataveljic A, Ghatei MA, Bloom SR, Murphy KG: A kisspeptin-10 analog with greater in vivo bioactivity than kisspeptin-10. Am J Physiol-Endoc M 2010;298:E296-E303.
- Asami T, Nishizawa N, Matsui H, Nishibori K, Ishibashi Y, Horikoshi Y, Nakayama M, Matsumoto S, Tarui N, Yamaguchi M, Matsumoto H, Ohtaki T, Kitada C: Design, synthesis, and

biological evaluation of novel investigational nonapeptide kiss1r agonists with testosterone-suppressive activity. J Med Chem 2013;56:8298-8307.

- Tanaka T, Ohkura S, Wakabayashi Y, Kuroiwa T, Nagai K, Endo N, Tanaka A, Matsui H, Kusaka M, Okamura H: Differential effects of continuous exposure to the investigational metastin/kisspeptin analog tak-683 on pulsatile and surge mode secretion of luteinizing hormone in ovariectomized goats. J Reprod Dev 2013;59:563-568.
- Scott G, Ahmad I, Howard K, MacLean D, Oliva C, Warrington S, Wilbraham D, Worthington P: Double-blind, randomized, placebo-controlled study of safety, tolerability, pharmacokinetics and pharmacodynamics of tak-683, an investigational metastin analogue in healthy men. British journal of clinical pharmacology 2013;75:381-391.
- Roseweir AK, Kauffman AS, Smith JT, Guerriero KA, Morgan K, Pielecka-Fortuna J, Pineda R, Gottsch ML, Tena-Sempere M, Moenter SM, Terasawa E, Clarke IJ, Steiner RA, Millar RP: Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. J Neurosci 2009;29:3920-3929.
- Seminara SB: Metastin and its g protein-coupled receptor, gpr54: Critical pathway modulating gnrh secretion. Front Neuroendocrinol 2005;26:131-138.
- d'Anglemont de Tassigny X, Fagg LA, Carlton MB, Colledge WH: Kisspeptin can stimulate gonadotropin-releasing hormone (gnrh) release by a direct action at gnrh nerve terminals. Endocrinology 2008;149:3926-3932.

Figure 1; Effect of i.v. KISS1R agonist, FTM080, on plasma LH concentrations in anestrous ewes (n = 3). **a** Response of circulating concentration of LH (mean \pm pooled SEM = 0.13) to i.v. administration of VEH and FTM080 (500 pmol/kg BW; FTM080:500). There was an effect of time (P = 0.0019) and an interaction for FTM080 by time for LH (P = 0.0009). * p < 0.05 vs. VEH. **b** Effect of i.v. administration of VEH and FTM080 (500 pmol/kg BW; FTM080:500) on AUC of LH concentrations from -60 to 0 min before (Pre-TRT) and from 0 to 60 min following treatment (Post-TRT) (mean \pm pooled SEM = 6.29). AUCs with different superscripts differ (p < 0.05).

Figure 2; Effect of i.v. KP-10 and FTM080, KISS1R agonist, on plasma LH concentrations in anestrous ewes (n = 4). **a** Response of circulating concentration of LH (mean \pm SEM) to i.v. administration of VEH (sterile water), KP-10 (500 pmol/kg), and FTM080 [500 (FTM080:500), 2500 (FTM080:2500), or 5000 (FTM080:5000) pmol/kg BW]. There was an effect of time (P < 0.0001) and an interaction of treatment and time (P < 0.0001) on plasma LH concentrations. * p < 0.05 vs. VEH. † p < 0.05 vs. FTM080:500. ° p < 0.05 vs. FTM080:2500. **b** Effect of i.v. administration of VEH (sterile water), KP-10 (500 pmol/kg BW), and FTM080:500, FTM080:2500, or FTM080:5000 on AUC of plasma LH concentrations from -60 to 0 min before (Pre-TRT) and from 0 to 60 min following treatment (1 hour Post-TRT) (mean \pm SEM). There was an effect of treatment (P < 0.0001), period [pre-treatment (-60 to 0 min); post-treatment (0 to 60 min); P < 0.0001], and an interaction of treatment and period (P < 0.0001) on area under the curve (AUC) of plasma LH concentrations. AUCs with different superscripts differ (p < 0.05).

Fig. 1A

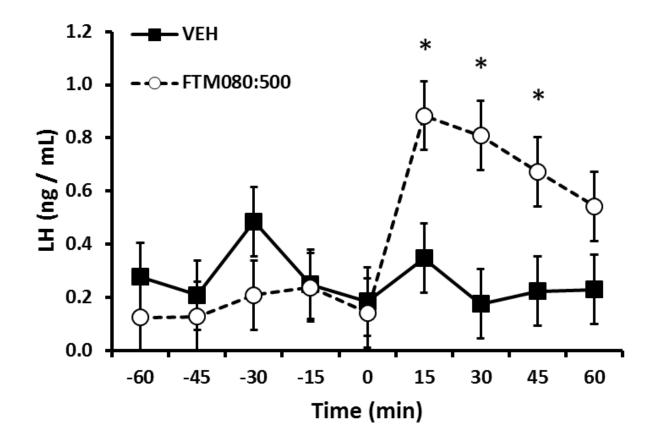


Fig. 1B

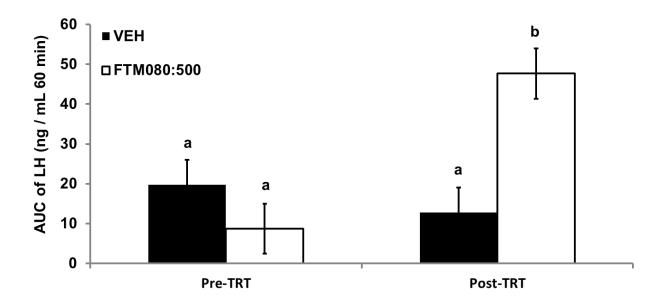


Fig. 2A

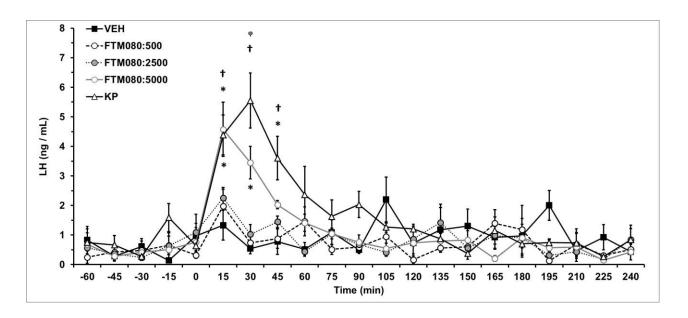
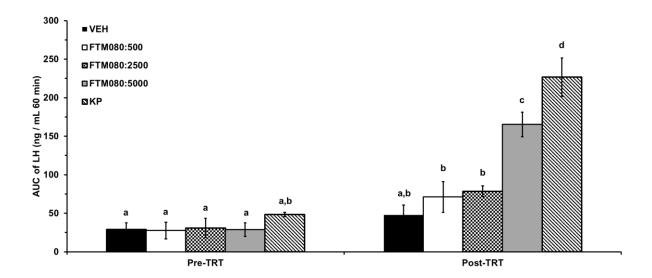



Fig. 2B

