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Abstract. Pawns is a programming language under development which8

supports algebraic data types, polymorphism, higher order functions and9

“pure” declarative programming. It also supports impure imperative fea-10

tures including destructive update of shared data structures via pointers,11

allowing significantly increased efficiency for some operations. A novelty12

of Pawns is that all impure “effects” must be made obvious in the source13

code and they can be safely encapsulated in pure functions in a way that14

is checked by the compiler. Execution of a pure function can perform15

destructive updates on data structures which are local to or eventu-16

ally returned from the function without risking modification of the data17

structures passed to the function. This paper describes the sharing analy-18

sis which allows impurity to be encapsulated. Aspects of the analysis are19

similar to other published work, but in addition it handles explicit point-20

ers and destructive update, higher order functions including closures and21

pre- and postconditions concerning sharing for functions.22

Keywords: functional programming language, destructive update, muta-23

bility, effects, algebraic data type, sharing analysis, aliasing analysis24

1 Introduction25

This paper describes the sharing analysis done by the compiler for Pawns [1], a26

programming language which is currently under development. Pawns supports27

both declarative and imperative styles of programming. It supports algebraic28

data types, polymorphism, higher order programming and “pure” declarative29

functions, allowing very high level reasoning about code. It also allows imperative30

code, where programmers can consider the representation of data types, obtain31

pointers to the arguments of data constructors and destructively update them.32

Such code requires the programmer to reason at a much lower level and consider33

aliasing of pointers and sharing of data structures. Low level “impure” code can34

be encapsulated within a pure interface and the compiler checks the purity. This35

requires analysis of pointer aliasing and data structure sharing, to distinguish36

data structures which are only visible to the low level code (and are therefore37

safe to update) from data structures which are passed in from the high level38

code (for which update would violate purity). The main aim of Pawns is to get39
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the benefits of purity for most code but still have the ability to write some key40

components using an imperative style, which can significantly improve efficiency41

(for example, a more than twenty-fold increase in the speed of inserting an42

element into a binary search tree).43

There are other functional programming languages, such as ML [2], Haskell44

[3] and Disciple [4], which allow destructive update of shared data structures45

but do not allow this impurity to be encapsulated. In these languages the ability46

to update the data structure is connected to its type1. For a data structure to47

be built using destructive update its type must allow destructive update and48

any code which uses the data structure can potentially update it as well. This49

prevents simple declarative analysis of the code and can lead to a proliferation50

of different versions of a data structure, with different parts being mutable.51

There is often an efficiency penality as well, with destructive update requiring52

an extra level of indirection in the data structure. Pawns avoids this inefficiency53

and separates mutablity from type information, allowing a data structure to54

be mutable in some contexts and considered “pure” in others. The main cost55

from the programmer perspective is the need to include extra annotations and56

information in the source code. This can also be considered a benefit, as they57

provide useful documentation and error checking. The main implementation cost58

is additional analysis done by the compiler, which is the focus of this paper.59

The rest of this paper assumes some familiarity with Haskell and is structured60

as follows. Section 2 gives a brief overview of the relevant features of Pawns61

and Section 3 describes a simple “core” language which source programs are62

translated into. Section 4 describes the abstract domain used for sharing analysis63

algorithm, Section 5 defines the algorithm itself and Section 6 gives an extended64

example. Section 7 briefly discusses precision and efficiency issues. Section 865

discusses related work and Section 9 concludes.66

2 An overview of Pawns67

A more detailed introduction to Pawns is given in [1]. Pawns has many simi-68

larities with other functional languages. It supports algebraic data types with69

parametric polymorphism, higher order programming and curried function defi-70

nitions. It uses strict evaluation. In addition, it supports destructive update via71

“references” (pointers) and has a variety of extra annotations to make impure72

effects more clear from the source code and allow them to be encapsulated in73

pure code. Pawns also supports a form of global variables (called state variables)74

which support encapsulated effects, but we do not discuss them further here as75

they are handled in essentially the same way as other variables in sharing analy-76

sis. Pure code can be thought of in a declarative way, were values can be viewed77

abstractly, without considering how they are represented. Code which uses de-78

structive update must be viewed at a lower level, considering the representation79

of values, including sharing. We discuss this lower level view first, then briefly80

1 Disciple uses “region” information to augment types, with similar consequences.
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present how impurity can be encapsulated to support the high level view. We81

use Haskell-like syntax for familiarity.82

2.1 The low level view83

Values in Pawns are represented as follows. Constants (data constructors with84

no arguments) are represented using a value in a single word. A data constructor85

with N > 0 arguments is represented using a word that contains a tagged pointer86

to a block of N words in main memory containing the arguments. For simple87

data types such as lists the tag may be empty. In more complex cases some88

bits of the pointer may be used and/or a tag may be stored in a word in main89

memory along with the arguments. Note that constants and tagged pointers90

are not always stored in main memory and Pawns variables may correspond to91

registers that contain the value. Only the arguments of data constructors are92

guaranteed to be in main memory. An array of size N is represented in the same93

way as a data constructor with N arguments, with the size given by the tag.94

Functions are represented as either a constant (for functions which are known95

statically) or a closure which is a data constructor with a known function and a96

number of other arguments.97

Pawns has a Ref t type constructor, representing a reference/pointer to a98

value of type t (which must be stored in memory). Conceptually we can think of99

a corresponding Ref data constructor with a single argument, but this is never100

explicit in Pawns code. Instead, there is an explicit dereference operation: *vp101

denotes the value vp points to. There are two ways references can be created:102

let bindings and pattern bindings. A let binding *vp = val allocates a word103

in main memory, initializes it to val and makes vp a reference to it (Pawns104

omits Haskell’s let and in keywords; the scope is the following sequence of105

statements/expressions). In a pattern binding, if *vp is the argument of a data106

constructor pattern, vp is bound to a reference to the corresponding argument107

of the data constructor if pattern matching succeeds (there is also a primitive108

which returns a reference to the ith element of an array). Note it is not possible109

to obtain a reference to a Pawns variable: variables do not denote memory lo-110

cations. However, a variable vp of type Ref t denotes a reference to a memory111

location containing a value of type t and the memory location can be destruc-112

tively updated by *vp := val.113

Consider the following code. Two data types are defined. The code creates a114

reference to Nil (Nil is stored in a newly allocated memory word) and a reference115

to that reference (a pointer to the word containing Nil is put in another allocated116

word). It also creates a list containing constants Blue and Red (requiring the117

allocation of two cons cells in memory; the Nil is copied). It deconstructs the118

list to obtain pointers to the head and tail of the list (the two words in the first119

cons cell) then destructively updates the head of the list to be Red.120

data Colour = Red | Green | Blue121

data Colours = Nil | Cons Colour Colours -- like List Colour122
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...123

*np = Nil -- np = ref to (copy of) Nil124

*npp = np -- npp = ref to (copy of) np125

cols = Cons Blue (Cons Red *np) -- cols = [Blue, Red]126

case cols of127

(Cons *headp *tailp) -> -- get ref to head and tail128

*headp := Red -- update head with Red129

The memory layout after the assignment can be pictured as follows, where130

boxes represent main memory words and Ref and Cons followed by an arrow131

represent pointers (no tag is used in either case):132

cols = Cons Red Cons Red Nil

Nilnp = Ref

npp = Ref Ref

headp = Ref

tailp = Ref
133

The destructive update above changes the values of both headp and cols134

(the representations are shared). One of the novel features of Pawns is that the135

source code must be annotated with “!” to make it obvious when each “live”136

variable is updated. If both headp and cols are used later, the assignment137

statement above must be written as follows, with headp prefixed with “!” and138

an additional annotation attached to the whole statement indicating cols may139

be updated:140

*!headp := Red !cols -- update *headp (and cols)141

We say that the statement directly updates headp and indirectly updates142

cols, due to sharing of representations. Similarly, if headp was passed to a143

function which may update it, additional annotations are required. For example,144

(assign !headp Red) !cols makes the direct update of headp and indirect145

update of cols clear. Sharing analysis is used to ensure that source code contains146

all the necessary annotations. One aim of Pawns is that any effects of code should147

be made clear by the code. Pawns is an acronym for Pointer Assignment With148

No Surprises.149

Pawns functions have extra annotations in type signatures to document which150

arguments may be updated. For additional documentation, and help in sharing151

analysis, there are annotations to declare what sharing may exist between ar-152

guments when the function is called (a precondition) and what extra sharing153

may be added by executing the function (called a postcondition, though it is the154

union of the pre- and post-condition which must be satisfied after a function is155

executed). For example, we may have:156

assign :: Ref t -> t -> ()157

sharing assign !p v = _ -- p may be updated158

pre nosharing -- p&v don’t share when called159

post *p = v -- assign may make *p alias with v160
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As well as checking for annotations on assignments and function calls, sharing161

analysis is used to check that all arguments which may be updated are anno-162

tated in type signatures, and pre- and post-conditions are always satisfied. For163

example, assuming the previous code which binds cols, the call assign !tailp164

!cols annotates all modified variables but violates the precondition of assign165

because there is sharing between tailp and cols at the time of the call. Violat-166

ing this precondition allows cyclic structures to be created, which is important167

for understanding the code. In general, there is an inter-dependence between “!”168

annotations in the code and pre- and post-conditions. More possible sharing at169

a call means more “!” annotations are needed, more sharing in (recursive) calls170

and more sharing when the function returns.171

Curried functions and higher order code are supported by attaching sharing172

and destructive update information to each arrow in a type, though often the173

information is inferred rather than being given explicitly in the source code. For174

example, implicit in the declaration for assign above is that assign called with175

a single argument of type Ref t creates a closure of type t -> () containing176

that argument (and thus sharing the object of type t). The explicit sharing177

information describes applications of this closure to another argument. There178

is a single argument in this application, referred to with the formal parameter179

v. The other formal parameter, p, refers to the argument of the closure. In180

general, a type with N arrows in the “spine” has K + N formal parameters in181

the description of sharing, with the first K parameters being closure arguments.182

The following code defines binary search trees of integers and defines a func-183

tion which takes a pointer to a tree and inserts an integer into the tree. It184

uses destructive update, as would normally be done in an imperative language.185

The declarative alternative must reconstruct all nodes in the path from the186

root down to the new node. Experiments using our prototype implementation187

of Pawns indicate that for long paths this destructive update version is as fast188

as hand-written C code whereas the “pure” version is more than twenty times189

slower, primarily due to the overhead of memory allocation.190

data Tree = Empty | Node Tree Int Tree191

bst_insert_du :: Int -> Ref Tree -> ()192

sharing bst_insert_du x !tp = _ -- tree gets updated193

pre nosharing -- integers are atomic so194

post nosharing -- it doesn’t share195

bst_insert_du x !tp =196

case *tp of197

Empty ->198

*!tp := Node Empty x Empty -- insert new node199

(Node *lp n *rp) ->200

if x <= n then201

(bst_insert_du x !lp) !tp -- update lp (and tp)202

else203

(bst_insert_du x !rp) !tp -- update rp (and tp)204
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2.2 The high level view205

Whenever destructive update is used in Pawns, programmers must be aware of206

potential sharing of data representations and take a low level view. In other207

cases it is desirable to have a high level view of values, ignoring how they are208

represented and any sharing which may be present. Pawns has a mechanism to209

indicate that such a high level view is taken. Pre- and post-conditions can specify210

sharing with a special pseudo-variable named abstract2. No variables which211

share with abstract can be destructively updated. Pawns type signatures which212

have no annotations concerning destructive update or sharing implicitly indicate213

no arguments are destructively updated and the arguments and result share with214

abstract. Thus a subset of Pawns code can look like and be considered as pure215

functional code.216

The following code defines a function which takes a list of integers and returns217

a binary search tree containing the same integers. Though it uses destructive up-218

date internally, this impurity is encapsulated and it can therefore be viewed as219

a pure function. The list which is passed in as an argument is never updated.220

An initially empty tree is created locally. It is destructively updated by inserting221

each integer of the list into it (using list_bst_du, which calls bst_insert_du),222

then the tree is returned. Within the execution of list_bst it is important to223

understand the low level details of how the tree is represented, but this informa-224

tion is not needed outside the call. The sharing analysis of the Pawns compiler225

allows a distinction between “abstract” variables, which cannot be updated, and226

“concrete” variables which can be updated. Sharing of concrete variables must227

be considered and explicitly documented by the programmer.228

data Ints = Nil | Cons Int Ints229

230

list_bst :: Ints -> Tree -- pure function from Ints to Tree231

-- implicit sharing information:232

-- sharing list_bst xs = t233

-- pre xs = abstract234

-- post t = abstract235

list_bst xs =236

*tp = Empty -- create pointer to empty tree237

list_bst_du xs !tp -- insert integers into tree, updating it238

*tp -- return tree239

2 There is conceptually a different abstract variable for each distinct type.
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list_bst_du :: Ints -> Ref Tree -> ()240

sharing list_bst_du xs !tp = _ -- tree gets updated241

pre xs = abstract242

post nosharing243

list_bst xs =244

list_bst_du xs !tp =245

case xs of246

(Cons x xs1) ->247

bst_insert_du x !tp -- insert head of list into tree248

list_bst_du xs1 !tp -- insert rest of list into tree249

Nil -> ()250

3 Core Pawns251

An early pass of the Pawns compiler converts all function definitions into a252

core language by flattening nested expressions, introducing extra variables et253

cetera. A variable representing the return value of the function is introduced and254

expressions are converted to bindings for variables. A representation of the core255

language version of code is annotated with type, liveness and other information256

prior to sharing analysis. We just describe the core language here. The right side257

of each function definition is a statement (described using the definition of type258

Stat below), which may contain variables, including function names (Var), data259

constructors (DCons) and pairs containing a pattern (Pat) and statement for260

case statements. All variables are distinct except for those in recursive instances261

of Stat and variables are renamed to avoid any ambiguity due to scope.262

data Stat = -- Statement, eg263

Seq Stat Stat | -- stat1 ; stat2264

EqVar Var Var | -- v = v1265

EqDeref Var Var | -- v = *v1266

DerefEq Var Var | -- *v = v1267

DC Var DCons [Var] | -- v = Cons v1 v2268

Case Var [(Pat, Stat)] | -- case v of pat1 -> stat1 ...269

Error | -- (for uncovered cases)270

App Var Var [Var] | -- v = f v1 v2271

Assign Var Var | -- *!v := v1272

Instype Var Var -- v = v1::instance_of_v1_type273

274

data Pat = -- patterns for case, eg275

Pat DCons [Var] -- (Cons *v1 *v2)276

Patterns in the core language only bind references to arguments — the ar-277

guments themselves must be obtained by explicit dereference operations. Pawns278

supports “default” patterns but for simplicity of presentation here we assume all279

patterns are covered in core Pawns and we include an error primitive. Similarly,280

we just give the general case for application of a variable to N > 0 arguments;281

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.907v1 | CC-BY 4.0 Open Access | rec: 18 Mar 2015, publ: 18 Mar 2015

P
re
P
ri
n
ts



8

our implementation distinguishes some special cases. Memory is allocated for282

DerefEq, DC (for non-constants) and App (for unsaturated applications which283

result in a closure).284

Sharing and type analysis cannot be entirely separated. Destructive update in285

the presence of polymorphic types can potentially violate type safety or “preser-286

vation”. For a variable whose type contains a type variable, we must avoid de-287

structive update with a value with a less general type. For example, in *x = []288

the type of x is Ref [t]. If *x is assigned [42], of type [Int], passing it to a289

function which expects a [Bool] violates type safety. Pawns allows expressions290

to have their inferred types further instantiated using “::”, and the type checking291

pass of the compiler also inserts some type instantiation. The type checking pass292

ensures that direct update does not involve type instantiation but to improve293

flexibility, indirect update is checked during the sharing analysis.294

4 The abstract domain295

The representation of the value of a variable includes some set of main memory296

words (arguments of data constructors). Two variables share if the intersection297

of their sets of main memory words is not empty. The abstract domain for298

sharing analysis must maintain a conservative approximation to all sharing, so299

we can tell if two variables possibly share (or definitely do not share). The300

abstract domain we use is a set of pairs (representing possibly intersecting sets301

of main memory locations) of variable components. The different components of302

a variable partition the set of main memory words for the variable.303

The components of a variable depend on its type. For non-recursive types304

other than arrays, each possible data constructor argument is represented sep-305

arately. For example, the type Maybe (Maybe (Either Int Int)) can have an306

argument of an outer Just data constructor, an inner Just and Left and Right.307

A component can be represented using a list of x.y pairs containing a data con-308

structor and an argument number, giving the path from the outermost data con-309

structor to the given argument. For example, the components of the type above310

can be written as: [Just.1], [Just.1,Just.1], [Just.1,Just.1,Left.1] and311

[Just.1,Just.1,Right.1]. If variable v has value Just Nothing, the expres-312

sion v.[Just.1] represents the single main memory word containing the occur-313

rence of Nothing.314

For Ref t types we proceed as if there was a Ref data constructor, so315

vp.[Ref.1] represents the word vp points to. For function types, values may316

be closures. A closure which has had K arguments supplied is represented as a317

data constructor ClK with these K arguments; these behave in the same way as318

other data constructor arguments with respect to sharing. Closures also contain319

a code pointer and an integer which are not relevant to sharing so we ignore them320

here. We also ignore the subscript on the data constructor for sharing analysis321

because type and sharing analysis only give a lower bound on the number of clo-322

sure arguments. Our analysis orders closure arguments so that the most recently323

supplied argument is first (the reverse of the more natural ordering).324
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For arrays, [Array_.1] is used to represent all words in the array. The ex-325

pression, x.[Array_.1,Just.1] represents the arguments of all Just elements326

in an array x of Maybe values. For recursive types, paths are “folded” [5] so there327

are a finite number of components. If a type T has sub-component(s) of type328

T we use the empty path to denote the sub-component(s). In general, we con-329

struct a path from the top level and if we come across a sub-component of type T330

which is in the list of ancestor types (the top level type followed by the types of331

elements of the path constructed so far) we just use the path to the ancestor to332

represent the sub-component. Consider the following mutually recursive types:333

data RTrees = Nil | Cons RTree RTrees334

data RTree = RNode Int RTrees335

For type RTrees we have the components [] (this folded path represents both336

[Cons.2] and [Cons.1,RNode.2], since they are of type RTrees), [Cons.1]337

and [Cons.1,RNode.1]. The expression t.[Cons.1,RNode.1] represents the338

set of memory words which are the first argument of RNode in variable t of type339

RTrees. For type RTree we have the components [] (for [RNode.2,Cons.1],340

of type RTree), [RNode.1] and [RNode.2] (which is also the folded version of341

[RNode.2,Cons.2], of type RTrees). In our sharing analysis algorithm we use342

a function fc (fold component) which takes a v.c pair, and returns v.c′ where343

c′ is the correctly folded component for the type of variable v. For example,344

fc (ts.[Cons.2]) = ts.[], assuming ts has type RTrees.345

As well as containing pairs of components for distinct variables which may346

alias, the abstract domain contains “self-sharing” pairs for each possible compo-347

nent of a variable which may exist. Consider the following two bindings:348

t = RNode 2 Nil349

ts = Cons t Nil350

With our domain, the most precise description of sharing after these two351

bindings is as follows. We represent a sharing pair as a set of two variable com-352

ponents. The first five are self-sharing pairs and the other two describe the353

sharing between t and ts.354

{{t.[RNode.1], t.[RNode.1]},355

{t.[RNode.2], t.[RNode.2]},356

{ts.[], ts.[]},357

{ts.[Cons.1], ts.[Cons.1]},358

{ts.[Cons.1,RNode.1], ts.[Cons.1,RNode.1]},359

{t.[RNode.1], ts.[Cons.1,RNode.1]},360

{t.[RNode.2], ts.[]}}361

Note there is no self-sharing pair for t.[] since there is no strict sub-part362

of t which is an RTree. Similarly, there is no sharing between ts.[Cons.1] and363

any part of t. Although the value t is used as the first argument of Cons in364

ts, this is not a main memory word which is used to represent the value of t365

(indeed, the value of t has no Cons cells). The tagged pointer value stored in366

variable t (which may be in a register) is copied into the cons cell.367
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5 The sharing analysis algorithm368

We now describe the sharing analysis algorithm. Overall, the compiler attempts369

to find a proof that for a computation with a depth D of (possibly recursive)370

function calls, the following condition C holds, assuming C holds for all compu-371

tations of depth less than D. This allows a proof by induction that C holds for372

all finite computations.373

C: For all functions f , if the precondition of f is satisfied whenever f is called,374

then375

1. for all function calls and assignment statements in f , any live variable that376

may be updated at that point in an execution of f is annotated with “!”,377

2. there is no update of live “abstract” variables when executing f ,378

3. the union of the pre- and post-conditions of f is satisfied when f returns,379

4. all parameters of f which may be updated when executing f are declared380

mutable in the type signature of f ,381

5. for all function calls and assignment statements in f , any live variable that382

may be directly updated at that point is updated with a value of the same383

type or a more general type, and384

6. for all function calls and assignment statements in f , any live variable that385

may be indirectly updated at that point does not share with any variable386

which has a less general type.387

The algorithm is applied to each function definition in core Pawns to com-388

pute an approximation to the sharing before and after each statement (we call389

it the alias set). This can be used to check points 1–3 and 6 above and that390

preconditions of called functions are satisfied, so the induction hypothesis can391

be used. Point 4 is established using point 1 and a simple syntactic check that392

any parameter of f which is annotated “!” in the definition is declared mutable393

in the type signature (parameters are considered live throughout the definition).394

Point 5 relies on 4 and the type checking pass. The core of the algorithm is to395

compute the alias set after a statement, given the alias set before the statement.396

This is applied recursively for compound statements.397

The alias set used at the start of the definition is the precondition of the398

function. This implicitly includes self-sharing pairs for all variable components of399

the arguments of the function and the pseudo-variables abstractT for each type400

T used. Similarly, the postcondition implicitly includes self-sharing pairs for all401

components of the result (and the abstractT variable if the result is abstract)3.402

As analysis proceeds, extra variables from the function body are added to the403

alias set and variables which are no longer live can be removed to improve404

efficiency. The alias set computed for the end of the definition, with sharing for405

local variables removed, must be a subset of the union of the pre- and post-406

condition of the function. We assume type information is given for all variables407

(a type checking/inference pass is completed before sharing analysis) and sharing408

3 Self-sharing for arguments and results is usually desired. For the rare cases it is not,
we may provide a mechanism to override this default in the future.
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information is given for all type instances of all (possibly polymorphic) defined409

functions. All type variables in type assignments in the function definition are410

replaced by Ref (). This type has a single component which can be shared to411

represent possible sharing of arbitrary components of an arbitrary type. Finally,412

we assume there is no type which is an infinite chain of refs, for example, type413

Refs = Ref Refs (for which type folding results in an empty component rather414

than a [Ref.1] component; this is not a practical limitation).415

Suppose a0 is the alias set just before statement s. The following algo-416

rithm computes alias(s, a0), the alias set just after statement s. The algorithm417

structure follows the recursive definition of statements and we describe it using418

psuedo-Haskell, interspersed with brief discussion. At some points we use high419

level declarative set comprehensions to describe what is computed and naive420

implementation may not lead to the best performance.421

alias (Seq stat1 stat2) a0 = -- stat1; stat2

alias stat2 (alias stat1 a0)

alias (EqVar v1 v2) a0 = -- v1 = v2

let

self1 = {{v1.c, v1.c} | {v2.c, v2.c} ∈ a0}
share1 = {{v1.c1, v.c2} | {v2.c1, v.c2} ∈ a0}

in

a0 ∪ self1 ∪ share1

alias (DerefEq v1 v2) a0 = -- *v1 = v2

let

self1 = {{v1.[Ref.1], v1.[Ref.1]}} ∪
{{fc(v1.(Ref.1 :c)), fc(v1.(Ref.1 :c))} | {v2.c, v2.c} ∈ a0}

share1 = {{fc(v1.(Ref.1 :c1)), v.c2} | {v2.c1, v.c2} ∈ a0}
in

a0 ∪ self1 ∪ share1

Sequencing is handled by function composition. To bind a fresh variable v1 to422

a variable v2 the self-sharing of v2 is duplicated for v1 and the sharing for each423

component of v2 is duplicated for v1. Binding *v1 to v2 is done in a similar way,424

but the components of v1 must have Ref.1 prepended to them and the result425

folded, and the [Ref.1] component of v1 self-shares.426

alias (Assign v1 v2) a0 = -- *v1 := v2

let

self1 = {{v1.[Ref.1], v1.[Ref.1]}} ∪
{{fc(v1.(Ref.1 :c)), fc(v1.(Ref.1 :c))} | {v2.c, v2.c} ∈ a0}

share1 = {{fc(v1.(Ref.1 :c1)), v.c2} | {v2.c1, v.c2} ∈ a0}
-- al = possible aliases for v1.[Ref.1]

al = {va.ca | {v1.[Ref.1], va.ca} ∈ a0}
-- (live variables in al+v1 must be annotated with !

-- and must not share with abstract)
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selfal = {{fc(va.(ca++c)), fc(va.(ca++c))} |
va.ca ∈ al ∧ {v2.c, v2.c} ∈ a0}

shareal = {{fc(va.(ca++c1)), v.c2} |
va.ca ∈ al ∧ {v2.c1, v.c2} ∈ a0} ∪

{{fc(va.(ca++c)), fc(v1.(Ref.1 :c))} |
va.ca ∈ al ∧ {v2.c, v2.c} ∈ a0}

-- old1 = old aliases for v1, which can be removed

-- if the assignment doesn’t create a cyclic structure

old1 = {{v1.c1, v.c2} | {v1.c1, v.c2} ∈ a0}
in if ∃c {v1.[Ref.1], v2.c} ∈ a0 then

a0 ∪ self1 ∪ share1 ∪ selfal ∪ shareal

else

(a0 \ old1) ∪ self1 ∪ share1 ∪ selfal ∪ shareal

Assignment to an existing variable *v1 adds the same sharing as for binding427

a fresh variable, but there are two extra complications. First, *v1 may be an alias428

for components of other variables (the live subset of these variables and v1 must429

be annotated with “!” on the assignment statement; checking such annotations is430

a primary purpose of the sharing analysis). All these variable components must431

have the same sharing added as *v1. The components must be concatenated432

and folded appropriately. Second, if the assignment does not create a cyclic433

structure the existing sharing for v1 can safely be removed, improving precision.434

It is sufficient to check if any component of v2 aliases with v1.[Ref.1].435

alias (DC v dc [v1, . . . vN]) a0 = -- v = Dc v1...vN

let

self1 =
⋃

1≤i≤N ({fc(v.[dc.i]), fc(v.[dc.i])} ∪
{{fc(v.(dc.i:c)), fc(v.(dc.i:c))} | {vi.c, vi.c} ∈ a0})

share1 =
⋃

1≤i≤N{{fc(v.(dc.i:c1)), w.c2} | {vi.c1, w.c2} ∈ a0}
in

a0 ∪ self1 ∪ share1

The DerefEq case can be seen as equivalent to v1 = Ref v2 and binding a436

variable to a data constructor with N variable arguments is a generalisation.437

alias (EqDeref v1 v2) a0 = -- v1 = *v2

let

self1 = {{v1.c, v1.c} | {v2.(Ref.1 :c), v2.(Ref.1 :c)} ∈ a0}
share1 = {{v1.c1, v.c2} | {v2.(Ref.1 :c1), v.c2} ∈ a0}
empty1 = {{v1.[], v.c} | {v1.[], v.c} ∈ (self1 ∪ share1)}

in

if the type of v1 has a [] component then

a0 ∪ self1 ∪ share1

else --- avoid bogus sharing with empty component

(a0 ∪ self1 ∪ share1) \ empty1
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The EqDeref case is similar to the inverse of DerefEq in that we are removing438

Ref.1 rather than prepending it. However, if the empty component results we439

must check that such a component exists for the type of v1.440

alias (App v f [v1, . . . vN]) a0 = -- v = f v1...vN

let

“f(w1, . . . wK+N ) = r” is used to declare sharing for f

post = the postcondition of f along with the sharing for

mutable arguments from the precondition,

with parameters and result renamed with

f.[Cl.K], . . . f.[Cl.1], v1, . . . vN and v, respectively

postt = {{x1.c1, x3.c3} | {x1.c1, x2.c2} ∈ post ∧ {x2.c2, x3.c3} ∈ a0}
-- (the renamed precondition of f must be a subset of a0,

-- and mutable arguments of f and live variables they share

-- with must be annotated with ! and must not share with

-- abstract)

-- selfc+sharec not needed for saturated applications

selfc = {{v.[Cl.i], v.[Cl.i]} | 1 ≤ i ≤ N} ∪
{{v.((Cl.i) :c), v.((Cl.i) :c)} |

1 ≤ i ≤ N ∧ {vi.c, vi.c)} ∈ a0} ∪
{{v.(Cl.(i+ N)) :c), v.(Cl.(i+ N)) :c)} |

{f.(Cl.i) :c), f.(Cl.i) :c)} ∈ a0}
sharec = {{v.(Cl.i) :c1), x.c2} |

1 ≤ i ≤ N ∧ {vi.c1, x.c2)} ∈ a0} ∪
{{v.(Cl.(i+ N)) :c1), x.c2} |

{f.(Cl.i) :c1), x.c2} ∈ a0}
in

a0 ∪ postt ∪ selfc ∪ sharec

Function application relies on the sharing information attached to all arrow441

types. Because Pawns uses the syntax of statements to express pre- and post-442

conditions, our the implementation uses the sharing analysis algorithm to derive443

an explicit alias set representation (currently this is done recursively, with the444

level of recursion limited by the fact than pre- and post-conditions must not445

contain function calls). Here we ignore the details of how the alias set represen-446

tation is obtained. The compiler also uses the sharing information to check that447

preconditions are satisfied, all required “!” annotations are present and abstract448

variables are not modified.449

The main thing done for function application is to add the declared post-450

condition of the function, renamed appropriately. The N arguments of the call451

replace the last N formal parameters and v replaces the formal result. The first452

K formal parameters represent closure arguments of f, so those variables are453

replaced with f and the components are prefixed with the prepresentation for a454
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closure argument. As well as the declared postcondition, sharing for the mutable455

arguments of the precondition must be included. The analysis of a function def-456

inition guarantees than the union of pre- and post-conditions are satisfied when457

the function returns (assuming the precondition is satisfied initially), but execu-458

tion cannot add sharing between non-mutable arguments so it is not added here.459

Thus by not including preconditions in the declared postconditions, precision is460

improved. It is also necessary to include one step of transisitivity in the sharing461

information: if the renamed postcondition introduces sharing between variable462

components x1.c1 and x2.c2 and before the function call x2.c2 shared with x3.c3463

we add sharing between x1.c1 and x3.c3.464

For some calls we can know statically than a closure cannot result, but in gen-465

eral we must assume that a closure is created and the first N closure arguments466

share with the N arguments of the function call and any closure arguments of f467

share with additional closure arguments of the result (this requires renumbering468

of these arguments).469

alias Error a0 = ∅ -- error

alias (Case v [(p1, s1), . . . (pN , sN)]) a0 = -- case v of ...

let

old = {{v.c1, v2.c2} | {v.c1, v2.c2} ∈ a0}
in ⋃

1≤i≤N aliasCase a0 old v pi si

aliasCase a0 av v (Pat dc [v1, . . . vN]) s = -- (Dc *v1...*vN) -> s

let

avdc = {{fc(v.(dc.i :c1)), w.c2} | {fc(v.(dc.i :c1)), w.c2} ∈ av}
rself = {{vi.[Ref.1], vi.[Ref.1]} | 1 ≤ i ≤ N}
vishare = {{fc(vi.(Ref.1 :c1)), fc(vj .(Ref.1 :c2))} |

{fc(v.(dc.i :c1)), fc(v.(dc.j :c2))} ∈ av}
share = {{fc(vi.(Ref.1 :c1)), w.c2} | {fc(v.(dc.i :c1)), w.c2))} ∈ av}

in

alias s (rself ∪ vishare ∪ share ∪ (a0 \ av) ∪ avdc)

For a case expression we return the union of the alias sets obtained for each of470

the different branches. For each branch we only keep sharing information for the471

variable we are switching on which is compatible with the data constructor in472

that branch (we remove all the old sharing, av, and add the compatible sharing,473

avdc). Note we use a high level declarative definition for avdc (and other vari-474

ables) which implicitly uses the inverse of fc. To deal with individual data con-475

structors we consider pairs of components of arguments i and j which may alias476

in order to compute possible sharing between vi and vj , including self-sharing477

when i = j. The corresponding component of vi (prepended with Ref and folded)478

may alias the component of vj . For example, if v of type RTrees is matched with479

Cons *v1 *v2 and v.[] self-shares, we need to find the components which fold480
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to v.[] (v.[Cons.2] and v.[Cons.1,RNode.2]) in order to compute the sharing481

for v2 and v1. Thus we compute that fc(v2.[Ref.1,Cons.2]) = v2.[Ref.1]482

may alias v1.[Ref.1,Cons.1,RNode.2], which can occur if the data structure is483

cyclic. The DC case cannot introduce cycles as the variable on the left is distinct484

from the variables in the right but Assign can introduce cycles.485

alias (Instype v1 v2) a0 = -- v1 = v2::t

alias (EqVar v1 v2) a0

-- (if any sharing is introduced between v1 and v2,

-- v2 must not be indirectly updated later while live)

Type instantiation is dealt with in the same way as variable equality, with486

the additional check that if any sharing is introduced, the variable with the more487

general type is not implicitly updated later while still live (it is sufficient to check488

there is no “!v2” annotation attached to a later statement).489

6 Example490

We now show how this sharing analysis algorithm is applied to the binary search491

tree code given earlier. We give a core Pawns version of each function and the492

alias set before and after each statement, plus an additional set at the end which493

is the union of the pre- and post-conditions of the function. To save space,494

we write the alias set as a set of sets where each inner set represents all sets495

containing exactly two of its members. Thus {{a, b, c}} represents a set of six496

sharing pairs: sharing between all pairs of elements, including self-sharing. The497

return value is given by variable ret and variables absL and absT are the versions498

of abstract for type Ints and Tree, respectively.499

list_bst xs = -- 0500

v1 = Empty -- 1501

*tp = v1 -- 2502

list_bst_du xs !tp -- 3503

ret = *tp -- 4504

We start with the precondition: a0 = {{xs.[Cons.1], absL.[Cons.1]},505

{xs.[], absL.[]}}. Binding to a constant introduces no sharing so a1 = a0.506

a2 = a1 ∪ {tp.[Ref.1]}. The function call has precondition a0∪{{tp.[Ref.1]},507

{tp.[Ref.1,Node.2]}}, which is a superset of a2. Since tp is a mutable ar-508

gument the precondition sharing for tp is added: a3 = a2 ∪ {{tp.[Ref.1,509

Node.2]}}. The final sharing includes the return variable, ret: a4 = a3 ∪510

{{ret.[],tp.[Ref.1]}, {ret.[Node.2],tp.[Ref.1,Node.2]}}. After remov-511

ing sharing for the dead (local) variable tp we obtain a subset of the union of512

the pre- and post-conditions, which is a0∪{{ret.[],absT.[]}, {ret.[Node.2],513

absT.[Node.2]}}.514
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list_bst_du xs !tp = -- 0515

case xs of516

(Cons *v1 *v2) -> -- 1517

x = *v1 -- 2518

xs1 = *v2 -- 3519

v3 = bst_insert_du x !tp -- 4520

v4 = list_bst_du xs1 !tp -- 5521

ret = v4 -- 6522

Nil -> -- 7523

ret = () -- 8524

-- after case -- 9525

We start with the precondition, a0 = {{tp.[Ref.1]}, {tp.[Ref.1,Node.2]},526

{xs.[Cons.1],absL.[Cons.1]}, {xs.[],absL.[]}}. The Cons branch of the527

case introduces sharing for v1 and v2: a1 = a0 ∪ {{xs.[Cons.1], absL.[Cons.1],528

v1.[Ref.1], v2.[Ref.1,Cons.1]}, {v2.[Ref.1], xs.[], absL.[]}}. The list529

elements are atomic so a2 = a1. The next binding makes the sharing of xs1 and530

xs the same: a3 = a2 ∪ {{v2.[Ref.1], xs.[], xs1.[], absL.[]}, {v1.[Ref.1],531

xs.[Cons.1], xs1.[Cons.1], absL.[Cons.1], v2.[Ref.1,Cons.1]}}. This can532

be simplified by removing the dead variables v1 and v2. The precondition of the533

calls are satisfied and a6 = a5 = a4 = a3. For the Nil branch we remove the in-534

compatible sharing for xs from a0: a7 = {{tp.[Ref.1]}, {tp.[Ref.1,Node.2]},535

{absL.[Cons.1]}, {absL.[]}} and a8 = a7. Finally, a9 = a6∪a8. Ignoring local536

variables, this is a subset of the union of the pre- and post-conditions, a0.537

bst_insert_du x !tp = -- 0538

v1 = *tp -- 1539

case v1 of540

Empty -> -- 2541

v2 = Empty -- 3542

v3 = Empty -- 4543

v4 = Node v2 x v3 -- 5544

*!tp := v4 -- 6545

ret = () -- 7546

(Node *lp *v5 *rp) -> -- 8547

n = *v5 -- 9548

v6 = (x <= n) -- 10549

case v6 of550

True -> -- 11551

v7 = (bst_insert_du x !lp) !tp -- 12552

ret = v7 -- 13553

False -> -- 14554

v8 = (bst_insert_du x !rp) !tp -- 15555

ret = v8 -- 16556

-- end case -- 17557

-- end case -- 18558
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Here a0 = {{tp.[Ref.1]}, {tp.[Ref.1,Node.2]}} and a1 = a0 ∪ {{v1.[],559

tp.[Ref.1]}, {tp.[Ref.1,Node.2], v1.[Node.2]}}. For the Empty branch we560

remove the v1 sharing so a4 = a3 = a2 = a0 and a5 = a4 ∪ {{v4.[]},561

{v4.[Node.2]}}. After the destructive update, a6 = a5∪{{v4.[], tp.[Ref.1]},562

{v4.[Node.2], tp.[Ref.1,Node.2]}} (v4 is dead and can be removed) and a7 =563

a6. For the Node branch we have a8 = a1 ∪ {{v1.[], tp.[Ref.1], lp.[Ref.1],564

rp.[Ref.1]}, {tp.[Ref.1,Node.2], lp.[Ref.1,Node.2], rp.[Ref.1,Node.2],565

v5.[Ref.1], v1.[Node.2]}}. The same set is retained for a9 . . . a17 (assuming566

the dead variable v5 is retained), the preconditions of the function calls are sat-567

isfied and the required annotations are present. Finally, a18 = a17 ∪ a7 and after568

eliminating local variables we get the postcondition, which is the same as the569

precondition.570

7 Discussion571

It is inevitable we lose some precision with recursion in types. However, it seems572

that some loss of precision could be avoided relatively easily. The use of the573

empty path to represent sub-components of recursive types results in imprecision574

when references are created. For example, the analysis of *vp = Nil; v = *vp575

concludes that the empty component of v may share with itself and the Ref576

component of vp (in reality, v has no sharing). Instead of the empty path, a577

dummy path of length one could be used. A more agressive approach would be578

to unfold the recursion an extra level, at least for some types. This could allow579

us to express (non-)sharing of separate subtrees and whether data structures580

are cyclic, at the cost of more variable components and more complex pre- and581

postconditions.582

Increasing the number of variable components also affects efficiency. The al-583

gorithmic complexity is affected by the representation of alias sets. Currently we584

use a naive implementation, using just ordered pairs of variable components as585

the set elements and a set library which uses an ordered binary tree. The size of586

the set can be O(N2), where N is the maximum number of live variable compo-587

nents of the same type at any program point (each such variable component can588

share with all the others). In typical code the number of live variables at any589

point is not particularly large. If the size of alias sets does become problematic,590

a more refined set representation could be used, such as the set of sets of pairs591

representation we used in Section 6, where sets of components which all share592

with each other are optimised. We have not stress tested our implementation as593

it is intended to be a prototype, but performance has not been concerning at594

this stage.595

8 Related work596

Related programming languages are discussed in [1]; here we restrict attention597

to work related to the sharing analysis algorithm. The most closely related work598

is that done in the compiler for Mars [6], which extends similar work done for599
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Mercury [7] and earlier for Prolog [8]. All use a similar abstract domain based on600

the type folding method first proposed in [5]. Our abstract domain is somewhat601

more precise due to inclusion of self-aliasing, and we have no sharing for con-602

stants. In Mars it is assumed that constants other than numbers can share. Thus603

for code such as xs = []; ys = xs our analysis concludes there is no sharing604

between xs and ys whereas the Mars analysis concludes there may be sharing.605

One important distinction is that in Pawns sharing (and mutability) is de-606

clared in type signatures of functions so the Pawns compiler just has to check the607

declarations are consistent, rather than infer all sharing from the code. However,608

it does have the added complication of destructive update. As well as having to609

deal with the assignment primitive, it complicates handling of function calls and610

case statements (the latter due to the potential for cyclic structures). Mars,611

Mercury and Prolog are essentially declarative languages. Although Mars has612

assignment statements the semantics is that values are copied rather than de-613

structively updated — the variable being assigned is modified but other variables614

remain unchanged. Sharing analysis is used in these languages to make the im-615

plementation more efficient. For example, the Mars compiler can often emit code616

to destructively update rather than copy a data structure because sharing anal-617

ysis reveals no other live variables share it. In Mercury and Prolog the analysis618

can reveal when heap-allocated data is no longer used, so the code can reuse or619

reclaim it directly instead of invoking a garbage collector.620

These sharing inference systems use an explicit graph representation of the621

sharing behaviour of each segment of code. For example, code s1 may cause622

sharing between (a component of) variables a and b (which is represented as623

an edge between nodes a and b) and between c and d and code s2 may cause624

sharing between b and c and between d and e. To compute the sharing for the625

sequence s1;s2 they use the “alternating closure” of the sharing for s1 and s2,626

which constructs paths with edges alternating from s1 and s2, for example a-b627

(from s1), b-c (from s2), c-d (from s1) and d-e (from s2).628

The sharing behaviour of functions in Pawns is represented explicitly, by a629

pre- and postcondition and set of mutable arguments but there is no explicit630

representation for sharing of statements. The (curried) function alias s rep-631

resents the sharing behaviour of s and the sharing behaviour of a sequence of632

statements is represented by the composition of functions. This representation633

has the advantage that the function can easily use information about the current634

sharing, including self-sharing, and remove some if appropriate. For example, in635

the [] branch of the case in the code below the sharing for xs is removed and636

we can conclude the returned value does not share with the argument.637

map_const_1 :: [t] -> [Int]638

sharing map_const_1 xs = ys pre nosharing post nosharing639

map_const_1 xs =640

case xs of641

[] -> xs -- can look like result shares with xs642

(_:xs1) -> 1:(map_const_1 xs1)643

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.907v1 | CC-BY 4.0 Open Access | rec: 18 Mar 2015, publ: 18 Mar 2015

P
re
P
ri
n
ts



19

Given the extra precision that can be achieved, it may be worth attempt-644

ing to adapt our approach to inferring alias information in languages without645

destructive update. There are other approches to and uses of alias analysis for646

imperative languages, such as [9] and [10], but these are not aimed at precisely647

capturing information about dynamically allocated data. A more detailed dis-648

cussion of such approaches is given in [6].649

9 Conclusion650

Purely declarative languages have the advantage of avoiding side effects, such651

as destructive update of function arguments. This makes it easier to combine652

program components, but some algorithms are hard to code efficiently without653

flexible use of destructive update. A function can behave in a purely declarative654

way if destructive update is allowed, but restricted to data structures which655

are created inside the function. The Pawns language uses this idea to support656

flexible destructive update encapsulated in a declarative interface. It is designed657

to make all side effects “obvious” from the source code. Because there can be658

sharing between the representations of different arguments of a function, local659

variables and the value returned, sharing analysis is an essential component of660

the compiler. It is also used to ensure “preservation” of types in computations.661

Sharing analysis has been used in other languages to improve efficiency and to662

give some feedback to programmers but we use it to support important features663

of the programming language.664

The algorithm operates on (heap allocated) algebraic data types, including665

arrays and closures. In common with other sharing analysis used in declara-666

tive languages it supports binding of variables, construction and deconstruction667

(combined with selection or “case”) and function/procedure calls. In addition,668

it supports explicit pointers, destructive update via pointers, creation and ap-669

plication of closures and pre- and post-conditions concerning sharing attached670

to type signatures of functions. It also uses an abstract domain with additional671

features to improve precision.672
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