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8 Abstract. Pawns is a programming language under development which
9 supports algebraic data types, polymorphism, higher order functions and
10 “pure” declarative programming. It also supports impure imperative fea-
11 tures including destructive update of shared data structures via pointers,
12 allowing significantly increased efficiency for some operations. A novelty
13 of Pawns is that all impure “effects” must be made obvious in the source
14 code and they can be safely encapsulated in pure functions in a way that
15 is checked by the compiler. Execution of a pure function can perform
16 destructive updates on data structures which are local to or eventu-
17 ally returned from the function without risking modification of the data
18 structures passed to the function. This paper describes the sharing analy-
19 sis which allows impurity to be encapsulated. Aspects of the analysis are
20 similar to other published work, but in addition it handles explicit point-
21 ers and destructive update, higher order functions including closures and
2 pre- and postconditions concerning sharing for functions.

23 Keywords: functional programming language, destructive update, muta-
2 bility, effects, algebraic data type, sharing analysis, aliasing analysis

» 1 Introduction

s This paper describes the sharing analysis done by the compiler for Pawns [1], a
;7 programming language which is currently under development. Pawns supports
2 both declarative and imperative styles of programming. It supports algebraic
2 data types, polymorphism, higher order programming and “pure” declarative
s functions, allowing very high level reasoning about code. It also allows imperative
a1 code, where programmers can consider the representation of data types, obtain
» pointers to the arguments of data constructors and destructively update them.
13 Such code requires the programmer to reason at a much lower level and consider
s aliasing of pointers and sharing of data structures. Low level “impure” code can
35 be encapsulated within a pure interface and the compiler checks the purity. This
s requires analysis of pointer aliasing and data structure sharing, to distinguish
v data structures which are only visible to the low level code (and are therefore
1 safe to update) from data structures which are passed in from the high level
s code (for which update would violate purity). The main aim of Pawns is to get
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w0 the benefits of purity for most code but still have the ability to write some key
a1 components using an imperative style, which can significantly improve efficiency
2 (for example, a more than twenty-fold increase in the speed of inserting an
s element into a binary search tree).

4 There are other functional programming languages, such as ML [2], Haskell
»s [3] and Disciple [4], which allow destructive update of shared data structures
s but do not allow this impurity to be encapsulated. In these languages the ability
& to update the data structure is connected to its type'. For a data structure to
i be built using destructive update its type must allow destructive update and
s any code which uses the data structure can potentially update it as well. This
so prevents simple declarative analysis of the code and can lead to a proliferation
51 of different versions of a data structure, with different parts being mutable.
s2 There is often an efficiency penality as well, with destructive update requiring
53 an extra level of indirection in the data structure. Pawns avoids this inefficiency
s« and separates mutablity from type information, allowing a data structure to
ss  be mutable in some contexts and considered “pure” in others. The main cost
ss  from the programmer perspective is the need to include extra annotations and
57 information in the source code. This can also be considered a benefit, as they
ss  provide useful documentation and error checking. The main implementation cost
s is additional analysis done by the compiler, which is the focus of this paper.

60 The rest of this paper assumes some familiarity with Haskell and is structured
e as follows. Section 2 gives a brief overview of the relevant features of Pawns
e and Section 3 describes a simple “core” language which source programs are
&3 translated into. Section 4 describes the abstract domain used for sharing analysis
¢« algorithm, Section 5 defines the algorithm itself and Section 6 gives an extended
es example. Section 7 briefly discusses precision and efficiency issues. Section 8
s discusses related work and Section 9 concludes.

¢ 2 An overview of Pawns

e A more detailed introduction to Pawns is given in [1]. Pawns has many simi-
¢ larities with other functional languages. It supports algebraic data types with
70 parametric polymorphism, higher order programming and curried function defi-
7 nitions. It uses strict evaluation. In addition, it supports destructive update via
2 “references” (pointers) and has a variety of extra annotations to make impure
7 effects more clear from the source code and allow them to be encapsulated in
7+ pure code. Pawns also supports a form of global variables (called state variables)
7 which support encapsulated effects, but we do not discuss them further here as
7 they are handled in essentially the same way as other variables in sharing analy-
77 sis. Pure code can be thought of in a declarative way, were values can be viewed
7 abstractly, without considering how they are represented. Code which uses de-
7 structive update must be viewed at a lower level, considering the representation
s of values, including sharing. We discuss this lower level view first, then briefly

! Disciple uses “region” information to augment types, with similar consequences.
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a1 present how impurity can be encapsulated to support the high level view. We
& use Haskell-like syntax for familiarity.

s 2.1 The low level view

s« Values in Pawns are represented as follows. Constants (data constructors with
s 10 arguments) are represented using a value in a single word. A data constructor
s with N > 0 arguments is represented using a word that contains a tagged pointer
ez to a block of N words in main memory containing the arguments. For simple
s data types such as lists the tag may be empty. In more complex cases some
s bits of the pointer may be used and/or a tag may be stored in a word in main
o memory along with the arguments. Note that constants and tagged pointers
o1 are not always stored in main memory and Pawns variables may correspond to
o registers that contain the value. Only the arguments of data constructors are
o3  guaranteed to be in main memory. An array of size N is represented in the same
w way as a data constructor with N arguments, with the size given by the tag.
s Functions are represented as either a constant (for functions which are known
o statically) or a closure which is a data constructor with a known function and a
o7 number of other arguments.

98 Pawns has a Ref t type constructor, representing a reference/pointer to a
o value of type t (which must be stored in memory). Conceptually we can think of
w0 a corresponding Ref data constructor with a single argument, but this is never
1w explicit in Pawns code. Instead, there is an explicit dereference operation: *vp
102 denotes the value vp points to. There are two ways references can be created:
03 let bindings and pattern bindings. A let binding *vp = val allocates a word
0« in main memory, initializes it to val and makes vp a reference to it (Pawns
s omits Haskell’s let and in keywords; the scope is the following sequence of
s statements/expressions). In a pattern binding, if *vp is the argument of a data
w7 constructor pattern, vp is bound to a reference to the corresponding argument
s of the data constructor if pattern matching succeeds (there is also a primitive
1o which returns a reference to the i*" element of an array). Note it is not possible
1o to obtain a reference to a Pawns variable: variables do not denote memory lo-
m  cations. However, a variable vp of type Ref t denotes a reference to a memory
uz2 location containing a value of type t and the memory location can be destruc-
us  tively updated by *vp := val.

114 Consider the following code. Two data types are defined. The code creates a
us  reference to Nil (Nil is stored in a newly allocated memory word) and a reference
us  to that reference (a pointer to the word containing Nil is put in another allocated
uwr word). It also creates a list containing constants Blue and Red (requiring the
us allocation of two cons cells in memory; the Nil is copied). It deconstructs the
uo list to obtain pointers to the head and tail of the list (the two words in the first
o cons cell) then destructively updates the head of the list to be Red.

121 data Colour = Red | Green | Blue
122 data Colours = Nil | Cons Colour Colours -- like List Colour
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123

124 *np = Nil -- np = ref to (copy of) Nil

125 *npp = np -- npp = ref to (copy of) np
126 cols = Cons Blue (Cons Red *np) -- cols = [Blue, Red]

127 case cols of

128 (Cons #*headp *tailp) -> -- get ref to head and tail

120 xheadp := Red -- update head with Red

130 The memory layout after the assignment can be pictured as follows, where

1 boxes represent main memory words and Ref and Cons followed by an arrow
132 represent pointers (no tag is used in either case):

cols = Consiﬂ Red I Cons#—ﬂ Red I Nil \

Ref/ np = Ref4>

headp =
tailp = Ref npp = Ref —— | Ref
133
134 The destructive update above changes the values of both headp and cols

s (the representations are shared). One of the novel features of Pawns is that the
s source code must be annotated with “!” to make it obvious when each “live”
w  variable is updated. If both headp and cols are used later, the assignment
13 statement above must be written as follows, with headp prefixed with “!” and
1o an additional annotation attached to the whole statement indicating cols may
1 be updated:

141 xlheadp := Red !cols -- update *headp (and cols)

142 We say that the statement directly updates headp and indirectly updates
w3 cols, due to sharing of representations. Similarly, if headp was passed to a
us  function which may update it, additional annotations are required. For example,
us (assign !'headp Red) !cols makes the direct update of headp and indirect
us update of cols clear. Sharing analysis is used to ensure that source code contains
w7 all the necessary annotations. One aim of Pawns is that any effects of code should
ug  be made clear by the code. Pawns is an acronym for Pointer Assignment With
1 No Surprises.

150 Pawns functions have extra annotations in type signatures to document which
151 arguments may be updated. For additional documentation, and help in sharing
12 analysis, there are annotations to declare what sharing may exist between ar-
153 guments when the function is called (a precondition) and what extra sharing
15 may be added by executing the function (called a postcondition, though it is the
155 union of the pre- and post-condition which must be satisfied after a function is
15 executed). For example, we may have:

57 assign :: Ref t >t > ()

158 sharing assign !p v = _ -- p may be updated
150 pre nosharing —-- p&v don’t share when called
160 post *p = v —-- assign may make *p alias with v
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161 As well as checking for annotations on assignments and function calls, sharing
12 analysis is used to check that all arguments which may be updated are anno-
163 tated in type signatures, and pre- and post-conditions are always satisfied. For
e example, assuming the previous code which binds cols, the call assign !'tailp
s !cols annotates all modified variables but violates the precondition of assign
166 because there is sharing between tailp and cols at the time of the call. Violat-
17 ing this precondition allows cyclic structures to be created, which is important
s for understanding the code. In general, there is an inter-dependence between “!”
169 annotations in the code and pre- and post-conditions. More possible sharing at
w  a call means more “!” annotations are needed, more sharing in (recursive) calls
w1 and more sharing when the function returns.

172 Curried functions and higher order code are supported by attaching sharing
w3 and destructive update information to each arrow in a type, though often the
7a information is inferred rather than being given explicitly in the source code. For
s example, implicit in the declaration for assign above is that assign called with
s a single argument of type Ref t creates a closure of type t -> () containing
v that argument (and thus sharing the object of type t). The explicit sharing
s information describes applications of this closure to another argument. There
e is a single argument in this application, referred to with the formal parameter
1o v. The other formal parameter, p, refers to the argument of the closure. In
w1 general, a type with N arrows in the “spine” has K + N formal parameters in
12 the description of sharing, with the first K parameters being closure arguments.
183 The following code defines binary search trees of integers and defines a func-
s tion which takes a pointer to a tree and inserts an integer into the tree. It
15 uses destructive update, as would normally be done in an imperative language.
185 The declarative alternative must reconstruct all nodes in the path from the
17 root down to the new node. Experiments using our prototype implementation
188 of Pawns indicate that for long paths this destructive update version is as fast
189 as hand-written C code whereas the “pure” version is more than twenty times
10 slower, primarily due to the overhead of memory allocation.

11 data Tree = Empty | Node Tree Int Tree

12 bst_insert_du :: Int -> Ref Tree -> ()

103 sharing bst_insert_du x !tp = _ -- tree gets updated
104 pre nosharing -- integers are atomic so
105 post nosharing -- it doesn’t share
196 bst_insert_du x !tp =

107 case *tp of

108 Empty ->

199 *!tp := Node Empty x Empty -- insert new node

200 (Node *1p n *rp) ->

201 if x <= n then

202 (bst_insert_du x !lp) !tp -- update 1lp (and tp)
203 else

204 (bst_insert_du x 'rp) !tp -- update rp (and tp)
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2s 2.2 The high level view

206 Whenever destructive update is used in Pawns, programmers must be aware of
27 potential sharing of data representations and take a low level view. In other
28 cases it is desirable to have a high level view of values, ignoring how they are
200 represented and any sharing which may be present. Pawns has a mechanism to
a0 indicate that such a high level view is taken. Pre- and post-conditions can specify
an sharing with a special pseudo-variable named abstract?. No variables which
a1z share with abstract can be destructively updated. Pawns type signatures which
213 have no annotations concerning destructive update or sharing implicitly indicate
24 no arguments are destructively updated and the arguments and result share with
25 abstract. Thus a subset of Pawns code can look like and be considered as pure
26 functional code.

217 The following code defines a function which takes a list of integers and returns
218 a binary search tree containing the same integers. Though it uses destructive up-
219 date internally, this impurity is encapsulated and it can therefore be viewed as
20 a pure function. The list which is passed in as an argument is never updated.
21 An initially empty tree is created locally. It is destructively updated by inserting
22 each integer of the list into it (using list_bst_du, which calls bst_insert_du),
23 then the tree is returned. Within the execution of 1ist_bst it is important to
2¢ understand the low level details of how the tree is represented, but this informa-
25 tion is not needed outside the call. The sharing analysis of the Pawns compiler
26 allows a distinction between “abstract” variables, which cannot be updated, and
27 “concrete” variables which can be updated. Sharing of concrete variables must
»s  be considered and explicitly documented by the programmer.

20 data Ints = Nil | Cons Int Ints

230

231 list_bst :: Ints -> Tree -- pure function from Ints to Tree

22 —— implicit sharing information:

233 —— sharing list_bst xs =t

24 —— pre Xs = abstract

235 —— post t = abstract

26 list_bst xs =

237 *tp = Empty -—- create pointer to empty tree

238 list_bst_du xs !tp -- insert integers into tree, updating it
239 *tp —— return tree

2 There is conceptually a different abstract variable for each distinct type.
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20 list_bst_du :: Ints -> Ref Tree -> ()

241 sharing list_bst_du xs !tp = _ -- tree gets updated
242 pre xs = abstract
243 post nosharing

24 list_bst xs =
s list_bst_du xs !tp =

246 case xs of

247 (Cons x xs1) ->

248 bst_insert_du x !tp -- insert head of list into tree
249 list_bst_du xsl1 !tp -- insert rest of list into tree
250 Nil -> (O

s 3 Core Pawns

2 An early pass of the Pawns compiler converts all function definitions into a
3 core language by flattening nested expressions, introducing extra variables et
x4 cetera. A variable representing the return value of the function is introduced and
25 expressions are converted to bindings for variables. A representation of the core
»6  language version of code is annotated with type, liveness and other information
7 prior to sharing analysis. We just describe the core language here. The right side
258 of each function definition is a statement (described using the definition of type
20 Stat below), which may contain variables, including function names (Var), data
20 constructors (DCons) and pairs containing a pattern (Pat) and statement for
21 case statements. All variables are distinct except for those in recursive instances
»%2 of Stat and variables are renamed to avoid any ambiguity due to scope.

%3 data Stat = —-- Statement, eg

264 Seq Stat Stat | -- statl ; stat2

265 EqVar Var Var | -—v=uvl

266 EqDeref Var Var | -— v = xvl

267 DerefEq Var Var | —-— xv = vl

268 DC Var DCons [Var] | -- v = Cons vl v2

260 Case Var [(Pat, Stat)] | -- case v of patl -> statl

270 Error | -- (for uncovered cases)

271 App Var Var [Var] | -—v =1 vl v2

212 Assign Var Var | -— *xly := vl

273 Instype Var Var -- v = vl::instance_of_v1_type
274

s data Pat = -- patterns for case, eg

276 Pat DCons [Var] -- (Cons *v1 *v2)

277 Patterns in the core language only bind references to arguments — the ar-

s guments themselves must be obtained by explicit dereference operations. Pawns
a9 supports “default” patterns but for simplicity of presentation here we assume all
20 patterns are covered in core Pawns and we include an error primitive. Similarly,
2 we just give the general case for application of a variable to N > 0 arguments;
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22 our implementation distinguishes some special cases. Memory is allocated for
23 DerefEq, DC (for non-constants) and App (for unsaturated applications which
28 result in a closure).

285 Sharing and type analysis cannot be entirely separated. Destructive update in
26 the presence of polymorphic types can potentially violate type safety or “preser-
27 vation”. For a variable whose type contains a type variable, we must avoid de-
xs  structive update with a value with a less general type. For example, in *x = []
20 the type of x is Ref [t]. If *x is assigned [42], of type [Int], passing it to a
20 function which expects a [Bool] violates type safety. Pawns allows expressions
201 to have their inferred types further instantiated using “::”, and the type checking
22 pass of the compiler also inserts some type instantiation. The type checking pass
203 ensures that direct update does not involve type instantiation but to improve
200 flexibility, indirect update is checked during the sharing analysis.

»s 4 The abstract domain

26 The representation of the value of a variable includes some set of main memory
207 words (arguments of data constructors). Two variables share if the intersection
28 Of their sets of main memory words is not empty. The abstract domain for
200 sharing analysis must maintain a conservative approximation to all sharing, so
w0 we can tell if two variables possibly share (or definitely do not share). The
sn  abstract domain we use is a set of pairs (representing possibly intersecting sets
32 of main memory locations) of variable components. The different components of
s a variable partition the set of main memory words for the variable.

304 The components of a variable depend on its type. For non-recursive types
;s other than arrays, each possible data constructor argument is represented sep-
s arately. For example, the type Maybe (Maybe (Either Int Int)) can have an
sr - argument of an outer Just data constructor, an inner Just and Left and Right.
s A component can be represented using a list of x.y pairs containing a data con-
s structor and an argument number, giving the path from the outermost data con-
a0 structor to the given argument. For example, the components of the type above
su  can be written as: [Just.1], [Just.1,Just.1], [Just.1,Just.1,Left.1] and
sz [Just.1,Just.1,Right.1]. If variable v has value Just Nothing, the expres-
a1z sion v. [Just.1] represents the single main memory word containing the occur-
s rence of Nothing.

315 For Ref t types we proceed as if there was a Ref data constructor, so
a6 vp. [Ref.1] represents the word vp points to. For function types, values may
siz be closures. A closure which has had K arguments supplied is represented as a
sis  data constructor Clx with these K arguments; these behave in the same way as
s other data constructor arguments with respect to sharing. Closures also contain
20 a code pointer and an integer which are not relevant to sharing so we ignore them
s here. We also ignore the subscript on the data constructor for sharing analysis
2 because type and sharing analysis only give a lower bound on the number of clo-
w3 sure arguments. Our analysis orders closure arguments so that the most recently
2« supplied argument is first (the reverse of the more natural ordering).
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325 For arrays, [Array_.1] is used to represent all words in the array. The ex-
a6 pression, x. [Array_.1,Just.1] represents the arguments of all Just elements
w7 in an array x of Maybe values. For recursive types, paths are “folded” [5] so there
»s are a finite number of components. If a type T has sub-component(s) of type
2o T we use the empty path to denote the sub-component(s). In general, we con-
a0 struct a path from the top level and if we come across a sub-component of type T'
s which is in the list of ancestor types (the top level type followed by the types of
s elements of the path constructed so far) we just use the path to the ancestor to
a3 represent the sub-component. Consider the following mutually recursive types:

;32 data RTrees = Nil | Cons RTree RTrees
333 data RTree = RNode Int RTrees

336 For type RTrees we have the components [] (this folded path represents both
s [Cons.2] and [Cons.1,RNode.2], since they are of type RTrees), [Cons.1]
33 and [Cons.1,RNode.1]. The expression t.[Cons.1,RNode.1] represents the
a9 set of memory words which are the first argument of RNode in variable t of type
a0 RTrees. For type RTree we have the components [] (for [RNode.2,Cons.1],
s of type RTree), [RNode.1] and [RNode.2] (which is also the folded version of
2 [RNode.2,Cons.2], of type RTrees). In our sharing analysis algorithm we use
w3 a function fc (fold component) which takes a v.c pair, and returns v.c’ where
ss ' is the correctly folded component for the type of variable v. For example,
us fc (ts.[Cons.2]) = ts.[], assuming ts has type RTrees.

346 As well as containing pairs of components for distinct variables which may
a7 alias, the abstract domain contains “self-sharing” pairs for each possible compo-
us  nent of a variable which may exist. Consider the following two bindings:

349 t = RNode 2 Nil
350 ts = Cons t Nil
351 With our domain, the most precise description of sharing after these two

2 bindings is as follows. We represent a sharing pair as a set of two variable com-
i3 ponents. The first five are self-sharing pairs and the other two describe the
s sharing between t and ts.

355 {{t.[RNode.1], t.[RNode.11},

356 {t.[RNode.2], t.[RNode.2]},

357 {ts.[], ts.[1},

358 {ts.[Cons.1], ts.[Cons.1]},

350 {ts.[Cons.1,RNode.1], ts.[Cons.1,RNode.1]},

360 {t.[RNode.1], ts.[Cons.1,RNode.1]},

361 {t.[RNode.2], ts.[]1}}

362 Note there is no self-sharing pair for t.[] since there is no strict sub-part

3 of t which is an RTree. Similarly, there is no sharing between ts. [Cons.1] and
e any part of t. Although the value t is used as the first argument of Cons in
s ts, this is not a main memory word which is used to represent the value of t
w6 (indeed, the value of t has no Cons cells). The tagged pointer value stored in
s7 variable t (which may be in a register) is copied into the cons cell.
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10

w © The sharing analysis algorithm

0 We now describe the sharing analysis algorithm. Overall, the compiler attempts
s to find a proof that for a computation with a depth D of (possibly recursive)
sn function calls, the following condition C holds, assuming C' holds for all compu-
sz tations of depth less than D. This allows a proof by induction that C holds for
sz all finite computations.

s C: For all functions f, if the precondition of f is satisfied whenever f is called,
s then

s 1. for all function calls and assignment statements in f, any live variable that
377 may be updated at that point in an execution of f is annotated with “!”]
srs 2. there is no update of live “abstract” variables when executing f,

so 3. the union of the pre- and post-conditions of f is satisfied when f returns,
w0 4. all parameters of f which may be updated when executing f are declared
381 mutable in the type signature of f,

2 5. for all function calls and assignment statements in f, any live variable that
383 may be directly updated at that point is updated with a value of the same
384 type or a more general type, and

ss 6. for all function calls and assignment statements in f, any live variable that
386 may be indirectly updated at that point does not share with any variable
387 which has a less general type.

388 The algorithm is applied to each function definition in core Pawns to com-

;0 pute an approximation to the sharing before and after each statement (we call
30 it the alias set). This can be used to check points 1-3 and 6 above and that
s preconditions of called functions are satisfied, so the induction hypothesis can
s be used. Point 4 is established using point 1 and a simple syntactic check that
33 any parameter of f which is annotated “!” in the definition is declared mutable
s in the type signature (parameters are considered live throughout the definition).
s Point 5 relies on 4 and the type checking pass. The core of the algorithm is to
s compute the alias set after a statement, given the alias set before the statement.
se7  This is applied recursively for compound statements.

308 The alias set used at the start of the definition is the precondition of the
s0  function. This implicitly includes self-sharing pairs for all variable components of
w0 the arguments of the function and the pseudo-variables abstracty for each type
s T used. Similarly, the postcondition implicitly includes self-sharing pairs for all
w2 components of the result (and the abstracts variable if the result is abstract)3.
w3 As analysis proceeds, extra variables from the function body are added to the
a0¢ alias set and variables which are no longer live can be removed to improve
ws efficiency. The alias set computed for the end of the definition, with sharing for
ws local variables removed, must be a subset of the union of the pre- and post-
w07 condition of the function. We assume type information is given for all variables
w8 (a type checking/inference pass is completed before sharing analysis) and sharing

3 Self-sharing for arguments and results is usually desired. For the rare cases it is not,
we may provide a mechanism to override this default in the future.
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11

w0 information is given for all type instances of all (possibly polymorphic) defined
a0 functions. All type variables in type assignments in the function definition are
a1 replaced by Ref (). This type has a single component which can be shared to
a2 represent possible sharing of arbitrary components of an arbitrary type. Finally,
a3 we assume there is no type which is an infinite chain of refs, for example, type
ns Refs = Ref Refs (for which type folding results in an empty component rather
a5 than a [Ref.1] component; this is not a practical limitation).

a16 Suppose ag is the alias set just before statement s. The following algo-
ar  rithm computes alias(s, ap), the alias set just after statement s. The algorithm
as structure follows the recursive definition of statements and we describe it using
a0 psuedo-Haskell, interspersed with brief discussion. At some points we use high
a0 level declarative set comprehensions to describe what is computed and naive
a1 implementation may not lead to the best performance.

alias (Seq statl stat2) a0 = -- statl; stat2
alias stat2 (alias statl a0)

alias (EqVar vl v2) a0 = -- vl =v2
let

selfl = {{vi.c,vl.c}|{v2.c,v2.c} € a0}
sharel = {{vl.ci,v.co}|{v2.c1,v.co} € a0}
in
a0 U selfl U sharel
alias (DerefEq vl v2) a0 = -- *vl = v2
let
selfl = {{v1.[Ref.1],v1.[Ref.1]}} U
{{fc(vi.(Ref.1:¢)),fc(vi.(Ref.1 :¢))} | {v2.c,v2.c} € a0}
sharel = {{fc(vl.(Ref.l:c1)),v.ca} | {v2.c1,v.co} € a0}
in
a0 Uselfl U sharel

422 Sequencing is handled by function composition. To bind a fresh variable v1 to
23 a variable v2 the self-sharing of v2 is duplicated for v1 and the sharing for each
a2 component of v2 is duplicated for v1. Binding *v1 to v2 is done in a similar way,
5 but the components of v1 must have Ref.1 prepended to them and the result
w6 folded, and the [Ref.1] component of v1 self-shares.

alias (Assign v1 v2) a0 = -— *vl := v2
let
selfl = {{vl.[Ref.1],v1.[Ref.1]}} U
{{fc(v1.(Ref.1:¢)),fc(vi.(Ref.1:¢c))} | {v2.c,v2.c} € a0}
sharel = {{fc(vl.(Ref.1:c1)),v.ca} | {v2.c1,v.co} € a0}
-- al = possible aliases for vl.[Ref.1]
al = {v4.¢q | {v1.[Ref.1],v,.c.} € a0}
-- (live variables in al+vl must be annotated with !
-- and must not share with abstract)
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selfal = {{fc(v,.(ca++c)),fc(vy.(ca++c))} |
Vg-Cq € a1l A {v2.c,v2.c} € a0}

shareal = {{fc(v,.(ca++c1)),v.co} |
Vg.Cq € @l A {v2.c1,v.c0} € a0} U
{{fc(vq.(cat++c)), fc(vi.(Ref.1 :¢))} |
Vg.Cq € a1l A {v2.c,v2.c} € a0}
—- 0ldl = old aliases for v1, which can be removed

-- if the assignment doesn’t create a cyclic structure
oldl = {{vl.c;,v.co} | {vl.c1,v.co} € a0}
in if Je {v1.[Ref.1],v2.c} € a0 then
a0 U selflUsharel Uselfal Ushareal
else
(a0 \ 0ld1l) Uselfl U sharel Uselfal Ushareal

27 Assignment to an existing variable *v1 adds the same sharing as for binding
w8 a fresh variable, but there are two extra complications. First, *v1 may be an alias
2o for components of other variables (the live subset of these variables and v1 must
w0 be annotated with “!” on the assignment statement; checking such annotations is
w1 a primary purpose of the sharing analysis). All these variable components must
42 have the same sharing added as *v1. The components must be concatenated
a3 and folded appropriately. Second, if the assignment does not create a cyclic
sa  structure the existing sharing for v1 can safely be removed, improving precision.
a5 It is sufficient to check if any component of v2 aliases with v1. [Ref.1].

alias (DC v dc [vy,...vn]) a0 = --— v =Dc vi...vN
let
selfl = |J;o,cny({fc(v.[dc.i]), fc(v.[de.d])} U
- {{fc(v.(dc.i:c)), fc(v.(dc.ize)} | {vi.c,vi.c} € a0})
sharel = |J;.,oy{{fc(v.(dc.izc1)),w.co} | {vs.c1,w.co} € a0}
in
a0 U selfl U sharel

436 The DerefEq case can be seen as equivalent to vl = Ref v2 and binding a
.7 variable to a data constructor with /N variable arguments is a generalisation.

alias (EgqDeref vl v2) a0 = -— vl = *v2
let
selfl = {{vli.c,vl.c}|{v2.(Ref.1:c),v2.(Ref.1:c)} € a0}
sharel = {{vl.ci,v.ca} | {v2.(Ref.1:c1),v.co} € a0}
emptyl {{v1.0,v.c} | {vl.[],v.c} € (selfl U sharel)}
in

if the type of vl has a [] component then
a0 Uselfl U sharel

else ——- avoid bogus sharing with empty component
(a0 U selfl U sharel) \ emptyl
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43 The EgDeref case is similar to the inverse of DerefEq in that we are removing
19 Ref.1 rather than prepending it. However, if the empty component results we
s must check that such a component exists for the type of vi.

alias (App v £ [v1,...vn]1) a0 = -—v=1Ffvl...vN
let
“f(wi,... wxg+n) =77 is used to declare sharing for f
post = the postcondition of f along with the sharing for
mutable arguments from the precondition,
with parameters and result renamed with
f.[C1.K],...£.[C1.1],vy,...vN and v, respectively
postt = {{1’1.61,1’3.63} | {1'1.61,1‘2.02} € post A {L]’Jg.CQ,IIIg.Cg} S aO}
-- (the renamed precondition of f must be a subset of a0,
-- and mutable arguments of f and live variables they share
-— with must be annotated with ! and must not share with
-- abstract)
-- selfc+sharec not needed for saturated applications
selfc = {{v.[cLi],v.[cLi]}|1<i< N} U
{{v.((C1.1) :¢),v.((CL.1) :¢)} |
1<i< NA{v;.cv;.c)} €a0} U
{{v.(C1.(1 +N)) :¢), v.(CL.(i +N)) :¢)} |
{£.(C1.i) :¢),£.(CL.i) :¢)} € a0}
sharec = {{v.(Cl.i):¢1),z.co} |
1<i< NA{v;.c1,z.c0)} €a0} U
{{v.(CL.(i +N)) :c1), z.ca} |
{£.(C1.1) :c1),z.ca} € a0}
in
a0 Upostt Uselfc U sharec

aa1 Function application relies on the sharing information attached to all arrow
w2 types. Because Pawns uses the syntax of statements to express pre- and post-
w3 conditions, our the implementation uses the sharing analysis algorithm to derive
ws an explicit alias set representation (currently this is done recursively, with the
ws level of recursion limited by the fact than pre- and post-conditions must not
ss  contain function calls). Here we ignore the details of how the alias set represen-
a7 tation is obtained. The compiler also uses the sharing information to check that
ws preconditions are satisfied, all required “!” annotations are present and abstract
w0 variables are not modified.

450 The main thing done for function application is to add the declared post-
w1 condition of the function, renamed appropriately. The N arguments of the call
w2 replace the last N formal parameters and v replaces the formal result. The first
3 K formal parameters represent closure arguments of f, so those variables are
s replaced with £ and the components are prefixed with the prepresentation for a
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w5 closure argument. As well as the declared postcondition, sharing for the mutable
a6 arguments of the precondition must be included. The analysis of a function def-
7 inition guarantees than the union of pre- and post-conditions are satisfied when
s the function returns (assuming the precondition is satisfied initially), but execu-
40 tion cannot add sharing between non-mutable arguments so it is not added here.
w0 Thus by not including preconditions in the declared postconditions, precision is
w1 improved. It is also necessary to include one step of transisitivity in the sharing
42 information: if the renamed postcondition introduces sharing between variable
w3 components x1.c; and xo.co and before the function call x5.co shared with z3.c3
¢ we add sharing between x1.c; and x3.cs.

465 For some calls we can know statically than a closure cannot result, but in gen-
w6 eral we must assume that a closure is created and the first IV closure arguments
w7 share with the IV arguments of the function call and any closure arguments of £
ws share with additional closure arguments of the result (this requires renumbering
w0 of these arguments).

alias Error a0 = () -- error
alias (Case v [(p1,s1),...(pn,sn)]) a0 = —-- case v of
let
old = {{v.c1,va.co} | {v.c1,v2.c2} € a0}
in

U1<i<N aliasCase a0 old v p; s;

aliasCase a0 av v (Pat dc [vy,...vn]) s = -- (Dc *vi...*vN) -> s
let
avdc = {{fc(v.(dc.i:c1)),w.ca}|{fc(v.(dc.i 1)), w.c2} € av}
rself = {{v;.[Ref.1],v;.[Ref.1]} |1 <i< N}
vishare = {{fc(v;.(Ref.1:¢;)),fc(v;.(Ref.1:c2))} |
{fc(v.(dec.i :¢1)), fc(v.(dec.j iea))} € av}
share = {{fc(v;.(Ref.1:¢1)),w.co} | {fc(v.(dc.i:c1)),w.c2))} € av}
in
alias s (rself Uvishare U share U (a0 \ av) U avdc)

an0 For a case expression we return the union of the alias sets obtained for each of
an  the different branches. For each branch we only keep sharing information for the
a2 variable we are switching on which is compatible with the data constructor in
a3 that branch (we remove all the old sharing, av, and add the compatible sharing,
s avdc). Note we use a high level declarative definition for avde (and other vari-
w5 ables) which implicitly uses the inverse of fc. To deal with individual data con-
a6 structors we consider pairs of components of arguments 7 and j which may alias
a7 in order to compute possible sharing between v; and v, including self-sharing
s when ¢ = j. The corresponding component of v; (prepended with Ref and folded)
sv  may alias the component of v;. For example, if v of type RTrees is matched with
s Cons *v1 *v2 and v.[] self-shares, we need to find the components which fold
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s tov.[] (v.[Cons.2] and v. [Cons.1,RNode.2]) in order to compute the sharing
a2 for v2 and v1. Thus we compute that fc(v2. [Ref.1,Cons.2]) = v2. [Ref.1]
43 may alias vl. [Ref.1,Cons.1,RNode.2], which can occur if the data structure is
s cyclic. The DC case cannot introduce cycles as the variable on the left is distinct
w5 from the variables in the right but Assign can introduce cycles.

alias (Instype vl v2) a0 = -— vl = v2::t
alias (EqVar v1 v2) a0
-- (if any sharing is introduced between vl and v2,
-- v2 must not be indirectly updated later while live)

a6 Type instantiation is dealt with in the same way as variable equality, with
w7 the additional check that if any sharing is introduced, the variable with the more
w8 general type is not implicitly updated later while still live (it is sufficient to check
w9 there is no “!v2” annotation attached to a later statement).

« 6 Example

21 We now show how this sharing analysis algorithm is applied to the binary search
w2 tree code given earlier. We give a core Pawns version of each function and the
w03 alias set before and after each statement, plus an additional set at the end which
204 is the union of the pre- and post-conditions of the function. To save space,
15 we write the alias set as a set of sets where each inner set represents all sets
ws  containing exactly two of its members. Thus {{a,b,c}} represents a set of six
a7 sharing pairs: sharing between all pairs of elements, including self-sharing. The
ws return value is given by variable ret and variables absL and absT are the versions
s of abstract for type Ints and Tree, respectively.

soo list_bst xs = -0
501 vl = Empty -1
502 *tp = vl - 2
503 list_bst_du xs !tp -3
504 ret = *tp -— 4
505 We start with the precondition: ag = {{xs.[Cons.1], absL.[Cons.1]},

ss  {xs.[], absL.[]1}}. Binding to a constant introduces no sharing so a; = ao.
s ag = ap U {tp. [Ref.1]1}. The function call has precondition agU{{tp. [Ref .11},
ss  {tp.[Ref.1,Node.2]}}, which is a superset of ag. Since tp is a mutable ar-
s0 gument the precondition sharing for tp is added: as = as U {{tp.[Ref.1,
sio Node.2]}}. The final sharing includes the return variable, ret: a4 = ag U
su {{ret.[],tp.[Ref.11}, {ret.[Node.2],tp.[Ref.1,Node.2]}}. After remov-
sz ing sharing for the dead (local) variable tp we obtain a subset of the union of
si3 the pre- and post-conditions, which is agU{{ret. []1,absT. [1}, {ret. [Node.2],
su  absT. [Node.2]}}.
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si5 list_bst_du xs !tp = -0
516 case xs of

517 (Cons *v1 *v2) -> -1
518 x = *vl -— 2
519 xsl = *v2 -3
520 v3 = bst_insert_du x !tp -- 4
521 v4d = list_bst_du xsl1 !tp -- 5
522 ret = v4 -- 6
523 Nil -> -7
524 ret = () -- 8
525 -- after case -— 9
526 We start with the precondition, ap = {{tp. [Ref.1]}, {tp. [Ref.1,Node.2]},

s2v {xs.[Cons.1],absL. [Cons.1]}, {xs.[],absL.[1}}. The Cons branch of the
s2s  case introduces sharing for v1 and v2: a; = ag U {{xs. [Cons. 1], absL. [Cons. 1],
s0 vl.[Ref.1], v2.[Ref.1,Cons.1]1}, {v2.[Ref.1], xs.[], absL.[1}}. The list
s0 elements are atomic so as = a;1. The next binding makes the sharing of xs1 and
sn  xs the same: a3 = as U {{v2.[Ref.1], xs.[1,xs1.[],absL.[1},{vl.[Ref.1],
s xs.[Cons.1], xs1.[Cons.1], absL. [Cons.1], v2. [Ref.1,Cons.1]}}. This can
s be simplified by removing the dead variables v1 and v2. The precondition of the
s calls are satisfied and ag = a5 = a4 = a3. For the Nil branch we remove the in-
s compatible sharing for xs from ag: a7 = {{tp. [Ref.1]}, {tp. [Ref.1,Node.2]},
s {absL. [Cons.1]}, {absL. [1}} and ag = ay. Finally, ag = agUasg. Ignoring local
ss7  variables, this is a subset of the union of the pre- and post-conditions, ag.

s33 bst_insert_du x !tp = --0
539 vl = *tp -1
540 case vl of

541 E‘.mpty -> -— 2
542 v2 = Empty -—- 3
543 v3 = Empty -—- 4
544 v4 = Node v2 x v3 -- 5
545 *ltp := vd -- 6
546 ret = () -7
547 (Node #*1p *v5 *rp) -> -8
548 n = *vb -9
549 v6 = (x <= n) -- 10
550 case v6 of

551 True -> - 11
552 v7 = (bst_insert_du x !lp) !tp -- 12
553 ret = v7 -- 13
554 False -> -- 14
555 v8 = (bst_insert_du x !rp) !tp -- 15
556 ret = v8 -- 16
557 -— end case -- 17
558 -- end case -- 18
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559 Here ag = {{tp. [Ref.1]}, {tp. [Ref.1,Node.2]}} and a; = ao U {{v1.[],
s0o tp.[Ref.1]}, {tp.[Ref.1,Node.2], v1. [Node.2]}}. For the Empty branch we
s remove the vl sharing so ay = a3 = as = ap and a5 = ay U {{v4.[1},
s {v4.[Node.2]}}. After the destructive update, ag = asU{{v4. [], tp. [Ref .11},
ss  {v4.[Node.2], tp. [Ref.1,Node.2]}} (v4 is dead and can be removed) and a7 =
se¢  ag. For the Node branch we have ag = a3 U {{v1.[1, tp. [Ref.1], 1p. [Ref.1],
ss rp.[Ref.1]}, {tp. [Ref.1,Node.2],1p. [Ref.1,Node.2], rp. [Ref.1,Node.2],
se6  v5.[Ref.1], vl.[Node.2]}}. The same set is retained for ag...a17 (assuming
ssv the dead variable v5 is retained), the preconditions of the function calls are sat-
sss  isfied and the required annotations are present. Finally, a1 = a17 U a7 and after
ss0  eliminating local variables we get the postcondition, which is the same as the
s precondition.

sn 7 Discussion

s It is inevitable we lose some precision with recursion in types. However, it seems
si3 that some loss of precision could be avoided relatively easily. The use of the
st empty path to represent sub-components of recursive types results in imprecision
ss when references are created. For example, the analysis of *vp = Nil; v = *vp
ste  concludes that the empty component of v may share with itself and the Ref
s component of vp (in reality, v has no sharing). Instead of the empty path, a
ss - dummy path of length one could be used. A more agressive approach would be
s to unfold the recursion an extra level, at least for some types. This could allow
so0  US to express (non-)sharing of separate subtrees and whether data structures
ss1 are cyclic, at the cost of more variable components and more complex pre- and
s postconditions.

583 Increasing the number of variable components also affects efficiency. The al-
ssa  gorithmic complexity is affected by the representation of alias sets. Currently we
sss Use a naive implementation, using just ordered pairs of variable components as
sss  the set elements and a set library which uses an ordered binary tree. The size of
ss7 the set can be O(N?), where N is the maximum number of live variable compo-
s,s nents of the same type at any program point (each such variable component can
0 share with all the others). In typical code the number of live variables at any
s point is not particularly large. If the size of alias sets does become problematic,
s a more refined set representation could be used, such as the set of sets of pairs
s representation we used in Section 6, where sets of components which all share
s with each other are optimised. We have not stress tested our implementation as
s 1t is intended to be a prototype, but performance has not been concerning at
sos  this stage.

2 &8 Related work

s Related programming languages are discussed in [1]; here we restrict attention
se  to work related to the sharing analysis algorithm. The most closely related work
so9 is that done in the compiler for Mars [6], which extends similar work done for
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s0 Mercury [7] and earlier for Prolog [8]. All use a similar abstract domain based on
s the type folding method first proposed in [5]. Our abstract domain is somewhat
e2 more precise due to inclusion of self-aliasing, and we have no sharing for con-
e03 stants. In Mars it is assumed that constants other than numbers can share. Thus
s for code such as xs = [1; ys = xs our analysis concludes there is no sharing
s between xs and ys whereas the Mars analysis concludes there may be sharing.

606 One important distinction is that in Pawns sharing (and mutability) is de-
o7 clared in type signatures of functions so the Pawns compiler just has to check the
ws declarations are consistent, rather than infer all sharing from the code. However,
oo 1t does have the added complication of destructive update. As well as having to
s10  deal with the assignment primitive, it complicates handling of function calls and
su case statements (the latter due to the potential for cyclic structures). Mars,
ez Mercury and Prolog are essentially declarative languages. Although Mars has
613 assignment statements the semantics is that values are copied rather than de-
e1a  structively updated — the variable being assigned is modified but other variables
e1s  remain unchanged. Sharing analysis is used in these languages to make the im-
s plementation more efficient. For example, the Mars compiler can often emit code
617 to destructively update rather than copy a data structure because sharing anal-
618 ysis reveals no other live variables share it. In Mercury and Prolog the analysis
610 can reveal when heap-allocated data is no longer used, so the code can reuse or
&0 reclaim it directly instead of invoking a garbage collector.

621 These sharing inference systems use an explicit graph representation of the
e22 sharing behaviour of each segment of code. For example, code s; may cause
s sharing between (a component of) variables a and b (which is represented as
e¢ an edge between nodes a and b) and between ¢ and d and code so may cause
es sharing between b and ¢ and between d and e. To compute the sharing for the
¢26 sequence Si;so they use the “alternating closure” of the sharing for s; and s,
ez which constructs paths with edges alternating from s; and sg, for example a-b
e (from s1), b-c (from s3), c-d (from s1) and d-e (from s2).

629 The sharing behaviour of functions in Pawns is represented explicitly, by a
s pre- and postcondition and set of mutable arguments but there is no explicit
sun representation for sharing of statements. The (curried) function alias s rep-
62 resents the sharing behaviour of s and the sharing behaviour of a sequence of
63 statements is represented by the composition of functions. This representation
e has the advantage that the function can easily use information about the current
¢35 sharing, including self-sharing, and remove some if appropriate. For example, in
65 the [] branch of the case in the code below the sharing for xs is removed and
67 we can conclude the returned value does not share with the argument.

es map_const_1 :: [t] -> [Int]

630 sharing map_const_1 xs = ys pre nosharing post nosharing
640 map_const_1 xs =

641 case xs of

642 0 -> xs —-— can look like result shares with xs
643 (_:xs1) -> 1:(map_const_1 xs1)
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644 Given the extra precision that can be achieved, it may be worth attempt-
es ing to adapt our approach to inferring alias information in languages without
aas destructive update. There are other approches to and uses of alias analysis for
sr imperative languages, such as [9] and [10], but these are not aimed at precisely
es capturing information about dynamically allocated data. A more detailed dis-
eas cussion of such approaches is given in [6].

o 9 Conclusion

1 Purely declarative languages have the advantage of avoiding side effects, such
e2 as destructive update of function arguments. This makes it easier to combine
63 program components, but some algorithms are hard to code efficiently without
s flexible use of destructive update. A function can behave in a purely declarative
es  way if destructive update is allowed, but restricted to data structures which
es are created inside the function. The Pawns language uses this idea to support
o7 flexible destructive update encapsulated in a declarative interface. It is designed
ess  to make all side effects “obvious” from the source code. Because there can be
60 sharing between the representations of different arguments of a function, local
eo variables and the value returned, sharing analysis is an essential component of
e1 the compiler. It is also used to ensure “preservation” of types in computations.
ez Sharing analysis has been used in other languages to improve efficiency and to
o3 give some feedback to programmers but we use it to support important features
s Of the programming language.

665 The algorithm operates on (heap allocated) algebraic data types, including
es arrays and closures. In common with other sharing analysis used in declara-
o7 tive languages it supports binding of variables, construction and deconstruction
ses (combined with selection or “case”) and function/procedure calls. In addition,
60 it supports explicit pointers, destructive update via pointers, creation and ap-
e Pplication of closures and pre- and post-conditions concerning sharing attached
o1 to type signatures of functions. It also uses an abstract domain with additional
o2 features to improve precision.
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