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Abstract
Identifying discontinuities (or change-points) in otherwise stationary time
series is a powerful analytic tool. This paper outlines a general strategy for
identifying an unknown number of change-points using elementary principles
of Bayesian statistics. Using a strategy of binary partitioning by marginal
likelihood, a time series is recursively subdivided on the basis of whether
adding divisions (and thus increasing model complexity) yields a justified
improvement in the marginal model likelihood. When this approach is com-
bined with the use of conjugate priors, it yields the Conjugate Partitioned
Recursion (CPR) algorithm, which identifies change-points without compu-
tationally intensive numerical integration. Using the CPR algorithm, meth-
ods are described for specifying change-point models drawn from a host
of familiar distributions, both discrete (binomial, geometric, Poisson) and
continuous (exponential, Gaussian, uniform, and multiple linear regression),
as well as multivariate distribution (multinomial, multivariate normal, and
multivariate linear regression). Methods by which the CPR algorithm could
be extended or modified are discussed, and several detailed applications to
data published in psychology and biomedical engineering are described.

Keywords: bayesian statistics, change-point analysis, marginal likelihood,
model selection, time series analysis

Introduction1

The analysis of time series data is essential to most scientific disciplines. Given the2

ability to measure the behavior of an agent, we often wish to know how the measured be-3

havior changes over time. This is true whether that agent is a single neuron firing action4

potentials, a human participant making choices, or a central bank reporting GDP. Some-5

times, conditions do not change, and observations appear consistent (and display consistent6

variability); in other cases, change happens gradually and continuously, in a manner befit-7

ting a fitted line or curve. Modeling phenomena in these terms is the bedrock of empirical8

statistics.9

Correspondence should be directed to Greg Jensen by email at greg.guichard.jensen@gmail.com. Sup-
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MULTIPLE CHANGE-POINTS ESTIMATION 2
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Figure 1 . Reaction times from a single subject learning a psychophysical task, originally
reported by Palmeri (1997). The dashed line corresponds to a four-parameter “learning
curve,” reported by Heathcote et al. (2000), while the solid lines interpret the same data as
approximately linear, with two change-points.

Time series often contain abrupt shifts. For example, most learning, when examined1

on a trial-by-trial basis, is characterized by abrupt changes in behavior, rather than showing2

gradual progress. Instead, learning curves are often an averaging artifact, resulting from3

pooling across trials (or across subjects). Building robust descriptive models of individual4

behavior over time depends on identifying abrupt discontinuities, or change-points.5

For example, consider the data in Figure 1, collected by Palmeri (1997). It depicts6

reaction times from a single subject in a specific condition, as part of a cognitive study of7

psychophysical learning. In a re-analysis of these and other data, Heathcote et al. (2000)8

argued strongly in favor of a four-parameter pseudo-exponential function, whose best-fitting9

form is represented by the dashed line. This curve is problematic for two reasons. Firstly,10

a visual examination of the data suggests that two discontinuities (around trials 2,20011

and 4,400) mark sudden drops in reaction times, which may be of experimental interest12

but which the model is in principle incapable of identifying. Secondly, although the curve13

follows the overall shape of the data reasonably well, it includes a slight reversal in direction14

near the trial one, making the peculiar prediction that this participant is initially slowing15

down.16

If, on the other hand, the data are simply divided at the points algorithmically iden-17

tified as change-points, the resulting segments appear comfortably linear (as depicted by18

the solid lines). This is also reflected by the goodness of fit: the sum of squared residu-19

als is smaller for each of the identified segments. Breaking the data into segments is not20

merely convenient from a curve-fitting perspective: The discontinuities likely correspond to21

theoretically important ‘eureka’ moments in the participant’s learning. These data will be22
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MULTIPLE CHANGE-POINTS ESTIMATION 3

considered in more detail in a later section, but for now, they demonstrate an important1

issue in time-series analysis: Because different participants learn at different rates, and have2

insights at different times, group averaging conceals these moments and typically paints the3

erroneous picture of learning being gradual and continuous (a point argued in detail by4

Gallistel et al., 2004).5

Evidence for change-points can be found in time series at every level of interest.6

In the analysis of high-level systems, ‘structural changes’ have long been of interest to7

economics (Hansen, 2001) and other social sciences that focus on historical data (Western8

& Kleykamp, 2004). However, the importance of identifying change-points on shorter time-9

scales is increasingly evident. In neuroscience, change-point analyses have been proposed10

for electrophysiology (Bélisle et al., 1998) and state-related fMRI (Lindquist et al., 2007).11

In applied clinical and public health domains, a wide variety of ‘turning points’ are crucial12

to understanding long-term outcomes (Cohen, 2008).13

It is not sufficient, however, to manually select change-points, any more than it is14

to judge statistical significance by eyeball. Principled statistical tests are necessary to de-15

termine whether data require segmentation, where the change-points should be positioned,16

and how many divisions to make. Techniques of varying complexity have been developed for17

identifying change-points in a time series (Chen & Gupta, 2011), but change-point analysis18

as a domain is characterized both by its specialized focus and its technical complexity. Most19

published papers focus on a single facet of this general topic, doing so in great depth. As a20

result, change-point analysis is not typically presented in general terms, and digesting the21

change-point literature can be daunting for applied researchers.22

This paper first provides a basic foundation for understanding the Bayesian logic on23

which it depends. The, it describes a straightforward approach called the binary partition24

by marginal model likelihood strategy, which combines divide-and-conquer design with el-25

ementary Bayesian reasoning. This approach is implemented as the Conjugate Partitioned26

Recursion (or “CPR”) algorithm, which relies on conjugate prior probability distributions.27

The CPR algorithm uses closed-form arithmetic to identify change-points rapidly using a28

minimal number of arbitrary parameters. Because it relies on neither bootstrapping nor29

numeric integration, it is able to process large, multivariate datasets rapidly.30

A Brief Review31

In order to use any statistical tool effectively, it is essential that the analyst understand32

how that tool works. Unfortunately, many readers will have only passing familiarity with33

some of the mathematical machinery that makes the CPR algorithm effective. In the interest34

of making the operations of the algorithm as clear as possible to as many readers as possible,35

the following review of core concepts is presented. While all readers are encouraged to36

reacquaint themselves with these topics, those who wish to proceed directly to the discussion37

of the CPR algorithm itself will find it beginning in the section entitled ‘The Conjugate38

Partitioned Recursion Algorithm.’39

Bayes’ Theorem: A Machine For Priors40

To answer the question, “Should these data be partitioned by a change-point?” the41

partitioning algorithm begins with Bayes’ Theorem. Given a prior assumption that the42
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MULTIPLE CHANGE-POINTS ESTIMATION 4

data should conform to a model M , a probability distribution is specified describing the1

probability that the data arise from parameters θ. The purpose of the theorem is to update2

probability distribution over the parameters θ as a result of having made the observations3

x. This operation is commonly represented as follows:4

Pr (θ|x,M) = f (x|θ,M) Pr (θ,M)
m (x,M)

where

m (x,M) =
∫
θ
f (x|θ,M) Pr (θ,M) dθ

(1)

The prior probability distribution is denoted by Pr (θ,M), and represents the distribution5

associated with the parameters θ at the outset, given model M. The function f (x|θ,M)6

represents the likelihood of obtaining the observations x given model M with parameters θ.7

Convolving these distributions does not typically result in a true probability distribution8

(that is, the integral rarely equals 1.0), so the result must be divided by a normalizing con-9

stant, represented by m (x,M), in order to obtained the posterior probability distribution,10

denoted by Pr (θ|x,M). This posterior distribution represents the updated probability after11

the observations are considered. More details on power of this approach are provided by12

Chib (1998) and by Gelman et al. (2003).13

Practical application of Bayes’ Theorem requires a formal specification of prior as-14

sumptions. The shape of the prior distribution Pr (θ,M) represents the existing evidence15

available to the analyst. Even when no empirical observations are available, this prior must16

be specified. A typical approach is to imagine a distribution derived from “hypothetical”17

observations. For example, if x consists of a series of die rolls, resulting in the numbers one18

through six, one might ask the question, “How likely is this die to roll a six?” If the die19

is fair1, it should show six with a probability of 1
6 , so we might imagine five hypothetical20

failures and one hypothetical success. These hypothetical successes and failures are our21

prior hyperparameters: hypothetical failures are denoted by α0 and hypothetical successes22

by α1. Thus, we might begin by assuming α0 = 5 and α1 = 1.23

This is an example of a ‘subjective’ prior, because the values for α0 and α1 are left24

to the analyst’s discretion. Given high confidence in a fair die, a stronger prior might use25

α0 = 25 and α1 = 5, the equivalent of thirty hypothetical observations (which, again, are26

assumed before the die is ever actually rolled). Alternatively, a more agnostic (or “weak”)27

prior might use α0 = 1 and α1 = 1. The weaker the prior, the less its assumptions influence28

the subsequent calculation. Because Pr (θ,M) is a probability distribution, we do not have29

a ‘known’ value for θ. Instead, the relative weight of the possible values of θ are described30

by a beta distribution whose shape is defined by the prior hyperparameters, as depicted31

in Figure 2 (Left). As implied by the figure, the beta distribution supports the interval32

between 0 to 1, and represents our uncertainty about a simple probability. The thick red33

line represents the ‘weak’ prior, and it assigns even odds to any probability over the interval.34

The two stronger priors have converged somewhat towards the expected probability of a35

fair die, and these reflect greater confidence that p (six) = 1
6 .36

1This example reduces the die roll to the binary pairing “not 6” vs. “6” in the interest of simplicity. To
ask whether the die is fair in general, the example may be extended to a multinomial case that models each
of the six possible outcomes.
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Figure 2 . Prior hyperparameters α0 and α1 (left) and posterior hyperparameters α′0 and
α′1 for the beta distribution given three different prior distributions and the same empirical
observations. See Equation 2 and the Supplement for details.

With priors in hand, the die is rolled 100 times, and the outcome is 20 sixes. Now1

that observations have been collected, the prior may be updated to obtain the posterior2

hyperparameters, which are distinguished by an apostrophe. These consist of the actual3

observations plus the hypothetical ones. Thus, if we set the prior hyperparameters α0 = 54

and α1 = 1, then our observations result in the posterior hyperparameters α′0 = 80+α0 = 855

and α′1 = 20+α1 = 21. Using these updated values, the posterior probability of a parameter6

θ can be calculated, again using the beta distribution, as depicted in Figure 2 (Right). The7

process of updating the prior probability distribution using empirical evidence to obtain a8

posterior probability distribution is the heart of Bayesian analysis (although, depending on9

the model M , doing so is often more complex than adding up successes and failures).10

On the one hand, this example demonstrates that the choice of the prior initially has11

a dramatic effect on the hypothesized distribution of θ before any data was collected (given12

how different the curves in Figure 2 (Left) appear). On the other hand, the influence of the13

prior diminishes towards infinitesimal as additional observations are made. When using a14

subjective Bayesian approach2, many analysts prefer “weak” prior, such as α0 = α1 = 1,15

because such priors have an “anything could happen” flavor and do not have a determining16

effect on the shape of the posterior distribution.17

In an important way, however, even a very weak prior does not imply that anything18

could happen. At one point in the satirical novel, The Colour of Magic (Pratchett, 1983),19

the protagonist wishes to demonstrate that his companions are trapped in a strong magical20

field where familiar physical laws are invalid. He offers to predict the outcome of a coin21

toss, and while the coin is in mid-air, he calls, “Edge.” He succeeds in calling Edge four22

times, but is incorrect on the fifth flip because the coin transforms into a caterpillar and23

crawls away.24

This whimsical example demonstrates how prior assumptions are constrained to those25

outcomes permitted by the model M . A conventional model of coin-flipping allows no26

possibility for the third outcome Edge or a fourth outcome Caterpillar (and rightly so).27

Unfortunately, empirical observation almost never conforms precisely to a well-established28

distribution, so an analyst must not only consider prior observations, but also justify their29

2The alternative school of “objective Bayesian analysis” takes a different view, rejecting subjective pri-
ors, however weak, and instead favoring “non-informative priors” that minimally influence the posterior
distribution. This approach is revisited in a later section.
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MULTIPLE CHANGE-POINTS ESTIMATION 6

choice of which distribution describes the phenomenon under examination. For example,1

Mandelbrot & Hudson (2006) argue that many of the “discontinuities” in the behavior of2

the stock market arise from the mistaken assumption that market behavior should conform3

to a Gaussian distribution when, in fact, the true distribution appears to have much heavier4

tails.5

Even rigorous model fitting can be dangerous without theoretical support. For ex-6

ample, prior to the subprime crisis, risk models for mortgage-backed securities concluded7

that default rates were Poisson distributed, rather than belonging to a more complex family8

of models that allowed “contagion” (i.e. interdependence between outcomes) (Longstaff &9

Rajan, 2008). These results depended on data collected during the US housing bubble of10

the 1990s and 2000s, during which time housing prices steadily rose. When housing prices11

began to fall in approximately 2007, rising contagion resulted in much higher rates of de-12

fault than a Poisson model predicted were possible (Das et al., 2007; Silver, 2012). As such,13

although the Poisson distribution was appropriate to the pattern of defaults during the14

housing bubble, it grossly underestimated the possible rate of default under other economic15

conditions, which resulted in a systematic failure to hedge against losses correctly. This16

reflects an often under-appreciated aspect of statistical forecasting: The model M must17

reflect the range of outcomes and model parameters that are theoretically plausible, rather18

than being selected only because it best fits the current sample.19

Conjugate Priors20

Evaluating the posterior odds in Equation 1 is often prohibitive, even when the prob-21

lem can be precisely specified. The most difficult operation is generally estimating the22

value of m (x,M). In many cases, even when the distributions are well-defined, the product23

f (x|θ,M) Pr (θ,M) cannot be integrated across all values for θ, particularly if Pr (θ,M) is24

improper (that is, when the area under the curve is not finite). There is no guarantee of a25

closed-form solution for the value m (x,M).26

A major advance in the practical use of Bayesian statistics was accomplished by27

Raïffa & Schlaifer (1961), who observed that, in many cases, the posterior distribution28

Pr (θ|x,M) belonged to the same family as the prior distribution Pr (θ,M). Furthermore,29

these conjugate priors often possess closed-form solutions. Provided one is willing to select30

M from a particular set of distributions, then estimation of all functions in Equation 131

becomes straightforward.32

Consider the die rolling example depicted in Figure 2. Given the prior hyperparame-33

ters α0 = 1 and α1 = 1, and the observation that a six was rolled 20 times out of 100 throws,34

we would like to calculate the posterior probability that the die is fair, such that θ = 1
6 .35

Doing so requires computing the values of each of the elements in Equation 1. In this case,36

the conjugate relationship identified by Raïffa & Schlaifer hinges on the Beta function:37

Pr (θ,binom) = θα1−1(1−θ)α0−1

Beta(α0,α1)

Pr (θ|x,binom) = θα
′
1−1(1−θ)α

′
0−1

Beta(α′0,α′1)
where Beta (α0, α1) = (α0 − 1)! (α1 − 1)!

(α0 + α1 − 1)! (2)

Here, α′0 and α′1 are the hyperparameters previously identified, based on combining observed38

and hypothetical successes and failures. Because both depend only on the data and not on39

the parameter θ, it follows that m (x,binom) = Beta (α′0, α′1), which is trivial to evaluate.40
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MULTIPLE CHANGE-POINTS ESTIMATION 7

Since the publication of Raïffa & Schlaifer (1961), conjugate priors have been identified1

for a wide range of probability distributions. In cases where closed-form solutions exist for2

m (x,M), an analyst can use the sufficient statistics3 describing the observations x and a3

set of prior hyperparameters αi to estimate the corresponding posterior hyperparameters4

α′i; those posterior hyperparameters can be used to evaluate m (x,M).5

Many statisticians on the cutting edge of Bayesian analysis see conjugacy as a crutch6

that can be set aside in favor of emerging computational techniques (Samaniego, 2012). The7

most notable of these is the family of techniques known collectively as Markov Chain Monte8

Carlo (MCMC) methods (Gamerman & Lopes, 2006). In practice, however, such techniques9

are computationally intensive. Many large datasets remain prohibitive to work with, and10

not all analysts have access to high-powered computers. Furthermore, the intricacies of11

implementing MCMC and other numerical integration methods (and the risk of applying12

them incorrectly) will dissuade many researchers from developing those skills. When non-13

stationary data render more familiar techniques inappropriate, the ‘clever trick’ of conjugacy14

is a crutch worth keeping. The CPR takes its name from this clever trick, as its proposed15

implementation takes advantage of conjugacy to compute results rapidly.16

Subjective vs. Objective Bayes17

Becoming acquainted with theoretical and applied Bayesian statistics can be intimi-18

dating for a variety of reasons. A major impediment for Bayesian neophytes is the ongoing19

debate over “subjective” vs. “objective” Bayesian methods (Goldstein, 2006; Berger, 2006,20

respectively).21

As noted in Equation 1, the analyst must specify a prior, reflecting “past evidence”22

in some fashion. As shown in Figure 2, a change in the prior probability distribution23

necessarily influences the posterior probabilities, and critics are (often rightly) suspicious24

that this “subjectivity” creates an opportunity for abuse. Some alternatives are “objective”25

methods that, roughly, correspond to conditions in which prior assumptions are absolutely26

minimal. Many different varieties of minimally informative priors have been proposed (e.g.27

‘Jeffreys priors,’ Jeffreys, 1961). Among the more recent are reference priors (Bernardo,28

2005). A reference prior requires that an analyst specify the model M , but does so without29

any ‘hypothetical’ observations4.30

Unfortunately, working with objective priors is routinely challenging. Most such31

priors are improper, even when they result in proper posterior distributions. Additionally,32

most are not conjugate and must be computed using numerical integration techniques. The33

use of reference priors is especially problematic for distributions with more than one free34

parameter. A given model may possess multiple priors that each qualify as ‘objective’ in a35

mathematical sense, but nevertheless yield diverging outcomes (Klauenberg & Elster, 2012).36

The decision of which ‘objective’ prior to use in these cases remains subjective with respect37

3The sufficient statistics required to update the hyperparameters differ from one distribution to the
next. They are sometimes, but not always, “hypothetical observations” like those in the die-rolling example.
Selection a reasonable prior depends on understanding the relationship between the sufficient statistics and
the hyperparameters, which are laid out in explicit detail in the Supplement.

4A more precise definition is that a reference prior should be the “maximally uninformative” distribution
of shape M , measured in terms of how far its entropy diverges from those described by other parameters.
Thus, a properly-specified reference prior is maximally divergent from all possible posterior distributions.
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MULTIPLE CHANGE-POINTS ESTIMATION 8

the analyst’s preference. Put another way, a prior can never be truly ‘uninformative,’ only1

minimally so.2

Objective priors may also find support for model parameters that are in practice3

impossible. For example, given the limits of a thermometer’s precision, measurements4

taken at several consecutive times might appear identical. When presented with such data,5

a reference prior (being unaware of the possibility of a limit in the instrument’s sensitivity)6

might yield the result that the best possible model consists of frequent changes, with many7

of the corresponding variance parameters equal to zero, suggesting infinite precision.8

Several objective Bayesian methods that do not rely on improper priors have been9

developed, including “Bayes factor approximation” using information criteria (Wasserman,10

2000) and the use of “intrinsic priors” sampled systematically from the observed data11

(Berger & Pericchi, 1996). The intrinsic prior approach is applied to change-point analysis12

specifically by Girón et al. (2007). Both of these methods, in principle, permit closed-form13

approximation of non-subjective posterior distributions, albeit given considerable compu-14

tation. However, because they are approximation methods, they display instability when15

applied to small sample sizes, which makes them ill-suited to the demands of change-point16

analysis (which may need to divide data into small segments).17

Although objective Bayesian methods may represent “best practices” when their use18

is reasonable (Wagenmakers, 2007), they also represent a departure from the fundamen-19

tally probabilistic character of orthodox Bayesian analysis (Samaniego, 2012). Put another20

way, it is very rare for an experiment to be performed without some expected constraints21

on the observations. Gelman (2006) argues that reference priors are best understood as22

“provisional” priors to be updated (or, indeed, abandoned) as observations are accrued.23

Insisting on a strict adherence to an idealized standard of ignorance is often not a24

sensible position if doing so means entertaining obviously absurd hypotheses. Although the25

CPR algorithm may be implemented using objective priors, doing so is likely to be compu-26

tationally intensive, or to yield nonsensical results, or both, particularly when considering27

very small subsets near the edges of the data. Most empirical data (being collected within28

practical and theoretical constraints) are better-served by a reasonable weakly informative29

subjective prior (Van Dongen, 2006). The challenge is to distinguish reasonable priors from30

unreasonable ones.31

Subjective Prior Selection32

In many cases, very weak prior yield results that are nearly indistinguishable from33

those based on objective priors, while also being conceptually straightforward and computa-34

tionally efficient. For example, using the function Beta (1, 1) as a prior for binary outcomes35

has the advantage that its integral is proper. One may also, however, use the function36

Beta (0.5, 0.5) as an even weaker prior whose integral is proper under very mild conditions37

(Beta (0.5, 0.5) is, in fact, the reference prior for the binomial model, a very rare case in38

which a reference prior is both proper and conjugate). For either of these priors, however,39

the biasing influence on the posterior distribution rapidly diminishes once observations have40

begun to be collected, as seen in Figure 2.41

However, some distributions are much more powerfully influenced by their priors,42

particularly those whose prior hyperparameters are unbounded. For example, the conjugate43
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MULTIPLE CHANGE-POINTS ESTIMATION 9

prior for a Gaussian distribution’s µ parameter is also Gaussian, with hyperparameters5 µµ1

and σµ. Because µ can have real value, there is no “default” value that can be assigned to its2

conjugate prior. In a case where observations fall in a range between 5000 and 6000, using3

µµ = 0.0 as a prior hyperparameter has the effect of introducing a massive outlier to every4

attempt to calculate the posterior hyperparameters. For these reasons, it is important to5

select a subjective prior with reasonable hyperparameters. In some cases, reasonable priors6

can be inferred from prior data; more controversially, they may be “elicited” from expert7

opinion (Oakley & O’Hagan, 2007)8

In the Supplement, each of the conjugate prior implementations includes a “rule-of-9

thumb” subjective prior derived from the data being analyzed, which can be used as a default10

value. This approach is an ‘empirical Bayes method,’ (Casella, 1985) and represents a11

compromise between the standard logic of Bayesian calculation and the practical limitations12

of experimentation. In the example above where observations x fall in the range 5000 <13

x < 6000, setting µµ = median (x) would be more appropriate than µµ = 0.0.14

Empirical Bayes methods have become popular in recent years, as a result of more15

robust (albeit computationally intensive) parameter estimation procedures (Carlin & Louis,16

2000). Nevertheless, their use remains controversial, because a statistic derived from the17

observations is used to validate those same observations (Gelman, 2008). The use of in-18

dependently obtained priors avoids this sort of “double dipping.” It would be acceptable,19

for example, to use the rule-of-thumb prior calculated from pilot data in the analysis of a20

subsequent experiment. Empirical priors may also be used reliably when the dataset from21

which they are extracted is sufficiently large (Efron, 2010). Finally, rule-of-thumb priors22

can be helpful in developing intuitions about the forms the prior might take. Even when23

not used directly, an empirical prior distribution provides an idea of the form a reasonable24

prior is likely to take. Regardless of its origin, an analyst must report which prior was used,25

along with a justification for that prior.26

Maximum Likelihood, Marginal Model Likelihood, and Bayes Factors27

In Bayesian analysis, no single model has privileged status (there is not a canonical28

“null hypothesis,” for example, Gallistel, 2009). Instead, models are compared in terms29

of their relative odds of being true given the evidence and the prior assumptions. This30

is a substantial departure from the “frequentist” approach that is characterized by null-31

hypothesis significance testing (Wagenmakers, 2007).32

Many forms of parametric analysis are maximum likelihood estimation (or MLE)33

procedures. Given data and a model, MLE procedures call for the selection of whichever34

parameters have the highest likelihood. Often, these methods rely on theorems. For ex-35

ample, the central limit theorem provides a proof that the ‘maximum likelihood estimator’36

for the population mean is the arithmetic average, and that the expected distribution of37

sample means converges on Gaussian.38

However, MLE has its shortcomings. One problem is that both data and density39

functions of possible parameter values are often multi-modal: The maximum likelihood40

estimator might be quite different from the second-best candidate, and may not approximate41

any modal values in the data. Multi-modal distributions are more common in complex42

5These hyperparameters correspond to the ‘standard error of the mean,’ such that µµ = µ and σµ = σ√
n
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MULTIPLE CHANGE-POINTS ESTIMATION 10

models whose parameter space includes more than dimensions than can easily be visualized,1

as well as when the independent measures are influenced by hidden variables.2

MLE procedures are also vulnerable to overfitting because they are biased towards3

higher model complexity (Myung & Pitt, 1997). All else being equal, the maximum likeli-4

hood associated with a model with four free parameters will consistently be higher than one5

with three parameters. As Enrico Fermi famously quipped, “With four parameters I can fit6

an elephant, and with five I can make him wiggle his trunk” (Dyson, 2004), implying that7

any model can appear superficially valid with a sufficiently large parameter space, regardless8

of that model’s theoretical justification or later predictive strength. For example, Chen &9

Gupta (2011) describe a variety of frequentist change-point methods, and consistently find10

that the maximum likehoods rise when additional change-points are added. This introduces11

the additional difficulty of developing significance tests to determine whether the models12

have improved more than expected by chance alone.13

An alternative approach to model selection is to compare marginal model likelihoods14

(or MML) (Wasserman, 2000). This approach judges the efficacy of a particular class of15

model without considering any specific parameters for that model. Rather than favoring the16

model with the tallest peak, an MML approach favors the model with the highest average17

altitude. Put another way, the MML favors the model whose likelihood maximizes the18

integrated volume of the likelihood function6.19

Figure 3 conveys this intuition visually. Given 20 observed binary outcomes, it is20

straightforward to calculate the likelihood of obtaining 10 successes and 10 failures, and to21

estimate that the overall probability of success θ is most likely to be 0.5 (Figure 3 Left).22

However, splitting the data into the first ten observations vs. the second ten (perhaps to test23

whether a change-point divides them) entails an increase in model complexity, because two24

different parameters θ1 and θ2 are now needed. If splitting the data results in two subsets25

of data that display a 6:4 ratio of success, then the split increases the maximum likelihood26

but reduces the marginal model likelihood (Figure 3 Center). Under these circumstances,27

it would be unjustified to split the data. However, if the split reveals an 8:2 ratio of success,28

a dramatic increase in the marginal model likelihood is observed (Figure 3 Right). When29

comparing these three scenarios, a two-parameter model is only justified when its volume30

under the curve is larger than that of the one-parameter model, both of which are obtained31

by integrating across possible values for the parameters.32

The function m (x,M) in Equation 1 is precisely such an integral, and its value may33

either be solved for (if a closed-form solution exists) or estimated numerically. If m (x,M)34

can be estimated, a Bayes factor (Kass & Raftery, 1995) can be computed. Bayes factors35

can be interpreted as the ratio of support for M1 relative M2, regardless of the MLE36

parameters associated with either model. They may be calculated by comparing the MML37

of two models:38

K =
∫

Θ1
f (x|θ1,M1) Pr (θ1,M1) dθ1∫

Θ2
f (x|θ2,M2) Pr (θ2,M2) dθ2

= m (x,M1)
m (x,M2)

(3)

The MML is computed for two models, M1 and M2, given the observations x. When M139

6Formally, the MML maximizes its Lebesgue measure with respect to the specified prior.
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Figure 3 . Likelihood as a function of the probability θ for the binomial distribution, given
20 observations, consisting of 10 success and 10 failures. Darker areas indicate higher
relative likelihoods. (Left Panel) When a single parameter is used to describe the data, the
maximum likelihood estimator is θ̂ = 10

20 = 0.5. (Center Panel) The first ten observations
and the second ten observations are examined independently, and assigned their own MLE
parameters θ̂1 = 4

10 = 0.4 and θ̂2 = 6
10 = 0.6. This increase in model complexity improves

the maximum likelihood, but also results in a smaller (and therefore less favorable) marginal
model likelihood than that observed for the one-parameter model. (Right Panel) If splitting
the observations into two groups instead reveals that θ̂1 = 2

10 = 0.2 and θ̂2 = 8
10 = 0.8, this

results in greater maximum and marginal model likelihoods. All estimations in this figure
assume the prior hyperparameters α0 = α1 = 1. On the basis of these results, choosing
a two-parameter model is justified in the scenario depicted in the right panel, but not for
the center panel, despite both having higher maximum likelihoods than the one-parameter
model in the left panel.

is more complex than M2, but also provides a better fit to the data, the Bayes factor K1

is an estimation of the relative odds of each model, given the evidence. For example, in2

Figure 3, the Bayes factor favors the one-parameter model in the 6:4 case (K = 0.73), while3

the two-parameter model is favored in the 8:2 case (K = 15.8).4

A major advantage of the MML approach to model selection is that parsimony is5

automatically factored into the calculation. This is because models with more free parame-6

ters must distribute their unit mass of prior probability over a larger number of dimensions7

(Gallistel, 2009). All else being equal, each additional parameter lowers the MML by an8

order of magnitude. This severely penalizes models with excessive complexity. MML meth-9

ods favor models that balance the goodness of fit against the watering-down effects of its10

complexity.11

The Conjugate Partitioned Recursion Algorithm12

Conjugate Partitioned Recursion uses conjugate priors to evaluate m (x,M) for mod-13

els with and without a change-point, and recursively subdivides the data until none of14

the resulting segments appear to possess further change-points. The Supplement lists con-15

jugate priors and corresponding hyperparameters for four discrete distributions (binomial,16

geometric, Poisson, and multinomial), four continuous distributions (exponential, Gaussian,17

uniform, and multivariate Gaussian), and linear regression (single and multiple). These may18
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MULTIPLE CHANGE-POINTS ESTIMATION 12

all be used as the basis for inferring the location of change-points using the CPR algorithm.1

Binary Partition by Marginal Model Likelihood2

The central problem in change-point analysis is parsimonious model selection. An3

algorithm that identifies too many change-points will slice a dataset into unusably small4

chunks with little predictive power, while an overly conservative algorithm will miss mean-5

ingful events. Effective change-point analysis must strike a balance between these extremes.6

Unfortunately, it is functionally impossible to systematically examine every possible7

subdivision of the data. In a dataset with 100 observations, for example, there is 1 model8

with no change-points and 99 models with one change-point, a feasible set of possibilities.9

There are, however, 4851 models with two change-points and 156849 models with three10

change-points, a factorial progression. Because exhaustive testing of every combination is11

out of the question, attention must instead focus on models that seem sufficiently plausible12

to merit evaluation.13

In most data, however, the number of points that are reasonable candidates for14

change-point status are a tiny subset, and any change-point identified by an algorithm15

seeking a single change is highly likely to also be selected in an analysis seeking two or16

more changes. This provides the grounds for a recursive process: Once a change-point is17

identified, the data is divided into two segments on either side of that change, and each of18

these can then searched for their own ‘best’ change-points, repeated until none of the re-19

sulting segments appear to possess any further changes. Divide-and-conquer methods were20

first proposed as a means partitioning data on the basis of change-points by Vostrikova21

(1981), who demonstrated that such a strategy was computationally efficient . This compu-22

tational efficiency makes it attractive to those designing algorithms that identify multiple23

change-points (Chen & Gupta, 2011).24

In practice, the challenge is to statistically infer which point (if any) is most likely to25

be a change-point. Both the decision of whether to partition the data and where to make26

the split can be determined by estimating the MML for models with and without a change.27

Determining Whether To Partition The Data28

In order to determine whether to partition the data, a model comparison must pit the29

one-change model C1 against the no-change model C0. In both cases, the data are assumed30

to arise from a distribution M that has unknown parameters θ at times7 (1 . . . n). The31

marginal model likelihood of C0 follows from Equation 1:32

m
(
x(1:n), C0

)
= m

(
x(1:n),M(1:n)

)
(4)

In this and all subsequent equations, subscripts in parentheses refer to indices. For example,33

x(1) refers to the first datum in x, while x(i:j) refers to the vector of all observations from34

datum i to datum j. Thus, x(1:n) denotes the complete time series from observation 1 to35

observation n, and M(1:n) denotes the distribution M over that data range.36

The change-point model C1 presumes that a change-point splits the observations into37

two ranges, x(1:c−1) (before the change) and x(c:n) (after the change), each with its own38

7Here, the intervals between observations are presumed to be uniform; the non-uniform case is discussed
below
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MULTIPLE CHANGE-POINTS ESTIMATION 13

parameters for distribution M . The marginal model likelihood of C1 is the average8, given1

every interval (c − 1 : c), of the product between the model before the change and the2

product after the change:3

m
(
x(1:n), C1

)
= 1
n− 1

n∑
c=2

m
(
x(1:c−1),M(1:c−1)

)
m
(
x(c:n),M(c:n)

)
(5)

Given these values, the Bayes factor for whether the data favor including a change-point is4

a simple ratio:5

K = m (x,C1)
m (x,C0) (6)

The Bayes factor shows the relative likelihood for two hypotheses: Either a single change-6

point exists, or no change-points exist. The Bayes factor alone does not, however, indicate7

the posterior odds that one model or the other is true. Consistent with Equation 1, the8

likelihood ratio is just one part of the equation, and a prior probability must be specified9

that indicates how likely a change is expected to be.10

The prior probability of a change at any given time is denoted by pc. Since there11

are many possible locations at which a change might have occurred, two cumulative prior12

probabilities must be calculated. The first, p0, is the probability that no change-points are13

observed across the entire data range; the second, p1 is the probability that exactly one14

change-point is observed. These can be modeled by Poisson distributions, which describe15

the probability of rare events with many opportunities to occur. The prior probability ratio16

is then multiplied by the Bayes factor to calculate the posterior probabilities ratio between17

p′0 and p′1:18

p′1
p′0

= K · p1
p0

= K · Poiss (1, pc (n− 1))
Poiss (0, pc (n− 1)) = K · pc (n− 1) (7)

If p
′
1
p′0
> 1, then the evidence favors C1; otherwise, it favors C0. When p′1

p′0
≈ 1, the evidence19

supporting either model is approximately equal. It is important to model the odds of20

exactly one change-point (rather than, say, the odds of any number of changes) to match the21

MML m (x,C1). Because m (x,C1,2,···) is computationally prohibitive, the binary partition22

strategy only considers single change hypotheses at each stage of its recursion, and this23

approach must be consistent when setting p1
p0
.24

In the absence of a strong theoretical case for a particular value for pc, a good default25

value is pc = 1
n−1 because this indicates even odds. This is a relatively conservative prior,26

however, and as change-points are discovered, its value should be relaxed, as described27

below.28

It is advisable to specify a decision criterion τ > 1, and to partition the data only when29
p′1
p′0
> τ . Because binary partitioning is a recursive process, data with many change-points30

must be divided into many small, noisy segments with some percentage of false positives.31

This introduces a stopping problem: Each false positive drives further subdivision of the32

8The act of averaging fulfills two functions: It converts the interval between t = 1 and t = n to a
unit length, and it then takes the sum of the discretized intervals in that space. This marginalizes the
likelihood with respect to all possible positions of the change-point. The consequences of this interpretation
are revisited in the section entitled “Biased MML Estimation in Small Samples.”
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MULTIPLE CHANGE-POINTS ESTIMATION 14

data, creating more opportunities for false positives. However, each false negative terminates1

investigation of a particular segment.2

The traditional interpretation of Bayes factors is that those in the range 3 < K < 103

are ‘substantial’ and 10 < K < 30 are ‘strong,’ whereas any value for K > 100 is considered4

‘decisive’ (Jeffreys, 1961). The choice of a decision criterion depends on the main objective of5

the analysis: A primarily descriptive model can entertain a criterion as low as 3 (introducing6

some risk of overfitting), while a very strong theoretical test might use a criterion as high7

as 100. Henceforth, this paper uses the decision criterion τ = 10 unless otherwise indicated.8

When probability distributions are well-defined, an analyst seeking the optimal de-9

cision criterion can perform an approximate sensitivity analysis by computing the log-10

likelihood of all observations and comparing the change-point models identified using dif-11

ferent decision criteria in terms of the Schwarz-Bayes Information Criterion (SBIC), which12

provides a computationally straightforward estimate of the marginal model likelihood for13

the entire time series (Schwarz, 1978). A demonstration sensitivity analysis is provided in14

the Supplement. On the basis of that analysis, τ = 10 performs reasonably well in all cases.15

Determining Where To Partition The Data16

In the event that p′1
p′0

> τ , the strength of the evidence supporting each possible17

change-point must be compared. To do this, we may rewrite Equation 6 in the following18

way:19

K =
n∑
c=2

m
(
x(1:c−1), C0

)
m
(
x(c:n), C0

)
(n− 1) ·m

(
x(1:n), C0

)
=

n∑
c=2

k(c)
n− 1 where k(c) =

m
(
x(1:c−1), C0

)
m
(
x(c:n), C0

)
m
(
x(1:n), C0

)
(8)

That is, the Bayes factor K is the average (for all possible change-points c) of a series of20

individual odds ratios
(
k(2), . . . , k(n)

)
. Provided the evidence favors identifying a change-21

point, the best candidate available is given by:22

ĉ = c when k(c) = max
(
k(2), . . . , k(n)

)
(9)

The estimated change-point ĉ represents the first trial c to take place after a change, and23

it is determined by identifying the interval k(c) whose odds ratio is the largest value in the24

series
(
k(2), . . . , k(n)

)
.25

Once a change-point has been identified, the process described above may be recur-26

sively applied to the subsets of data on either side of the change. Once the algorithm27

concludes that there are no further change-points to be identified, all that remains is to28

estimate the model parameters for each resulting segments of observations.29

Non-Uniform Event Times30

The computation of any MML, whether it be the no-change model m (x,C0) or the31

single-change model m (x,C1), consists of an integration across all possible models. This32
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Figure 4 . An example of uniform vs. non-uniform segmentation. (Left) In the uniform case,
each segment of time is an equally strong candidate for a putative change-point. In this
example, the nine segments each have a common weight of 1

9 . (Right) In the non-uniform
case, a change-point is presumed to be located somewhere between t(1) and t(10), and if any
point along that interval is as likely as any other, then longer segments are correspondingly
more likely to contain change-points.

includes the act of averaging the product of two models in Equation 5. Note that the1

indices 1 . . . n are not discrete points, but rather are regularly delimited intervals of time.2

If a change-point is identified “at index c,” that means, in practice, that a change-point is3

likely to have occurred somewhere between index c − 1 and index c. Without more fine-4

grained data, the analysis offers no further insight about when the change occurred within5

that interval. This is illustrated by Figure 4 (left), in which ten observations x(1) to x(10)6

appear at uniform intervals.7

Figure 4 (right) presents a different case, in which each observation x(i) took place8

at a time t(i). Since the single change-point analysis treats the span from t(1) to t(n) as a9

uniform interval within which a change might occur, the probability of a change-point being10

located in segment c is equal to (t(c)−t(c−1))
(t(n)−t(1)) , hereafter abbreviated by T(c). With this mind,11

we can update Equation 8 to accommodate the uneven intervals:12

K =
n∑
c=2

k(c) · T(c) where T(c) =
t(c) − t(c−1)
t(n) − t(1)

(10)

Since the Bayes factor now assigns a different weight to each of the individual odds ratios,13

this weight must be taken into consideration when selecting which segment of the time-series14

is most likely to contain the change-point:15

ĉ = c when
[
k(c) · T(c)

]
= max

([
k(2) · T(2)

]
, . . . ,

[
k(n) · T(n)

])
(11)

This formulation is fully general given the assumption of uniform probability, with regular16

inter-event intervals as a special case.17

Biased MML Estimation in Small Samples18

Although Equation 10 gives the appearance of weighing each point in time equally,19

this is not the case in practice. Figure 5 (left) displays the values for log
(
k(c) · T(c)

)
at20

each observation c in the sequence [0, 1, 0, 1, · · · , 0, 1], as computed using Equation 10 and21

assuming a binomial distribution. Although there is no signal in the data, the values of22
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Figure 5 . Values of log
(
k(c) · T(c)

)
given 100 binary observations [0, 1, 0, 1, · · · , 0, 1] both

uncorrected (left) and corrected (right). The dashed line represents the boundary between
evidence favoring a change at time (positive) vs. evidence against (negative) at event c.

log
(
k(c) · T(c)

)
are nevertheless closer to 0.0 at the edges of the sequence than they are in1

the center.2

The inflated ratios near the edges of a segment indicate a distortion in the estimate of3

model complexity for the one-change model C1 relative to the no-change model C0. Since4

the model C1 consists of two distributions (each with p unknown parameters), it should be5

lower by a consistent amount unless a discontinuity is present in the data.6

The degree of difference is approximated by the SBIC (Schwarz, 1978), which esti-7

mates the marginal likelihood:8

m (x,M) ∝̃f (x|θ,M)
( 1
n

)p/2
(12)

From this approximation, it follows that:9

k(c)∝̃
f
(
x(1:c−1)|θ, C0

)
· f
(
x(c:n)|θ, C0

)
f
(
x(1:n)|θ, C0

) (
n

(c− 1) · (n− c+ 1)

)p/2
(13)

The distortion predicted by formulation matches the shape of the bias observed in Figure 510

(left) precisely.11

Since introducing a second distribution effectively adds p parameters to the model,12

without changing the number of observations, any given ratio k(c) should be expected to13

have a value of
(

1
n

)p/2
if the data contain no change. Without a correction, however, values14

for k(c) close to the edges of a segment get much closer to 1.0, which introduces a substantial15

risk of false positives.16

With these considerations in mind, a ‘Schwarz-Bayes correction’ for the value of17

log
(
k(c)

)
is denoted by SB(c), and is obtained from an integral over the relevant inter-18
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Figure 6 . Values of log
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)
given 1000 randomized Gaussian observations

(µ = 0, σ = 1), representing data in the range ±z = 3.3 both uncorrected (left) and cor-
rected (right). The dashed line represents the boundary between evidence favoring a change
at time (positive) vs. evidence against (negative) at event c.

val:1

Given that r(c) = tc−1
tn

and
∫ i

0
log

( 1
x (1− x)

)
= i

(
2− log

(
i− i2

))
+ log (1− i)− 2i

· · ·

SB(c) = pn

2

∫ r(c)

r(c−1)

log
( 1
x (1− x)

)
= pn

2

[∫ r(c)

0
log

( 1
x (1− x)

)
−
∫ r(c−1)

0
log

( 1
x (1− x)

)]
(14)

Given that SB(c) is a modification to the log-likelihood, Equation 10 should be further2

updated to the following form:3

K =
n∑
c=2

k(c) · T(c)

exp
(
SB(c)

) (15)

And this, in turn, suggests the following criterion for selecting the best candidate for a4

change-point:5

ĉ = c when

 k(c) · T(c)

exp
(
SB(c)

)
 = max

 k(2) · T(2)

exp
(
SB(2)

)
 , . . . ,

 k(n) · T(n)

exp
(
SB(n)

)
 (16)

Figure 5 (right) shows the values for k(c) in the binary example after the correction have been6

applied. Although estimates become noisier close to the edges, they no longer show a dra-7

matic bias near the edges. Given that this sequence has 100 observations and one parameters8

per distribution, the default odds ratio should be approximately
√

1
100 = exp (−2.302) = .1,9

close to the corrected value across all observations.10

Although this correction may appear arbitrary, or may seem to violate the logic of11

the Bayes factor, it is actually a sensible modification of the prior distribution associated12
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MULTIPLE CHANGE-POINTS ESTIMATION 18

with the location of the change-point. If we conceptualize the interval from t(1) to t(n) as1

a unit interval (such that 0 ≤ t(ĉ) ≤ 1), then a uniform prior is equivalent to the prior2

distribution Beta (1, 1). As originally shown by Jeffreys (1946), however, this prior is not3

unbiased, and the appropriate unbiased prior distribution should resemble the reference4

prior, Beta (0.5, 0.5). The depth of the correction must reflect the correct number of free5

parameters, here given by p:6

SB(c) ∝
∫ r(c)

r(c−1)

p · log (Beta (0.5, 0.5)) + C (17)

Here, C is a constant that keeps Σ
(
SB(c)

)
= 0, such that the overall prior odds of a change7

remain equal to pc. The link to the reference prior for the binomial is not coincidental: as8

pointed out in the discussion of Equation 5, the position of a change-point may be conceived9

of as a point on a unit line between t(1) and t(n).10

Because the depth of the the correction depends on the number of free parameters, its11

necessity grows as a function of model complexity. The distorting effects of the small sample12

bias are mild enough for the binomial model that the correction may appear unnecessary,13

but can produce aberrant model estimates for more complex models. For example, Figure 614

(left) shows the values for log
(
k(c)

)
calculated from 1000 observations in a uniform fashion915

from a standard Gaussian distribution (µ = 0, σ = 1) and subsequently randomized. The16

naïve calculation of k(c) in the left figure suggests that although the overall pattern of17

evidence is inclined against a change-point, the curvature is more extreme because of the18

additional free parameter, and the weight of the evidence favoring a change exceeds 0 at19

the edges of the distribution. These are simply a result of the small sample bias, however,20

and when the correction is applied in Figure 6 (right), the individual marginal likelihoods21

reveal that the evidence is consistently inclined against a change-point across all intervals.22

Implementing Binary Partition by Marginal Model Likelihood23

Given that the posterior odds ratio p′1
p′0

(Equation 7) indicates whether to partition the24

data and that the peak weighted odds ratio
[

k(c)·T(c)
exp(SB(c))

]
(Equation 11) indicates where to25

partition, the full description of the binary partitioning strategy is specified in Algorithm 1.26

The algorithm begins with an array M containing two indices, 〈0, n〉; since these delimit27

the full span of the data, this array can be said to contain no change-points. Consequently,28

the number of change-points in the model is (length (M)− 2). The algorithm then tests29

whether to partition the data using Equation 7. If the posterior odds ratio exceeds the30

decision criterion τ , then the best available candidate is selected using Equation 11. This31

estimated change-point is added to M, and the algorithm is then applied to each of the32

resulting segments in M. This process iterates until no new change-points are identified.33

The prior odds of a change begin with a value of pc = 1
n−1 . This corresponds to even34

odds that a single change-point is present in the data, as noted earlier. As further change-35

points are identified, this prior is updated to reflect the newly discovered change-points,36

91000 evenly spaced values from .0005 to .9995 were converted to z-scores using an inverse cumulative
normal distribution, generating simulated observations in the range z ± 3.3. These were then ordered
randomly.
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Algorithm 1: The binary partition by marginal model likelihood strategy, allowing
for non-uniform time stamps.

Data: events x(1:n), times t(1:n), model C0, decision criteron τ , initial model
M = 〈0, n〉

Result: updated model M, model parameters P
begin

repeat
N← 〈〉;|K| ← n /* set up arrays */

pc = max(1,length(M)−2)
n−1 /* set odds of a change */

for s = 1 to length (M)− 1 do
i←M(s) + 1; j ←M(s+1) /* assign indices */
for c = i+ 1 to j do

kc ←
m(x(i:c−1),C0)m(x(c:j),C0)

m(x(i:j),C0) /* Eq. 8 */

K(c) ←
kc·T(c)

exp(SB(c)) /* Eq. 15 */

if sum
(
K(i+1:j)

)
· pc · (j − i) > τ then

ĉ← index(max
(
K(i+1:j)

)
)-1 /* if Eq. 7 permits, find ĉ */

Push(N, ĉ) /* insert ĉ into N */

Push(M,N); Sort(M) /* merge N into M and sort */
until length(N) = 0
for s = 1 to length (M)− 1 do

P(s) ← EstimateParameters
(
x(M(s)+1:M(s+1))

)
;

return M,P

such that pc = length(M)−2
n−1 on any given iteration of the algorithm. Although this appears1

to bias the algorithm slightly in favor of finding a change on the first iteration, it must be2

emphasized that, per the logic of Equation 7, the only models being compared in any single3

computation are those with exactly zero changes and exactly one change. Consequently,4

pc = 1
n−1 on the first iteration corresponds to even odds for either outcome.5

Algorithm 1 has several desirable qualities. In principle, its generality allows it to6

be applied regardless of which distribution M is specified for C0, and regardless of the7

approach used to compute the value of m (x,C0). Furthermore, because the evaluation of8

m (x,C0) is the runtime’s primary limiting factor, closed-form solutions for this integral9

permit Algorithm 1 to run rapidly even on large datasets.10

Pitfalls & Considerations11

The CPR algorithm, as described above and encapsulated in Algorithm 1, is a pow-12

erful tool for asking a specific kind of question. If an analyst believes a time series under13

examination is well-described by a model whose MML has a closed form, is willing to treat14

model changes as being discontinuities, and wishes to treat the resulting segments indepen-15
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MULTIPLE CHANGE-POINTS ESTIMATION 20

dently, the CPR algorithm will identify likely change-points rapidly without requiring the1

fine-tuning of a host of operational parameters. If any of these assumptions are unreason-2

able, however, the CPR algorithm may not be ideal.3

The Law of the Instrument4

In any analytic enterprise, it is important to recall (and resist) the law of the instru-5

ment:6

In addition to the social pressures from the scientific community there is7

also at work a very human trait of individual scientists. I call the the law of the8

instrument, and it may be formulated as follows: Give a small boy a hammer,9

and he will find that everything he encounters needs pounding.10

-Kaplan (1998), p. 28.11

The temptation is to use statistical methods that are familiar or that require minimal12

effort. Although the CPR algorithm is designed to be easy to understand, easy to use,13

and computationally efficient, it is not intended to supplant all change-point analyses, as14

it can entertain only certain hypotheses. The limitations of the CPR algorithm should be15

understood clearly by anyone wishing to make use of it. In many cases, these limitations can16

be mitigated or bypassed. Above all, to paraphrase the counsel of Wilkinson et al. (1999),17

“Analysts should never report statistics whose operations they do not understand.” While18

the CPR algorithm is less sophisticated than many other change-point analyses currently19

available, its generality and computational simplicity will hopefully permit a wider range20

of applied researchers to understand its operations.21

Insensitivity Given Large-Scale Stationary Processes22

Although the CPR algorithm is highly effective with a wide range of data, it is entirely23

ineffective with data in which a large-scale stationary processes conceals many small sub-24

processes. Because the marginal likelihoods are calculated for only a single change-point25

at a time, the posterior hyperparameters are estimated from wide swaths of data for early26

change-point evaluations and the resulting summary statistics may mistake many brief27

segments for a single continuous segment with high variability.28

When data show large-scale uniformity that conceals small-scale distributional shifts,29

it is often more appropriate to rely on other forms of time-series analysis, such as wavelet-30

based methods (Lio & Vannucci, 2000). However, two modifications can be made to the31

CPR algorithm that are also effective at overcoming this problem. The first approach is32

to arbitrarily subdivide (or to ’dice’) the data into small segments and run preliminary33

analyses. If these reveal evidence for changes, the detected changes may be retained and34

used as the prior model of changes M. The second approach, which is more principled, is35

to examine the data sequentially, using a widening window to restrict analysis to a local36

region. Both the dicing operation and a form of sequential analysis called the ‘forward-37

retrospective’ strategy, originally proposed by Gallistel et al. (Submitted), are described in38

detail in the Supplement.39
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Assumption-Free Change-Point Analysis1

It is important to reiterate that many Bayesian techniques rely on distributions that2

do not have conjugate priors (for example, most that use reference priors). Furthermore,3

although closed-form solutions exist for the marginal model likelihoods of many conjugate4

priors, there are notable exceptions, such as the gamma distribution and the negative bi-5

nomial distribution.6

As noted above, the binary partitioning strategy is not limited to conjugate analysis,7

although it becomes much more computationally intensive if integrals must be approximated8

numerically (e.g. using MCMC, Carlin & Chib, 1995; Bauwens & Rombouts, 2012). In some9

cases, arithmetic approximations may also be available (e.g. Raftery, 1996; Fearnhead, 2006;10

Hannart & Naveau, 2012). Such methods should be used, however, under those conditions11

in which conjugate methods are inappropriate for the observed data or are theoretically12

incoherent.13

In practice, all analyses rely on some assumptions. However, methods are available14

with far more relaxed assumptions than those employed by the CPR algorithm. The most15

famous of these is reversible jump MCMC (Green, 1995), which not only numerically ap-16

proximates an unknown model, but does so with an initially unknown number of model17

dimensions. These attributes have contributed to its widespread application in technical18

circles (Sisson, 2005). However, both implementing such methods and interpreting their re-19

sults can be challenging, however, and remain beyond the reach of many applied researchers20

(Han & Carlin, 2001).21

Specifying Prior Odds of a Change22

The CPR algorithm, as described above, identifies a single change-point under the23

assumption that it is equally likely at every moment in time. In other words, the distribution24

associated with the change is uniform. Koop & Potter (2009) demonstrate that the hazard25

function for the uniform function is not flat, and depends on the analyst’s prior assumptions26

about the likely number of changes and the maximum period between changes. Fortunately,27

as Koop & Potter note, the uniform assumption is appropriate when seeking to identify a28

single change-point. Binary partitioning only identifies the strongest change-point in each29

segment, which prevents its uniform assumption from creating a bias.30

There are other circumstances, however, in which the odds of a change are themselves31

a function of the passage of time. In principle, if this relationship is known, it can be32

integrated into Algorithm 1. However, making such a modification would likely have such a33

powerful impact on the posterior odds that doing so severely undermines the objectivity of34

the test. In effect, this changes the prior probability distribution for a change (with respect35

to time), and carries with it all of the concerns articulated above regarding the possibility36

for abuse. Because substantive changes are likely to be detected even when the odds of a37

change are assumed to be uniform, imposing additional assumptions about when changes38

are likely to occur should have very substantial theoretical support.39

The CPR algorithm also assumes that the probability of a change pc (Equation 7) does40

not display discontinuities. It may be the case, however, that the probability of observing41

a change is itself subject to regular changes. A very successful paradigm for Bayesian42

change-point analysis hinges on representing the data in terms of hidden Markov models43
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in which the number of states is either known (Chib, 1998) or unknown (Meligkotsidou &1

Dellaportas, 2011), wherein each state has its own value for pc. These more complex models2

are best approached using robust numerical methodologies.3

One scenario that may be dealt with simply is the case of the ‘impossible change-4

point.’ Under some circumstances, an analyst can identify conditions under which change-5

points are impossible. For example, in a learning paradigm, it is reasonable to assume6

that an organism could not know the identity of a never-before-seen stimulus prior to being7

exposed to it, since there is no persuasive evidence for precognitive or oracular abilities8

(Wagenmakers et al., 2011). A simple adjustment to Algorithm 1 is to fix the value of9

k(c) at zero for any interval c during which a change is impossible a priori, leaving all10

other values unchanged. This correction is inherently conservative, as it always lowers the11

resulting value of K, and protects against edge conditions in which measurement error12

accidentally suggests a causally impossible result. An example of this is provided in the13

Simultaneous Chain example below.14

Gradual Transitions15

The CPR algorithm assumes that the change-points under consideration are either16

genuine discontinuities or transitions that are sufficiently rapid that they occur between17

time points t(c−1) and t(c). In some contexts, this is theoretically assumed: Economists,18

for example, often refer to change-points as ‘structural changes’ because they often arise19

in economic data as a result of substantial changes in leadership or policy. Furthermore,20

abrupt and discontinuous change is the norm rather than the exception in much of behavior21

analysis, a fact that has been obscured by over-reliance on averaging (Gallistel et al., 2004).22

Often, however, gradual transitions are an appropriate assumption (see, for example, the23

description of ‘turning points’ by Cohen, 2008), and these are not ideally suited to the CPR24

algorithm as it is implemented.25

In some cases, mixture distributions may be used for Bayesian modeling of gradual26

transitions (e.g. Kheifets & Gallistel, 2012) or growth curves (e.g. Zhang et al., 2007); in27

these cases, the corresponding marginal likelihoods do not typically have closed-form solu-28

tions, and must be modeled numerically. However, several simpler methods may be used29

in concert with the CPR algorithm. For example, conjugate priors are relatively straight-30

forward to implement for simple and multiple linear regression, and the CPR algorithm31

performs well at fitting approximately linear transitions. Linear fits of this kind are pro-32

vided in the reaction time and 3D position examples below, and in additional examples33

presented in the supplement.34

Multiple Time Series and Shared Parameters35

Another major limitation of the CPR algorithm is that it applies to a single (poten-36

tially multivariate) time series, as opposed to a series of inter-related time series that may37

share parameters (such as a set of individuals). Furthermore, each segment of data assessed38

by the CPR algorithm is assumed to be independent of every other segment. While such39

limitations are appropriate for unambiguous measurements under controlled experimen-40

tal conditions, they pose considerable difficulties when dealing with opportunity samples,41

loosely operationalized measures, or contexts with substantial nuisance variables.42
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For the most part, these limitations arise from the objective of making a compu-1

tationally efficient and conceptually straightforward change-point analysis. However, it is2

not automatically appropriate to favor more sophisticated methods. For example, although3

mixed-effect models are a powerful way to characterize both population parameters and4

individual deviations, they nevertheless impose strong assumptions about the qualitative5

similarity across individuals (Schielzeth & Forstmeier, 2009). Although other methods, such6

as those based on ‘hidden Markov models’ (Robert et al., 2000), require only weak depen-7

dence between modeled phenomena, they nevertheless also imposes structural assumptions8

on the resulting segments.9

In this regard, the CPR algorithm should be seen as having limited power. Because10

it relies on isolating segments of data for analysis, it is necessarily less powerful than a test11

that can make use of all of the data to evaluate every point. At the same time, however12

the power of comprehensive tests stem from assumptions about how well different regions13

of the data can inform one another.14

Multiple Model Types15

As it is currently implemented, the CPR algorithm assumes that all segments arise16

from models with identical forms (e.g. all are Poisson distributed, or all are normally17

distributed). There is no reason a priori, however, why it could not consider a wider18

range of possible models in parallel, particularly if there are additional covariates involved.19

For example, in a continuous univariate dataset, each segment could not only compare20

whether or not a change-point is appropriate, but also whether each segment is drawn from21

a normal, exponential, or uniform distribution. In principle, marginal likelihoods can be22

used to approach this problem, and so long as each segment can be considered in isolation,23

the closed form solutions made available for conjugate priors may also be used. However,24

in this scenario, the posterior odds of any given model is influenced of how many other25

functions are being considered, as described by Kass & Raftery (1995).26

Alternatively, if a specific kind of model comparison arises from theoretical consider-27

ations, a custom analysis can potentially be constructed to accommodate that comparison.28

For example, the contrast presented in Figure 1 cannot be directly tested using the CPR29

algorithm as written, because the equation specified by Heathcote et al. (2000) has not been30

formally studied. However, numerical methods could be used to assess its likelihood func-31

tion and corresponding marginal likelihoods (which would supplant the uniform no-change32

hypothesis in the CPR algorithm’s logic), while conjugate formulas could be used for the33

linear segments.34

A multi-model CPR algorithm that can simultaneously evaluate these alternatives is35

beyond the scope of this paper. Such an approach also potentially invites ‘fishing expedi-36

tions’ in which different combinations of distributions are intermixed and only those that37

are favorable to the research are reported. However, given the building blocks provided38

in this manuscript, an analyst who has sufficient theoretical justification can assemble a39

custom variant suited to their empirical scenario. Such variants would need to be evaluated40

on a case-by-case basis.41
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Example Implementations1

Because the CPR algorithm is highly general with respect to the Bayesian models2

it is equipped to consider, it can be applied to a wide range of data, provided those data3

reasonably conform to distributional assumptions. Here, three examples are considered,4

each relying on a different statistical model. Additional examples from other empirical5

disciplines are provided in the Supplement.6

In the first example, task performance in an animal cognition experiment is modeled7

in terms of success or failure using the binomial distribution. Doing so not only permits8

general statements to be made about how well the subject learned, but additionally permits9

identification of the trials during which learning occurred on a session-by-session basis. This10

reveals dynamics of learning glossed over by learning curves.11

In the second example, the CPR algorithm is used to examine changes in human12

reaction time as a result of practice over consecutive trials. Not only does this permit13

a within-subject multiple regression to compare the effects of practice and task difficulty14

on reaction time, but also allows intermixed sub-tasks to be teased apart and individually15

examined. This analysis reveals a variety of previously concealed discontinuities in the16

response times.17

In the third example, a motion-tracking device produced multivariate data, signaling18

position in 3D space at rapid but irregular time intervals. The CPR algorithm permits this19

highly complex dataset to be reduced to a tractable summary of position and motion.20

Task Acquisition: Simultaneous Chains21

An elementary question in psychology is “when did learning occur?” Despite be-22

ing a prerequisite to a host of questions (including how learning occurs), identifying and23

describing these events is routinely difficult using traditional statistics. Learning is often24

discontinuous, a ‘eureka’ moment marked by an abrupt shift in a behavior. Despite this,25

the “learning curve” is often invoked, despite being an average across many trials, or worse,26

many subjects (Gallistel et al., 2004). Change-point analyses provide a different way of27

thinking about learning, since change-point functions are chiefly concerned with identifying28

discontinuities rather than smoothing them over.29

Jensen et al. (2013) trained rhesus macaques to learn the ordering of lists of otherwise30

arbitrary stimuli using the simultaneous chaining paradigm (Terrace, 2005). In each of a31

session’s 40 trials, five photographs were simultaneously displayed on a touchscreen, and32

remained until subjects either touched all five in the correct order (obtaining a food pellet)33

or made any mistakes (leading to a time-out, followed by a new trial). Subjects learned by34

trial and error. First, they were required to identify Item One, and only then could they35

proceed to identify Item Two. In this fashion, subjects learned 25 novel lists, each composed36

of stimuli never seen prior to that session.37

A straightforward way to assess a subject’s progress in a novel list is to decompose
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that progress into a series of binary strings, as follows:

resp = 0012010111222405153203235535555215555552
b1 = 0011010111111101111101111111111111111111
b2 = 0001000000111101011101111111111101111111
b3 = 0000000000000101011001011111111001111110
b4 = 0000000000000101010000001101111001111110
b5 = 0000000000000001010000001101111001111110

Here, resp corresponds to the performance of one subject (Coltrane), where each value1

represents number of correct presses made by the subject on a given trial (with food pellets2

only delivered on a ‘5’). As such, if resp indicates a ‘3’ at a given position, that means3

that the subject correctly selected the first, second, and third items, but did not select the4

correct 4th item. Thus, item one is correctly selected on the third trial, while items one5

and two are correctly selected on the fourth trial. In each binary string, the trial bj (i) = 16

if resp (i) ≥ j. The first time an item is correctly selected is not necessarily the point at7

which that item’s position is learned. For example, although Item Two is first successfully8

chosen on trial 4, there is a dramatic shift in responding at trial 11.9

A change-point analysis was performed treating ‘probability of a correct response’ as10

a Bernoulli process. This entails calculating the value of m (x,M) in Equation 1, namely,11

m (bj , binomial). The Supplement lists the closed-form solutions for m (x,M) given variety12

of distributions, including the binomial; in this case, the closed-form estimate is obtained13

by computing Beta (successes, failures).14

The first step to applying the CPR algorithm is the specification of a prior. As noted15

previously, the MML of the reference prior for binomial data is Beta (0.5, 0.5) = 3.142, which16

corresponds to half a success and half a failure. Thus, given the binary string presented in17

Figure 7, the value of m
(
x(1:40), C0

)
(from Equation 4) depends on the observed successes18

and failures, plus the prior. The result is also computed using the Beta function, thanks19

to conjugacy: m
(
x(1:40), C0

)
= Beta (30.5, 10.5) = 0.00000000007. This is marginal model20

likelihood for a no-change-point model. Additionally, a decision criterion must be selected;21

this analysis uses the default value of τ = 10.22

Figure 7 (Top) shows how the CPR algorithm uses the series of Bayes factors k(c)23

are used to identify the first change-point. The x-axis shows individual trials, whereas the24

y-axis shows each element’s value of k(c) (plotted on a log scale to emphasize its shape). For25

example, k(8) requires that we know three values: m
(
x(1:40), C0

)
(which was just calculated)26

and the MML for each of the two segments, m
(
x(1:7), C0

)
and m

(
x(8:40), C0

)
. These are27

obtained using the Beta function, just as before: m
(
x(1:7), C0

)
= Beta (1.5, 6.5) = 0.0506,28

and m
(
x(8:40), C0

)
= Beta (29.5, 4.5) = 0.0000022. Filling in the values, we determine that29

k(8) = 0.0506×0.0000022
0.00000000007 = 1654.9.30

Obtaining the marginal likelihood requires considering all possible change-points.31

With a priorm (M) = Beta (1, 1) and the probability of a change pc = 1
39 , the posterior odds32

ratio in support of a change was across all intervals was p′1
p′0

=
[
K · 39

39

]
=
∑ k(c)

(n−1) exp(SB(c)) =33

PeerJ PrePrints | https://peerj.com/preprints/90v2/ | v2 received: 30 Nov 2013, published: 30 Nov 2013, doi: 10.7287/peerj.preprints.90v2

P
re
P
rin

ts



MULTIPLE CHANGE-POINTS ESTIMATION 26

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

−5

0

5 0 1 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0

trial

lo
g
(

k
(
c
)

n
−
1

)
−

S
B

(c
)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

−5

0

0 1 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0

trial

lo
g
(

k
(
c
)

n
−
1

)
−

S
B

(c
)

Figure 7 . The CPR algorithm applied to a binary string. (Top) The individual Bayes
factors k(c) (here presented on a log scale) are calculated for each point, and there is a clear
peak when c = 8. (Bottom) The algorithm is then recursively applied to the two segment
halves, with weak support found when c = 34. Because this support is too weak to satisfy
the decision criterion, it is not selected. The dashed line represents the boundary between
evidence favoring a change at time (positive) vs. evidence against (negative) at event c;
however, note that a change-point is only added to the model if the posterior odds p′1

p′0
for a

segment favors a change, which is not the case for either segment in the bottom panel.

81.40, supporting a change-point because it exceeds the decision criterion of τ = 10. Given1

the peak value of k(c), the most likely position for a change-point therefore lay between x(7)2

and x(8).3

Figure 7 (Bottom) represents the second iteration of the algorithm. In the first4

segment, K = 3.52 and p′1
p′0

=
[
K · 6

39

]
= 0.54, indicating an 11:5 odds ratio against a new5

change-point. In the second segment, K = 3.72 and p′1
p′0

=
[
K · 32

39

]
= 3.05, a posterior odds6

ratio slightly favoring a change, but falling well below the decision criterion of τ = 10.7

With no further change-points expected, we formally define the change-point model8

M(0:2) = [0, 7, 40], dividing the data into segments 1:7 and 8:40. Only at this stage are the9

rate parameters estimated for each segment. Given our prior Beta(0.5, 0.5), the Bayesian1010

posterior parameter estimates are P(1:2) =
[

1.5
8 ,

28.5
34

]
= [0.19, 0.84].11

In the Simultaneous Chain paradigm, subjects must work through the list incremen-12

tally, solving each subsequent item by trial and error. In rare cases, the CPR algorithm13

10Although these parameter estimates continue the Bayesian logic of this analysis by incorporating the
prior hyperparameters, the model parameters for each segment may also be estimated using frequentist
methods. The only parameters estimated by the CPR algorithm are the positions of change-points.
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reported that subjects ‘learned’ the identity of an item a trial or two before ever receiving1

feedback confirming its position. In order to prevent these cases of the algorithm making2

a slightly early prediction, values for k(c) for intervals prior to the first successful press to3

an item were fixed at 0.0 in advance, in keeping with the advice for avoiding impossible4

conclusions described in the ‘Specifying Prior Odds of a Change’ section.5

The CPR algorithm provides a precise account of the behavior for each session in-6

dependently. For each of Coltrane’s 25 novel lists, Figure 8 (Left) presents a plot of every7

change-point, corresponding to learning the identity of each item. Progress was coded both8

in terms of position along the y-axis and with increasingly dark shades of gray. On the9

0th trial, no progress is assumed. The discovery of the first item (as determined by the10

change-point analysis) is marked by the first gray bar, with each additional item denoted11

by another step. Figure 8 (Right) presents histograms graphing the distribution of intervals12

to “learning the next item,” as well as the total number of trials needed to learn the list.13

Learning varies quite a bit from session to session, and few sessions resemble “average14

learning.” Acquisition is sometimes very rapid (lists 7 and 14), sometimes gradual and15

incremental (list 10 and 25), and sometimes a mix of the two (lists 8 and 23). Another16

problem with averaging is that once a subject correctly identifies the fourth item, the fifth17

and final item is also usually identified by process of elimination. As such, a statement18

that “on average, four items were learned by time t” almost certainly refers to a mix of19

3-item-learning and 5-item-learning.20

Using binomial change-points to identify learning events (e.g. Gallistel et al., 2004)21

is one of the more straightforward applications of change-point analysis to psychological22

data because binomial data do not possess ‘outliers’ as such. In scenarios where outcomes23

can reasonably be represented as binomial, the ease of calculating the Beta function makes24

this approach appealing. However, in many scenarios, representing events in binary terms25

discards much of the information that might be relevant. Fortunately, because conjugate26

prior analysis is possible for a wide range of distributions, the CPR algorithm is not limited27

to binary data.28

Curve Fitting: Reaction Times29

When performing an analysis of continuous data measurements, there is a powerful30

temptation to fit the data to a distribution and work with the resulting summary statistics.31

Indeed, the lion’s share of null hypothesis significance testing is based on the tails of inferred32

distributions. To quote Wagenmakers (2007), “p values depend on data that were never33

observed11.” A change-point analysis that can ‘digest’ continuous data without throwing out34

information can complement (or substitute) traditional analyses. A particularly relevant35

case is the practice of averaged curve-fitting.36

For example, Palmeri (1997) performed a series of experiments contrasting cognitive37

and memory strategies in processing visual stimuli. The training phase presented one of38

thirty pre-generated stimuli consisting of between 6 and 11 black dots arrayed on a white39

field (with five stimuli per number of dots). Participants responded as quickly as possible,40

indicating how many dots were on screen. Because the stimuli were pre-generated, par-41

ticipants gradually transitioned from explicit cognitive strategies (such as counting dots)42

11However, a counterpoint might be that many Bayes factors depend on priors invented from whole cloth.
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Figure 8 . Plot of item acquisition in 25 different lists in Jensen et al. (2013), learned using
the Simultaneous Chain procedure. (Left) Estimated time of acquisition for each list item
is indicated both by elevation and by shade of gray. (Right) Histogram showing frequency
of inter-acquisition periods, in trials, for each item, as well as the number of trials overall
needed to acquire all list items. Bars do not sum to 100%, because acquisition did not occur
in all lists.

to a memory strategy in which they recognized the stimulus and recalled their previous1

answer. These data were subsequently published12 by Heathcote et al. (2000) as part of a2

meta-analysis of reaction time data.3

A visual examination of Palmeri’s data suggests that stimuli containing more dots4

elicited longer reaction times, and that responses generally became faster over consecutive5

training trials. Fitting a curve to these data results in an approximately exponential di-6

minishing returns function (Heathcote et al., 2000). However, an explicit component of7

Palmeri’s hypothesis is that two processes (explicit cognition vs. memory) contribute to8

reaction times. If the transition between strategies occurs abruptly, and these transitions9

occur at a variety of times, discontinuities are likely to appear in the data, which a standard10

12Data are available for download at the Newcastle Cognition Lab Data Repository,
http://www.newcl.org/?q=node/7, retrieved March 6, 2013.
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curve-fitting approach will be unable to properly detect or quantify.1

A change-point analysis was performed using a linear regression model. Thus, instead2

of dividing the data into segments representing flat rates (as in the simultaneous chain3

example above), the linear approach split the data into linear segments with β parameters4

corresponding to model’s covariates. The model intercept is hereafter denoted by βconst, the5

slope with respect to trials is denoted by βtrials, and the slope with respect to numerosity6

(i.e. the number of dots in the stimulus) is denoted by βnum.7

As in the binomial case, setting a prior is an important prerequisite to performing8

the Bayesian analysis. In addition to observations y and a matrix of explanatory variables9

X, four prior hyperparameters go into the analysis to describe the residuals, presumed to10

conform to a multivariate normal distribution. Two, m and b, correspond to the intercept11

of the function, while the other two, c and Λ correspond to the precision matrix (i.e. the12

inverse of the covariance matrix) of the residuals. Without access to pilot data, an empirical13

Bayes method was used to estimate a ‘rule-of-thumb’ prior (described in greater detail in14

the Supplement).15

In Figure 9 (Top), 6132 consecutive reaction times from a single participant, are16

plotted with respect to trials and numerosity (darker points correspond to slower reaction17

times). A handful of outliers are omitted from the plot but were included in the analysis. At18

a glance, it is clear that the larger numerosities (10 and 11) initially elicit much longer reac-19

tion times than the shorter ones (6 and 7). Additionally, it is clear that reaction times late20

in training (after around 4,000 trials) depend very little on the stimulus numerosity. Fig-21

ure 9 (Bottom) shows how the CPR algorithm, using a linear regression model, subdivides22

the data.23

In an important sense, this ‘kitchen-sink’ change-point analysis is merely a different24

flavor of the familiar shortcomings of curve fitting. For example, this linear model overes-25

timates the reaction time for 6-item numerosities: While performance is consistently below26

1 s by trial 1,000, the model does not predict performance on 6-item stimuli reaching this27

speed until around trial 2,000. More importantly, however, is the experimental detail that28

there were thirty stimuli, with five stimuli belonging to each numerosity. If faster reaction29

times signal a transition to a memorial strategy based on stimulus recognition, then each30

stimulus was presumably learned at a different point in time. Thus, a per-stimulus analysis31

would be provide a more compelling description of learning.32

Figure 10 contrasts the fastest and slowest learning for the 6-dot stimuli (Left) and the33

11-dot stimuli (right), drawn from the same dataset that was used in Figure 9. Once again,34

change-point analyses were performed, this time using only βconst and βtrials. Equations 1035

and 11 were used because the order of stimulus presentation was randomized, resulting in36

non-uniform intervals between events.37

As expected from Figure 9, participants initially had a much higher reaction time38

when presented with 11-dot stimuli than with 6-dot stimuli. There was also considerable39

overlap between times associated with each stimulus very early in responding. It is also40

clear that reactions times were largely independent of stimulus complexity late in training41

(when all responding is quite rapid). This consistency falls apart in mid-range responding,42

however, with the fastest 11-dot stimulus quite reliably acquired faster than the slowest 6-dot43

stimulus was. Furthermore, although some of the distributions resemble traditional learning44

curves, others displayed dramatic and irregular discontinuities. Interestingly, despite having45
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Figure 9 . Reaction times as a function of trials and task difficulty in Palmeri (1997). (Top)
Each of the 6132 reaction times, color-coded according to their speed and positioned with
respect to trial and stimulus numerosity. (Bottom) The model fit resulting from a multiple
regression, subdivided according to the CPR algorithm.
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Figure 10 . Reaction times as a function of trials in Palmeri (1997) for specific stimuli in a
single participant. Lines represent Bayesian regression estimates whose subdivisions were
determined using to the change-point algorithm. (Left) 6-dot stimulus learning for most
rapidly acquired stimulus (blue) and the least rapid (red). (Right) 11-dot stimulus learning
for most rapidly acquired stimulus (blue) and the least rapid (red).

a reputation for being distributed in a non-normal fashion, the residuals of these individual1

regressions were reasonably close to normal13 with respect to both skewness (µ = 1.15±0.55)2

and kurtosis (µ = 4.88±1.78). Although these display moderate departures from normality,3

they nevertheless fall well below the rule-of-thumb guidelines for regression specified by4

Kline (1998) that skew < 3 and kurtosis < 10.5

Although the analysis of reaction times is ubiquitous across many domains of psy-6

chology, its time-series character and its often non-normal distributions raise the concern7

that it is often analyzed incorrectly (Whelan, 2008). Given the variety of patterns displayed8

by a single participant in Figures 9 and 10, the practice of fitting curves as a form of bulk9

averaging will need to give way to analyses that are more sensitive to individual learning his-10

tories and discrete changes in behavior. While it is not a panacea, a change-point approach11

like the CPR algorithm can nevertheless contribute to a more nuanced understanding of12

reaction time data.13

Multivariate Data: 3D Position Tracking14

As the impacts of Big Data continue to be felt, and data-gathering technologies be-15

come less expensive, there is an underexploited opportunity to ask psychological questions16

on a larger and more multivariate scale. The challenge for many, however, is that traditional17

methods of analysis are not adequate to fully exploit such datasets because of their non-18

stationary characteristics. A computationally efficient change-point algorithm can distill19

otherwise daunting datasets into practical chunks, as well as provide important large-scale20

parametric measures.21

13Skewness and kurtosis were calculated for the residuals from each of the segments, omitting outliers
falling over 4 standard deviations from the mean. These 37 censored outliers constituted only 0.6% of the
data. The resulting means are reported ± 1 standard deviation.
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Figure 11 . 3D position data collected by Kaluža et al. (2010). Individual points are
multivariate, such that an observation an x-coordinate (in the top panel), a y-coordinate (in
the center panel), and a z-coordinate (in the bottom panel). Change-points were identified
using the CPR algorithm assuming a multivariate normal distribution.
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Kaluža et al. (2010) demonstrated a proof of concept for a movement tracker designed1

to be worn by elderly individuals. Each sensor continuously transmitted X-Y-Z coordinates.2

By monitoring the patterns of movement of several sensors at different places on the body3

in parallel, a participant’s behavior be characterized, and emergency situations (such as4

sudden falls) could be detected immediately.5

There is considerable experimental potential for this style of multivariate data. For6

example, a clinical trial of psychiatric medication could measure both small- and large-scale7

movement over days and weeks in order to study effects of chronic administration on motor8

coordination (when measured on the order of inches) or social isolation (when measured on9

the order of miles). In a laboratory context, the movement and position of animal subjects10

is often a covariate of interest, and could be determined more precisely than measuring11

“time spent in each quadrant.”12

Figure 11 depicts the data collected from one sensor worn by one participant over13

a period of approximately 30 minutes. Because their objective was to demonstrate the14

efficacy of a machine-learning algorithm, the data consisted of participants performing the15

same series of physical movements five times. In addition to some inter-temporal variability16

in the times at which coordinates were measured, there were four large gaps in the data17

during which the experimenters reset the conditions to permit the action script to be re-18

peated. The colored lines corresponds to the means of a representative multivariate normal19

distribution, whose change-points and parameters were estimates using the CPR algorithm.20

Although possessing a closed form, the arithmetic solution for m ([X,Y, Z] ,MV normal)21

is intimidating, and is presented in the Supplement. As in the linear regression example22

described above, the analyst must specify four prior hyperparameters (corresponding to the23

mean and covariance). A rule-of-thumb empirical prior was used, based on robust mean24

and covariance estimates (Campbell, 1980).25

Figure 12 shows, in three-dimensional terms, the correspondence between individual26

observations in time and the corresponding segments specified by the change-point model27

over a subset of the data. Color is used to indicate the passage of time. Every point28

corresponds to a discrete observation from the 3D sensor, color-coded according to event29

time. Additionally, a moving average of 50 responses is plotted on the marginal horizontal30

plane.31

In addition to raw sensor readings, Kaluža et al. also reported ‘activity labels’ in-32

dicating the behavior being performed by the participant. These labels alternate between33

steady-state behaviors (walking, sitting) and transitional behaviors (falling, rising). Concep-34

tually, the change-points detected by the CPR algorithm should fall within or near these35

transitional periods, dividing behavior into segments with distinct properties. Figure 1336

shows the congruence between the detected change-points (marked with dashed lines) and37

the reported transition periods (indicated as gray zones) over the same interval as depicted38

in Figure 12, with a corresponding color bar indicating the passage of time. The algorithm39

detected most of transitions, although it was not generally able to detect several transitions40

occurring in quick succession.41

Figure 13 also showcases a limitation of the multivariate Gaussian distribution used42

in this example. Because the model presumed abrupt transitions between otherwise uni-43

form states, gradual movement through space (e.g. between 875s and 905s) was not very44

effectively modeled. However, the algorithm performed admirably in periods of stability,45
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Figure 12 . 3D depiction of the a subset of the movement data from Kaluža et al. (2010)
and its associated change-point model. Individual points represent discrete observations
and are color-coded continuously with respect to time, as noted on the color bar. The
points on the color bar denote the times at which change-points were detected by the CPR
algorithm. Ellipses represent the means and covariance associated with particular segments
of data, estimated post-hoc using the robust method described by Campbell (1980). The
thin colored line, which is drawn along the horizontal plane, represents a moving average
of 50 points.
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Figure 13 . Detailed plot of the data presented in Figure 11, represented in terms of recorded
sensor values alone each axis. Gray zones are identified by Kaluža et al. as ‘transitional
periods’ (such as falling or sitting down), while dashed lines indicated change-points detected
by the CPR algorithm, given a multivariate normal model.

despite segments each possessing distinct patterns of covariance. To precisely model sensor1

data in cases of incremental movement, a multivariate regression approach would be more2

appropriate. The decision of which approach to use depends largely on whether movements3

are more commonly expected to be abrupt or gradual. Because the multivariate Gaussian4

distribution is simpler (having no slope parameter to consider), it is more sensitive to abrupt5

changes.6

An alternative analysis is presented in Figure 14, this time using a multiple linear re-7

gression model (also described in the Supplement). Rather than emphasize static positions,8

this analysis instead captures overall drift through space. Again, the dashed lines indicate9

detected change-points, which overlap even more closely with the gray ‘transition’ periods10

identified by Kaluža et al.. However, some transitions (such as the small shift at approx-11

imately 945 seconds) are missed by this analysis. In general, because regression models12

have more free parameters than multivariate step functions, they can be expected to be less13

sensitive to small changes, as the MML’s penalties for model complexity may overwhelm14

real but subtle discontinuities. Although the multiple linear regression performs well, the15

simpler multivariate normal model may be better suited to the goals laid out by Kaluža et16

al., particularly with respect to detecting abrupt falls.17

The above analyses are based on the reported movements of a single sensor, but18

Kaluža et al. report findings for participants wearing four sensors simultaneously on different19

parts of the body. On the one hand, more data should permit an analyst to better distinguish20

true movements from sensor noise. On the other hand, however, integrating inputs across21

sensors that are not perfectly synchronized requires additional processing. Although a full22

treatment of this problem is beyond the scope of this example, it is important to note23

that dramatically expanding the dimensionality of the sample space makes detecting subtle24
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Figure 14 . Detailed plot of the data presented in Figure 11, re-analyzed using a multiple
linear regression model. The thin, pale lines represent the raw data, while the thick lines
correspond to the best-fitting linear fits. Gray zones are identified by Kaluža et al. as
‘transitional periods’ (such as falling or sitting down), while dashed lines indicated change-
points detected by the CPR algorithm, given a multiple regression model.

changes more difficult. Provided that synchronized estimates be obtained (for example by1

computing means for each parameter within regular windows of time), an effective solution is2

to use Principal Component Analysis (PCA) to reduce the sample space. The data reported3

by Kaluža et al. could be interpreted as having 12 dimensions (3 spatial dimensions for each4

of four sensors), but much of the information from the sensors was redundant, such that5

the first three components of the PCA were consistently able to explain over 90% of the6

variance, and were largely indistinguishable from the single-sensor analysis reported here.7

Although tracking positions in space over time is an obvious application of multivari-8

ate time-series analysis, many other forms of data can be illuminated using this approach.9

Other measures, such as acceleration, could be used to distinguish between types of behav-10

ior (fixation vs. saccade in eye-tracking, for example). Biological measures such as heart11

rate and blood pressure could be examined, either continuously or in a longitudinal fash-12

ion. Because these basic forms of multivariate analysis are straightforward to implement,13

change-point analysis opens behavior analysis up to tasks and measures previously limited14

to fields with a stronger engineering focus, such as machine learning and computer vision.15

Conclusions16

Despite the best efforts of experimentalists to build simple theories, empirical data17

remain complicated and discontinuous. Precise experimental control in laboratory exper-18

iments remains crucial, but it is often the processes being studied themselves that are a19

source of frustrating inconsistency. The traditional approach of averaging across subjects20

and across situations is perhaps most problematic for asking “when” questions, such as21

“When did learning occur?” Different participants often learn at different rates, or expe-22
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rience epiphanies at different times, and an researcher interested in the characteristics of1

those moments of learning is not well-served by the smearing effect of an averaged learning2

curve. Averaging over time becomes more obviously absurd when asking “When did the3

man fall down?” Change-point analysis is an important framework for addressing these4

questions, and for moving theory away from indiscriminate averaging.5

The Conjugate Partitions Recursion algorithm for change-point analysis, and the6

broader Bayesian strategy of binary partitioning by marginal model likelihood, provide7

tools that make non-stationary time-series analysis practical for use by applied researchers.8
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