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8 Abstract. Pawns is a programming language under development that
9 supports algebraic data types, polymorphism, higher order functions and
10 “pure” declarative programming. It also supports impure imperative fea-
11 tures including destructive update of shared data structures via pointers,
12 allowing significantly increased efficiency for some operations. A novelty
13 of Pawns is that all impure “effects” must be made obvious in the source
14 code and they can be safely encapsulated in pure functions in a way
15 that is checked by the compiler. Execution of a pure function can per-
16 form destructive updates on data structures that are local to or even-
17 tually returned from the function without risking modification of the
18 data structures passed to the function. This paper describes the shar-
19 ing analysis which allows impurity to be encapsulated. Aspects of the
20 analysis are similar to other published work, but in addition it handles
21 explicit pointers and destructive update, higher order functions including
2 closures and pre- and post-conditions concerning sharing for functions.
23 Keywords: functional programming language, destructive update, muta-
2 bility, effects, algebraic data type, sharing analysis, aliasing analysis

» 1 Introduction

s This paper describes the sharing analysis done by the compiler for Pawns [1],
;7 a programming language that is currently under development. Pawns supports
2 both declarative and imperative styles of programming. It supports algebraic
2 data types, polymorphism, higher order programming and “pure” declarative
s functions, allowing very high level reasoning about code. It also allows imperative
a1 code, where programmers can consider the representation of data types, obtain
» pointers to the arguments of data constructors and destructively update them.
13 Such code requires the programmer to reason at a much lower level and consider
s aliasing of pointers and sharing of data structures. Low level “impure” code can
35 be encapsulated within a pure interface and the compiler checks the purity. This
s requires analysis of pointer aliasing and data structure sharing, to distinguish
v data structures that are only visible to the low level code (and are therefore
1 safe to update) from data structures that are passed in from the high level code
3 (for which update would violate purity). The main aim of Pawns is to get the
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w benefits of purity for most code but still have the ability to write some key
a1 components using an imperative style, which can significantly improve efficiency
2 (for example, a more than twenty-fold increase in the speed of inserting an
s element into a binary search tree).

4 There are other functional programming languages, such as ML [2], Haskell
s [3] and Disciple [4], that allow destructive update of shared data structures but
s do not allow this impurity to be encapsulated. In these languages the ability
s to update the data structure is connected to its type!. For a data structure to
s be built using destructive update its type must allow destructive update and
s any code that uses the data structure can potentially update it as well. This
so prevents simple declarative analysis of the code and can lead to a proliferation
si1  of different versions of a data structure, with different parts being mutable. For
52 example, there are four different versions of lists, since both the list elements
53 and the “spine” may (or may not) be mutable, and sixteen different versions
s« of lists of pairs. There is often an efficiency penalty as well, with destructive
s update requiring an extra level of indirection in the data structure (an explicit
ss  “reference” in the type with most versions of ML and Haskell). Pawns avoids
sz this inefficiency and separates mutability from type information, allowing a data
58 structure to be mutable in some contexts and considered “pure” in others. The
so main cost from the programmer perspective is the need to include extra annota-
e tions and information in the source code. This can also be considered a benefit,
61 as they provide useful documentation and error checking. The main implemen-
¢ tation cost is additional analysis done by the compiler, which is the focus of this
63 paper.

64 The rest of this paper assumes some familiarity with Haskell and is structured
e as follows. Section 2 gives a brief overview of the relevant features of Pawns.
e An early pass of the compiler translates Pawns programs into a simpler “core”
e language; this is described in Section 3. Section 4 describes the abstract domain
¢ used for sharing analysis algorithm, Section 5 defines the algorithm itself and
e Section 6 gives an extended example. Section 7 briefly discusses precision and
7w efficiency issues. Section 8 discusses related work and Section 9 concludes.

n 2 An overview of Pawns

22 A more detailed introduction to Pawns is given in [1]. Pawns has many simi-
7 larities with other functional languages. It supports algebraic data types with
72 parametric polymorphism, higher order programming and curried function defi-
75 nitions. It uses strict evaluation. In addition, it supports destructive update via
7 “references” (pointers) and has a variety of extra annotations to make impure
77 effects more clear from the source code and allow them to be encapsulated in
7 pure code. Pawns also supports a form of global variables (called state variables)
7 which support encapsulated effects, but we do not discuss them further here as
s they are handled in essentially the same way as other variables in sharing analy-
a1 sis. Pure code can be thought of in a declarative way, were values can be viewed

! Disciple uses “region” information to augment types, with similar consequences.
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&2 abstractly, without considering how they are represented. Code that uses de-
s structive update must be viewed at a lower level, considering the representation
s« of values, including sharing. We discuss this lower level view first, then briefly
s present how impurity can be encapsulated to support the high level view. We
s use Haskell-like syntax for familiarity.

ez 2.1 The low level view

s Values in Pawns are represented as follows. Constants (data constructors with
s no arguments) are represented using a value in a single word. A data constructor
o with N > 0 arguments is represented using a word that contains a tagged pointer
o to a block of N words in main memory containing the arguments. For simple
o data types such as lists the tag may be empty. In more complex cases some
3 bits of the pointer may be used and/or a tag may be stored in a word in main
 memory along with the arguments. Note that constants and tagged pointers
s are not always stored in main memory and Pawns variables may correspond to
o registers that contain the value. Only the arguments of data constructors are
o7 guaranteed to be in main memory. An array of size N is represented in the same
¢ way as a data constructor with N arguments, with the size given by the tag.
o Functions are represented as either a constant (for functions that are known
wo  statically) or a closure which is a data constructor with a known function and a
1w number of other arguments.

102 Pawns has a Ref t type constructor, representing a reference/pointer to a
03 value of type t (which must be stored in memory). Conceptually we can think of
s a corresponding Ref data constructor with a single argument, but this is never
s explicit in Pawns code. Instead, there is an explicit dereference operation: *vp
ws denotes the value vp points to. There are two ways references can be created:
w7 let bindings and pattern bindings. A let binding *vp = val allocates a word
s in main memory, initializes it to val and makes vp a reference to it (Pawns
0o omits Haskell’s let and in keywords; the scope is the following sequence of
uo statements/expressions). In a pattern binding, if *vp is the argument of a data
w  constructor pattern, vp is bound to a reference to the corresponding argument of
u2  the data constructor if pattern matching succeeds (there is also a primitive that
us  returns a reference to the i* element of an array). Note it is not possible to ob-
ms  tain a reference to a Pawns variable: variables do not denote memory locations.
us  However, a variable vp of type Ref t denotes a reference to a memory loca-
us tion containing a value of type t and the memory location can be destructively
w  updated by *vp := val.

118 Consider the following code. Two data types are defined. The code creates a
ue reference to Nil (Nil is stored in a newly allocated memory word) and a reference
o to that reference (a pointer to the word containing Nil is put in another allocated
wm word). It also creates a list containing constants Blue and Red (requiring the
12 allocation of two cons cells in memory; the Nil is copied). It deconstructs the
13 list to obtain pointers to the head and tail of the list (the two words in the first
e cons cell) then destructively updates the head of the list to be Red.
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15 data Colour = Red | Green | Blue

126 data Colours = Nil | Cons Colour Colours -- like List Colour

127 ..

128 xnp = Nil -- np = ref to (copy of) Nil
120 *npp = np -- npp = ref to (copy of) np
130 cols = Cons Blue (Cons Red *np) -- cols = [Blue, Red]

131 case cols of

132 (Cons *headp *tailp) -> -- get ref to head and tail

133 *headp := Red -- update head with Red

134 The memory layout after the assignment can be pictured as follows, where

135 boxes represent main memory words and Ref and Cons followed by an arrow
13 represent pointers (no tag is used in either case):

cols = Consiﬂ Red I Cons#—ﬂ Red I Nil \

Ref/ np = Ref ——— [ Nil |

headp =
tailp = Ref npp = Ref —— | Ref
137
138 The destructive update above changes the values of both headp and cols

1o (the representations are shared). One of the novel features of Pawns is that the
1w source code must be annotated with “!” to make it obvious when each “live”
w variable is updated. If both headp and cols are used later, the assignment
w2 statement above must be written as follows, with headp prefixed with “!” and
w3 an additional annotation attached to the whole statement indicating cols may
us  be updated:

145 xlheadp := Red !cols -- update x*headp (and cols)

146 We say that the statement directly updates headp and indirectly updates
w cols, due to sharing of representations. Similarly, if headp was passed to a
us function that may update it, additional annotations are required. For example,
us (assign 'headp Red) !cols makes the direct update of headp and indirect
10 update of cols clear. Sharing analysis is used to ensure that source code contains
151 all the necessary annotations. One aim of Pawns is that any effects of code should
12 be made clear by the code. Pawns is an acronym for Pointer Assignment With
153 No Surprises.

154 Pawns functions have extra annotations in type signatures to document which
155 arguments may be updated. For additional documentation, and help in sharing
155 analysis, there are annotations to declare what sharing may exist between ar-
57 guments when the function is called (a precondition) and what extra sharing
152 may be added by executing the function (called a postcondition, though it is the
150 union of the pre- and post-condition that must be satisfied after a function is
o executed). For example, we may have:
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11 assign :: Ref t >t > O

162 sharing assign !p v = _ -- p may be updated

163 pre nosharing -—- p&v don’t share when called

164 post *p = v -- assign may make *p alias with v
s assign !p v =

166 *lp 1= v

167 The “!I” annotation on parameter p declares the first argument of assign

168 is mutable. The default is that arguments are not mutable. As well as check-
1o ing for annotations on assignments and function calls, sharing analysis is used
o to check that all parameters which may be updated are declared mutable in
m type signatures, and pre- and post-conditions are always satisfied. For example,
2 assuming the previous code which binds cols, the call assign !tailp !cols
w3 annotates all modified variables but violates the precondition of assign because
s there is sharing between tailp and cols at the time of the call. Violating this
s precondition allows cyclic structures to be created, which is important for un-
e derstanding the code. If the precondition was dropped, the second argument of
w7 assign would also need to be declared mutable in the type signature and the
s assignment to p would require v to be annotated. In general, there is an inter-
e dependence between “!” annotations in the code and pre- and post-conditions.
10 More possible sharing at a call means more “!” annotations are needed, more
w1 sharing in (recursive) calls and more sharing when the function returns.

182 Curried functions and higher order code are supported by attaching sharing
183 and destructive update information to each arrow in a type, though often the
18« information is inferred rather than being given explicitly in the source code. For
15 example, implicit in the declaration for assign above is that assign called with
186 a single argument of type Ref t creates a closure of type t -> () containing
w7 that argument (and thus sharing the object of type t). The explicit sharing
188 information describes applications of this closure to another argument. There
19 is a single argument in this application, referred to with the formal parameter
wo v. The other formal parameter, p, refers to the argument of the closure. In
1 general, a type with N arrows in the “spine” has K + N formal parameters in
12 the description of sharing, with the first K parameters being closure arguments.

103 The following code defines binary search trees of integers and defines a func-
104 tion that takes a pointer to a tree and inserts an integer into the tree. It uses
s destructive update, as would normally be done in an imperative language. The
106 declarative alternative must reconstruct all nodes in the path from the root down
17 to the new node. Experiments using our prototype implementation of Pawns indi-
108 cate that for long paths this destructive update version is as fast as hand-written
w9 C code whereas the “pure” version is more than twenty times slower, primarily
200 due to the overhead of memory allocation.
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201 data Tree = TNil | Node Tree Int Tree

22 bst_insert_du :: Int -> Ref Tree -> ()

203 sharing bst_insert_du x !tp = _ -- tree gets updated
204 pre nosharing -- integers are atomic so
205 post nosharing -- it doesn’t share
206 bst_insert_du x !tp =

207 case *tp of

208 TNil ->

209 *!tp := Node TNil x TNil -— insert new node

210 (Node #1p n *rp) ->

211 if x <= n then

212 (bst_insert_du x !lp) !tp -- update 1lp (and tp)
213 else

214 (bst_insert_du x 'rp) !tp -- update rp (and tp)

25 2.2  The high level view

26 Whenever destructive update is used in Pawns, programmers must be aware of
a7 potential sharing of data representations and take a low level view. In other
28 cases it is desirable to have a high level view of values, ignoring how they are
219 represented and any sharing that may be present. For example, in the two trees
20 t1 and t2 depicted below, it is much simpler if we do not have to care or know
21 about the sharing between the trees and within tree t1. The high level view is
2 they are both just Node (Node TNil 123 TNil) 123 (Node TNil 123 TNil).

t1l = Node t2 = Node
p
| Node | 123 | Node | [ Node [ 123 | Node |
//' /
| TNil | 123 [ TNil | | TNil | 123 [ TNil |
223
24 Pawns has a mechanism to indicate that the high level view is taken. Pre-

»s and post-conditions can specify sharing with a special pseudo-variable named
»s abstract?. The sharing analysis of the Pawns compiler allows a distinction
27 between “abstract” variables, which share with abstract and for which the
28 programmer takes a high level view, and “concrete” variables for which the pro-
2o grammer must understand the representation and explicitly declare all sharing
20 in pre- and post-conditions. The analysis checks that no live abstract variables
»n can be destructively updated. Thus if a function has a parameter which is up-
2 dated, it must be declared mutable and must not be declared to share with
23 abstract in the precondition (non-mutable parameters may or may not share
24 with abstract). Checking of preconditions ensures that abstract variables are
235 not passed to functions which expect concrete data structures. For example, an
26 abstract tree cannot be passed to bst_insert_du because the precondition al-
27 lows no sharing with abstract. It is important that the tree structure is known

2 There is conceptually a different abstract variable for each distinct type.
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23 when bst_insert_du is used because the result depends on it. For example,
239 inserting into the right subtree of t2 only affects this subtree whereas inserting
20 into the right subtree of t1 (which has the same high level value) also changes
2 the left subtree of both t1 and t2. Note that concrete variables can be passed
a2 to functions which allow abstract arguments. Pawns type signatures that have
23 N0 annotations concerning destructive update or sharing implicitly indicate no
20 arguments are destructively updated and the arguments and result share with
us abstract. Thus a subset of Pawns code can look like and be considered as pure
us  functional code.

207 The following code defines a function which takes a list of integers and returns
28 a binary search tree containing the same integers. Though it uses destructive up-
29 date internally, this impurity is encapsulated and it can therefore be viewed as
0 a pure function. The list that is passed in as an argument is never updated and
251 the tree returned is abstract so it is never subsequently updated (a concrete tree
22 could be returned if an explicit postcondition with nosharing was given). An
3 initially empty tree is created locally. It is destructively updated by inserting
2« each integer of the list into it (using 1ist_bst_du, which calls bst_insert_du),
»s  then the tree is returned. Within the execution of 1ist_bst it is important to
6 understand the low level details of how the tree is represented, but this informa-
7 tion is not needed outside the call.

28 data Ints = Nil | Cons Int Ints

259

60 list_bst :: Ints -> Tree -- pure function from Ints to Tree
261 —— implicit sharing information:

22 —— sharing list_bst xs =t

263 —— pre xs = abstract

4 —— post t = abstract

265 list_bst xs =

266 *tp = TNil -- create pointer to empty tree

267 list_bst_du xs !tp -- insert integers into tree

268 *tp -- return (updated) tree

60 list_bst_du :: Ints -> Ref Tree -> ()

270 sharing list_bst_du xs !tp = _ -—- tree gets updated

2711 pre xs = abstract

272 post nosharing

23 list_bst_du xs !tp =

274 case xs of

275 (Cons x xs1) —>

276 bst_insert_du x !tp -- insert head of list into tree
277 list_bst_du xsl1 !tp -- insert rest of list into tree
278 Nil -> ()
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2 3 Core Pawns

20 An early pass of the Pawns compiler converts all function definitions into a
s core language by flattening nested expressions, introducing extra variables et
2 cetera. A variable representing the return value of the function is introduced and
23 expressions are converted to bindings for variables. A representation of the core
s  language version of code is annotated with type, liveness and other information
25 prior to sharing analysis. We just describe the core language here. The right side
286 of each function definition is a statement (described using the definition of type
27 Stat below), which may contain variables, including function names (Var), data
28 constructors (DCons) and pairs containing a pattern (Pat) and statement for
20 case statements. All variables are distinct except for those in recursive instances
20 of Stat and variables are renamed to avoid any ambiguity due to scope.

201 data Stat = —-- Statement, eg

202 Seq Stat Stat | -- statl ; stat?2

203 EqVar Var Var | - v =uvl

204 EgDeref Var Var | -— v = *vl

205 DerefEq Var Var | -— xv = vl

206 DC Var DCons [Var] | -- v = Cons vl v2

207 Case Var [(Pat, Stat)] | -- case v of patl -> statl

208 Error | -- (for uncovered cases)

209 App Var Var [Var] | -—v =1 vl v2

300 Assign Var Var | -— xly := vl

301 Instype Var Var -- v = vl::instance_of_vl_type
302

33 data Pat = -- patterns for case, eg

304 Pat DCons [Var] -- (Cons *v1 *v2)

305 Patterns in the core language only bind references to arguments — the ar-

w6 guments themselves must be obtained by explicit dereference operations. Pawns
sr - supports “default” patterns but for simplicity of presentation here we assume all
w8 patterns are covered in core Pawns and we include an error primitive. Similarly,
0  we just give the general case for application of a variable to IV > 0 arguments;
s our implementation distinguishes some special cases. Memory is allocated for
au  DerefEq, DC (for non-constants) and App (for unsaturated applications which
sz result in a closure).

313 The runtime behaviour of Instype is identical to EqVar but it is treated dif-
s ferently in type analysis. Sharing and type analysis cannot be entirely separated.
ais Destructive update in the presence of polymorphic types can potentially violate
us  type safety or “preservation” — see [5], for example. For a variable whose type
s is polymorphic (contains a type variable), we must avoid assigning a value with
s1s a less general type. For example, in *x = [] the type of *x is “list of t”, where
a0t is a type variable. Without destructive update it should be possible to use *x
20  wherever a list of any type is expected. However, if *x is then assigned a list
21 containing integers (which has a less general type), passing it to a function that
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2 expects a list of functions violates type safety (“calling” an arbitrary integer is
23 not safe). Pawns allows expressions to have their inferred types further instan-
24 tiated using “::”, and the type checking pass of the compiler also inserts some
s type instantiation. The type checking pass ensures that direct update does not
»s involve type instantiation but to improve flexibility, indirect update is checked
a7 during the sharing analysis.

2 4 The abstract domain

19 The representation of the value of a variable includes some set of main memory
s words (arguments of data constructors). Two variables share if the intersection
sn of their sets of main memory words is not empty. The abstract domain for
s sharing analysis must maintain a conservative approximation to all sharing, so
s we can tell if two variables possibly share (or definitely do not share). The
s abstract domain we use is a set of pairs (representing possibly intersecting sets
335 of main memory locations) of variable components. The different components of
13 a variable partition the set of main memory words for the variable.

337 The components of a variable depend on its type. For non-recursive types
s other than arrays, each possible data constructor argument is represented sep-
a0 arately. For example, the type Maybe (Maybe (Either Int Int)) can have an
s argument of an outer Just data constructor, an inner Just and Left and Right.
s A component can be represented using a list of x.y pairs containing a data con-
s structor and an argument number, giving the path from the outermost data con-
a3 structor to the given argument. For example, the components of the type above
aus  can be written as: [Just.1], [Just.1,Just.1], [Just.1,Just.1,Left.1] and
us [Just.1,Just.1,Right.1]. If variable v has value Just Nothing, the expres-
us  sion v. [Just.1] represents the single main memory word containing the occur-
a7 rence of Nothing.

348 For Ref t types we proceed as if there was a Ref data constructor, so
s vp. [Ref.1] represents the word vp points to. For function types, values may
0 be closures. A closure that has had K arguments supplied is represented as a
1 data constructor Clyx with these K arguments; these behave in the same way
2 as other data constructor arguments with respect to sharing, except Pawns pro-
3 vides no way to obtain a pointer to a closure argument. Closures also contain
s a code pointer and an integer which are not relevant to sharing so they are ig-
s nored in the analysis. We also ignore the subscript on the data constructor for
6 sharing analysis because type and sharing analysis only give a lower bound on
7 the number of closure arguments. Our analysis orders closure arguments so that
38 the most recently supplied argument is first (the reverse of the more natural
30 ordering). Consider the code below, where foo is a function that is defined with
w0 four or more arguments. The sharing analysis proceeds as if the memory layout
1 was as depicted in the diagram. The pre- and post-conditions of foo are part of
2 the type information associated with c1, ¢2 and c3.
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10

ip = Ref 123
*ip = 123 : /T/»
ci = foo ip Nil ¢l =Cl—[ Nil | Ref
363
c2 =cl 2 = Cl —
c3 = c2 True
€3 =0C—| True | Nil [ Ref |
364 For arrays, [Array_.1] is used to represent all words in the array. The ex-

s pression, x. [Array_.1,Just.1] represents the arguments of all Just elements
56 in an array x of Maybe values. For recursive types, paths are “folded” [6] so there
s7  are a finite number of components. If a type T has sub-component(s) of type
s 1 we use the empty path to denote the sub-component(s). In general, we con-
30 struct a path from the top level and if we come across a sub-component of type
wo T that is in the list of ancestor types (the top level type followed by the types of
s elements of the path constructed so far) we just use the path to the ancestor to
sz represent the sub-component. Consider the following mutually recursive types
a3 that can be used to represent trees which consist of a node containing an integer
s and a list of sub-trees:

355 data RTrees = Nil | Cons RTree RTrees
376 data RTree = RNode Int RTrees

377 For type RTrees we have the components [] (this folded path represents both
s [Cons.2] and [Cons.1,RNode.2], since they are of type RTrees), [Cons.1]
s and [Cons.1,RNode.1]. The expression t.[Cons.1,RNode.1] represents the
0 set of memory words that are the first argument of RNode in variable t of type
s1 RTrees. For type RTree we have the components [1 (for [RNode.2,Cons.1],
s of type RTree), [RNode.1] and [RNode.2] (which is also the folded version of
3 [RNode.2,Cons.2], of type RTrees). In our sharing analysis algorithm we use
s« a function fc (fold component) which takes a v.c pair, and returns v.c’ where
s ¢ is the correctly folded component for the type of variable v. For example,
s fc (ts.[Cons.2]) = ts.[], assuming ts has type RTrees.

387 As well as containing pairs of components for distinct variables which may
s alias, the abstract domain contains “self-alias” pairs for each possible component
0 of a variable which may exist. Consider the following two bindings and the
30 corresponding diagram (as with Cons, no tag is used for RNode):

t = RNode —— | 2 [ Nil |

t = RNode 2 Nil
ts = Cons t Nil

391

ts = Cons —— | RNode | Nil |

302 With our domain, the most precise description of sharing after these two
;3 bindings is as follows. We represent an alias pair as a set of two variable com-
s ponents. The first five are self-alias pairs and the other two describe the sharing
s between t and ts.
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396 {{t.[RNode.1], t.[RNode.1]1},

307 {t.[RNode.2], t.[RNode.2]},

308 {ts.[], ts.[1},

309 {ts.[Cons.1], ts.[Cons.1]},

400 {ts.[Cons.1,RNode.1], ts.[Cons.1,RNode.1]},

401 {t.[RNode.1], ts.[Cons.1,RNode.1]},

402 {t.[RNode.2], ts.[]1}}

403 Note there is no self-alias pair for t. [] since there is no strict sub-part of t

w4 that is an RTree. Similarly, there is no alias between ts. [Cons. 1] and any part
sws of t. Although the value t is used as the first argument of Cons in ts, this is not
w5 a main memory word that is used to represent the value of t (indeed, the value
w7 of t has no Cons cells). The tagged pointer value stored in variable t (which
w8 may be in a register) is copied into the cons cell. Such descriptions of sharing are
a0 an abstraction of computation states. The set above abstracts all computation
a0 states in which t is a tree with a single node, ts is a list of trees, elements of
a1 ts may be t or have t as a subtree, and there are no other live variables with
a2 non-atomic values.

a3 5 The sharing analysis algorithm

as We now describe the sharing analysis algorithm. Overall, the compiler attempts
a5 to find a proof that for a computation with a depth D of (possibly recursive)
a6 function calls, the following condition C' holds, assuming C' holds for all compu-
a7 tations of depth less than D. This allows a proof by induction that C holds for
ss  all computations that terminate normally.

a9 C: For all functions f, if the precondition of f is satisfied (abstracts the compu-
w20 tation state) whenever f is called, then

a1 1. for all function calls and assignment statements in f, any live variable that
a may be updated at that point in an execution of f is annotated with “!”,
w23 2. there is no update of live “abstract” variables when executing f,

a2 3. all parameters of f which may be updated when executing f are declared

425 mutable in the type signature of f,

26 4. the union of the pre- and post-conditions of f abstracts the state when
27 f returns plus the values of mutable parameters in all states during the
428 execution of f,

w20 5. for all function calls in f, the sharing information among the actual pa-
430 rameters is a subset of the sharing information among formal parameters as
431 declared in the precondition, modulo variable renaming,

s 6. for all function calls and assignment statements in f, any live variable that
433 may be directly updated at that point is updated with a value of the same
a3 type or a more general type, and

s 7. for all function calls and assignment statements in f, any live variable that
436 may be indirectly updated at that point only shares with variables of the
437 same type or a more general type.
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438 The algorithm is applied to each function definition in core Pawns to compute
19 an approximation to the sharing before and after each statement (we call it the
wo alias set). This can be used to check points 1, 2, 4, 5 and 7 above; 5 allows
a1 the induction hypothesis to be used. Point 3 is established using point 1 and
w2 a simple syntactic check that any parameter of f that is annotated “!” in the
w3 definition is declared mutable in the type signature (parameters are considered
ws  live throughout the definition). Point 6 relies on 3 and the type checking pass.
s The core of the algorithm is to compute the alias set after a statement, given
ws the alias set before the statement. This is applied recursively for compound
w7 statements in a form of abstract execution.

a4 We do not prove correctness of the algorithm but hope our presentation is
wo  sufficiently detailed to have uncovered any bugs. A proof would have a separate
0 case for each kind of statement in the core language, showing that if the initial
1 alias set abstracts the execution state before the statement the resulting alias set
42 abstracts the execution state after the statement. This would require a more for-
3 mal description of execution states and their relationship with the core language
4 and the abstract domain. The abstract domain relies on type information so the
iss  sharing analysis relies on type preservation in the execution. Type preservation
6 also relies on sharing analysis. Thus a completely formal approach must tackle
7 both problems together. Although our approach is not formal, we do state the
s key condition C, which has points relating to both sharing and types, and we
s include Instype in the core language.

460 The alias set used at the start of a definition is the precondition of the func-
w1 tion. This implicitly includes self-alias pairs for all variable components of the
w2 arguments of the function and the pseudo-variables abstracty for each type T
3 used. Similarly, the postcondition implicitly includes self-alias pairs for all com-
w4 ponents of the result (and the abstracty variable if the result is abstract)3. As
w5 abstract execution proceeds, extra variables from the function body are added
a6 to the alias set and variables that are no longer live can be removed to improve
w7 efficiency. For each program point, the computed alias set abstracts the compu-
w8 tation state at that point in all concrete executions of the function that satisfy
a0 the precondition. For mutable parameters of the function, the sharing computed
a0 also includes the sharing from previous program points. The reason for this spe-
an cial treatment is explained when we discuss the analysis of function application.
a2 The alias set computed for the end of the definition, with sharing for local vari-
a3 ables removed, must be a subset of the union of the pre- and post-condition of
e the function.

a5 Before sharing analysis, a type checking/inference pass is completed which
a6 assigns a type to each variable and function application. This determines the
a7 components for each variable. Polymorphism is also eliminated as follows. Sup-
as  pose we have a function take :: Int -> [a] -> [a] sharing take n xs =
a9 ys pre nosharing post ys = xs which returns the list containing the first n
w0 elements of xs. For each call to take, the pre- and post-conditions are deter-

3 Self-aliasing for arguments and results is usually desired. For the rare cases it is not,
we may provide a mechanism to override this default in the future.
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s mined based on the type of the application. An application to lists of Booleans
a2 will have two components for each variable whereas an application to lists of lists
w3 of Booleans will have four. When analysing the definition of take we instantiate
a4 type variables such as a above to Ref (). This type has a single component
w5 which can be shared to represent possible sharing of arbitrary components of
s an arbitrary type. Finally, we assume there is no type which is an infinite chain
wr of refs, for example, type Refs = Ref Refs (for which type folding results in
a8 an empty component rather than a [Ref.1] component; this is not a practical
w9 limitation).

490 Suppose ag is the alias set just before statement s. The following algo-
w1 rithm computes alias(s, ag), the alias set just after statement s. The algorithm
w2 structure follows the recursive definition of statements and we describe it using
w3 pseudo-Haskell, interspersed with discussion. The empty list is written [], non-
w4 empty lists are written [a, b, c] or a:b:c: [] and ++ denotes list concatenation.
a5 At some points we use high level declarative set comprehensions to describe what
w6 is computed and naive implementation may not lead to the best performance.

alias (Seq statl stat2) a0 = -- statl; stat2
alias stat2 (alias statl a0)

alias (EqVar vl v2) a0 = -— vl =v2
let

selfl = {{vi.c,vl.c}|{v2.c,v2.c} € a0}
sharel = {{vl.ci,v.co}|{v2.c1,v.co} € a0}
in
a0 U selfl U sharel
alias (DerefEq vl v2) a0 = -— xvl = v2
let
selfl = {{v1.[Ref.1],v1.[Ref.1]}} U
{{fc(vi.(Ref.1:¢)),fc(vi.(Ref.1 :¢))} | {v2.c,v2.c} € a0}
sharel = {{fc(vl.(Ref.l:c1)),v.ca} | {v2.c1,v.co} € a0}
in
a0 U selfl U sharel

a07 Sequencing is handled by function composition. To bind a fresh variable v1 to
28 a variable v2 the self-aliasing of v2 is duplicated for v1 and the aliasing for each
a0 component of v2 is duplicated for v1. Binding *v1 to v2 is done in a similar way,
so0  but the components of vl must have Ref.1 prepended to them and the result
so  folded, and the [Ref.1] component of v1 self-aliases. Folding is only needed for
s2  the rare case of types with recursion through Ref.
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alias (Assign vl v2) a0 = -— xvl := v2
let
selfl = {{vi.[Ref.1],vi.[Ref.1]}} U
{{fc(vi.(Ref.1:¢)), fc(vl.(Ref.1:¢))} | {v2.c,v2.c} € a0}
sharel = {{fc(vl.(Ref.l:c1)),v.ca} | {v2.c1,v.co} € a0}
-- al = possible aliases for vl.[Ref.1]
al = {vg.cq | {v1.[Ref.1],v4.co} € a0}
-- (live variables in al+vl must be annotated with !
-- and must not share with abstract)
selfal = {{fc(v,.(ca++c)),fc(vg.(ca++c))} |
Vg-Cq € a1l A {v2.c,v2.c} € a0}
shareal = {{fc(vs.(ca++c1)),v.c2} |
Vq.Cq € a1 A{v2.c1,v.c0} € a0} U
{{fc(vq.(cat++c)), fc(vi.(Ref. 1 :¢))} |
Vg-Cq € al A {v2.c,v2.c} € a0}
in if vl is a mutable parameter then
a0 Uselfl U sharel Uselfal Ushareal
else let
—- 0ldl = old aliases for vl1l, which can be removed
oldl = {{vl1.(Ref.l1:d:c1),v.ca}|{vl.(Ref.1:d:c1),v.co} € a0}
in (a0 0ldl) Uselfl U sharel U selfal Ushareal

503 Assignment to an existing variable *v1 adds the same sharing as for binding
se a fresh variable, but there are two extra complications. First, *v1l may be an
sos alias for components of other variables (the live subset of these variables and
soo vl must be annotated with “!” on the assignment statement; checking such
s annotations is a primary purpose of the sharing analysis). All these variable
sos  components must have the same sharing added as *v1. The components must be
soo concatenated and folded appropriately. Second, if v1 is not a mutable parameter
si0 the existing sharing with a path strictly longer than [Ref.1] can safely be
su  removed, improving precision. The component v1. [Ref.1] represents the single
sz memory word which is overwritten and whatever the old contents shared with
si3 is no longer needed to describe the sharing for v1. For mutable parameters the
s old value may share with variables from the calling context and we retain this
sis  information, as explained later. Consider the example below, where t and ts are
sis  as before, local variable v1 is a reference to the element of ts and it is assigned
517 v2, which is RNode 3 Nil.

Initial state After *!vl := v2 Its
t = RNode ——| 2 | Nil | t = RNode ——| 2 [ Ni1 |
55 ts = Cons —— | RNode | Nil | ts = Cons —— | RNode | Nil |
vl = Ref/ vl = Ref/
v2 = RNode ——| 3 | Nil | v2 = RNode ——[ 3 | Nil |
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519 Because {ts. [Cons.1], v1.[Ref.1]}isin any correct approximation to the
s20  initial state, ts will be in al and will have sharing with v2 added. The old sharing
sz of vl with t will be discarded. Note that we cannot discard the old sharing of
s ts with t for two reasons. First, the assignment updates only one memory word
523 whereas there may be other words also represented by ts.[Cons.1]. Second,
s« we only know ts. [Cons.1] possibly aliases v1.[Ref.1] — no definite aliasing
s information is maintained. In some cases the old sharing of v1 is discarded and
s immediately added again. Consider the following example, which creates a cyclic

57 list.
Initial state After *!v1l := 1v2
v1=Ref\ v1=Ref\
% y2 = Cons —>‘ Red I Cons ‘ v2 = Cons H‘ Red I Cons ‘
v3 = Cons —>‘ Blue I Nil ‘ v3 = Cons H‘ Blue I Nil ‘
520 The old sharing between v1 and v3 is discarded but added again (via sharel)

s because v2 also shares with v3. Correctness of the algorithm when cyclic terms
s are created depends on the abstract domain we use. A more expressive domain
s could distinguish between different cons cells in a list. For example, if types are
s3 “folded” at the third level of recursion rather than the first, the domain can
s distinguish three classes of cons cells, where the distance from the first cons cell,
s modula three, is zero, one or two. For a cyclic list with a single cons cell, that
s cons cell must be in all three classes and our algorithm would need modification
s to achieve this. However, in our domain types are folded at the first level of
s recursion so we have a unique folded path for each memory cell in cyclic data
s structure (cyclic terms can only be created with recursive types). There is no
ss0  distinction between the first and second cons cell in a list, for example.

alias (DC v dc [vy,...vn]) a0 = -— v = Dc vi...vN
let
selfl = {{fc(v.[dc.i]),fc(v.[dc.i])} |1 <i< N} U
{{fc(v.(dc.izc1)), fc(v.(dc.jic2))} | {vi-c1,vj.c2} € a0}
sharel = {{fc(v.(dc.i:c1)),w.ca} | {v;.c1,w.co} € a0}
in
a0 Uselfl U sharel

541 The DerefEq case can be seen as equivalent to vl = Ref v2 and binding a
se2  variable to a data constructor with N variable arguments is a generalisation. If
si3 there are multiple v; that share, the corresponding components of v must also
s Share; these pairs are included in selfl.
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alias (EqDeref vl v2) a0 = -— vl = *v2
let
selfl = {{vl.c,vl.c}|{v2.(Ref.1:c),v2.(Ref.1:¢)} € a0}
sharel {{vl.c1,v.ca} | {v2.(Ref.1:c1),v.c2} € a0}
emptyl {{v1.0,v.c} | {vl.[],v.c} € (selfl U sharel)}
in
if the type of vl has a [] component then
a0 Uselfl U sharel
else —--—- avoid bogus sharing with empty component
(a0 U selfl Usharel) \ emptyl

545 The EgDeref case is similar to the inverse of DerefEq in that we are removing
sss  Ref .1 rather than prepending it. However, if the empty component results we
se7 - must check that such a component exists for the type of v1.

alias (App v f [v1,...vn]) a0 = -—v=1=Ffvl...vN
let
“f(wi,... wxgtn) =77 is used to declare sharing for f
mut = the arguments that are declared mutable
post = the postcondition of f along with the sharing for
mutable arguments from the precondition,
with parameters and result renamed with
f.[C1.K],...£.[C1.1],vy,...vn and v, respectively
-- (the renamed precondition of f must be a subset of a0,
-- and mutable arguments of f and live variables they share
-- with must be annotated with ! and must not share with
—-- abstract)
-- selfc+sharec needed for possible closure creation
selfc = {{v.[Cl.i],v.[Cl.4]} |1 <i< N} U
{({v.(CL.(N +1—=14)) :c1),v.((CLAN + 1 — 7)) i)} |
{vi.c1,vj.¢0)} € a0} U
{v.((CL( + N)) ze1), v.((CL.(G + N)) ze)} |
{£.((C14) :c1), £.((CL.5) :c2)} € a0}
sharec = {{v.((CL.(N+1—1)):c1),x.ca} |{vi.c1,2.c0)} € a0} U
{{v.((CL.(: + N)) :c1),z.co} | {£.((CL.2) :c1),x.co} € a0}
-- postt+postm needed for possible function call
postt = {{zy.c1,z5.c3} | {x1.c1,22.C2} € post A{za.c2,25.c3} € a0}
postm = {{z1.c1,x2.co} | {x1.c1,v;.c3} € a0 A {xa.c2,vj.c4} € 20 A
{vi.c3,vj.c4} € post Av; € mut Av; € mut}
in
a0 Uselfc Usharec Upostt Upostm

548 For many App occurrences the function is known statically and we can deter-
ss0  mine if the function is actually called or a closure is created instead. However,
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ss0 in general we must assume either could happen and add sharing for both. If a
ss1  closure is created, the first N closure arguments share with the N arguments of
ss2 the function call and any closure arguments of f share with additional closure
ss3  arguments of the result (this requires renumbering of these arguments). Anal-
ssa  ysis of function calls relies on the sharing and mutability information attached
sss to all arrow types. Because Pawns uses the syntax of statements to express pre-
sse and post-conditions, our implementation uses the sharing analysis algorithm to
ssv  derive an explicit alias set representation (currently this is done recursively, with
sss  the level of recursion limited by the fact than pre- and post-conditions must not
0 contain function calls). Here we ignore the details of how the alias set represen-
so0  tation is obtained. The compiler also uses the sharing information immediately
ss1  before an application to check that the precondition is satisfied, all required “!”
s2  annotations are present and abstract variables are not modified.

563 Given that the precondition is satisfied, the execution of a function results in
ssa  sharing of parameters that is a subset of the union of the declared pre- and post-
sss conditions (we assume the induction hypothesis holds for the sub-computation,
ses  which has a smaller depth of recursion). However, any sharing between non-
ssv  mutable arguments that exists immediately after the call must exist before the
ss  call. The analysis algorithm does not add sharing between non-mutable argu-
s0  ments in the precondition as doing so would unnecessaily restrict how “high
s level” and “low level” code can be mixed. It is important we can pass a variable
sn to a function that allows an abstract argument without the analysis conclud-
s» ing the variable subsequently shares with abstract, and therefore cannot be
s3 updated. Thus post is just the declared postcondition plus the subset of the
s precondition which involves mutable parameters of the function, renamed ap-
sis  propriately. The last N formal parameters, wg 11 ... wg N are renamed as the
st arguments of the call, v ...vy and the formal result r is renamed v. The formal
si7 - parameters wi ... wg represent closure arguments K ...1 of £. Thus a variable
ss component such as wy . [Cons. 1] is renamed f.[Cl.K ,Cons.1].

579 It is also necessary to include one step of transitivity in the sharing informa-
se0  tion: if variable components x1.c; and xs.co alias in post and wzs.co and x3.c3
s (may) alias before the function call, we add an alias of z;.¢; and z3.c3 (in postt).
se2  Function parameters are proxies for the argument variables as well as any vari-
ss3  able components they may alias and when functions are analysed these aliases
ssa  are not known. This is why the transitivity step is needed, and why mutable
ses  parameters also require special treatment. If before the call, x1.c; and x5.co may
s alias with mutable parameter components v;.c3 and v;.c4, respectively, and the
ss7  two mutable parameter components alias in post then z;.c; and x5.co may alias
sss  after the call; this is added in postm. Consider the example below, where we
s.0 have a pair v1 (of references to references to integers) and variables x and y
s share with the two elements of v1, respectively. When v1 is passed to function
s 1 as a mutable parameter, sharing between x and y is introduced. The sharing
s of the mutable parameter in the postcondition, {v1.[Pair.1,Ref.1,Ref.1],
ss v1.[Pair.2,Ref.1,Ref.1]1}, results in sharing between x and y being added in
s« the analysis.
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Initial state After (f1 !vl) !x!y
x = Ref x = Ref
o= pair o erlRed] \ vt = par
595 = _
y = =

Refa ﬁ y

Refﬁ

s6 f1 :: Pair (Ref (Ref Int)) -> ()

507 sharing f1 !vl = _

598 pre nosharing

509 post *a = *b; vl = Pair a b

0 f1 !'vl =

601 case vl of (Pair rril rr2) -> *rrl := *rr2 !vi

602 The need to be conservative with the sharing of mutable parameters in the

s03 analysis of function definitions (the special treatment in Assign) is illustrated
o4 by the example below. Consider the initial state, with variables v1 and v2 which
s share with x and y, respectively. After £2 is called x and y share, even though
es the parameters vl and v2 do not share at any point in the execution of £2. If
sv  mutable parameters were not treated specially in the Assign case, nosharing
ws would be accepted as the postcondition of £2 and the analysis of the call to
600 f2 would then be incorrect. The sharing is introduced between memory cells
s10 that were once shared with v1 and others that were once shared with v2. Thus
e in our algorithm, the sharing of mutable parameters reflects all memory cells
sz that are reachable from the parameters during the execution of the function.
sz Where the mutable parameters are assigned in £2, the sharing of the parameters
s1e  previous values (rrl and rr2) is retained. Thus when the final assignment is
615 processed, sharing between the parameters is added and this must be included
e1s 1n the postcondition. Although this assignment does not modify v1 or v2, the
ez “” annotations are necessary and alert the reader to potential modification of
eis  variables that shared with the parameters when the function was called.

Initial state After (f2 vl v2) Ix!y

vl = Ref — [Ref}— [Ref}—[ 1 | vl = Refﬂ’Ryﬂ/\Ref [ 1]

619 x = Ref X Ref
Ref y = Ref

y —
v2 = Ref — [Ref}— [Ref}—[ 2 | v2 = Ref H’Reﬂ\\ReH—ﬁ 2 |
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20 f2 :: Ref (Ref (Ref Int)) -> Ref (Ref (Ref Int)) -> ()

621 sharing £2 vl !v2 = _
622 pre nosharing
623 post **vl = *xx*xv2
o0 2 vl lv2 =
625 *r10 = 10 -- ref to new cell containing 10
626 *rr10 = ri10 -- ref to above ref
627 *r20 = 20 -- ref to new cell containing 20
628 *rr20 = r20 -- ref to above ref
629 rrl = *vil -- save *vl
630 rr2 = *v2 -- save *v2
631 xlvl := rr10 -- update *v1 with Ref (Ref 10)
632 *1y2 := rr20 -- update *v2 with Ref (Ref 20)
633 *rrl := xrr2 !v1!lv2 -- can create sharing at call
alias Error a0 = ) -— error
alias (Case v [(p1,$1),...(pn,sn)]) a0 = -- case v of
let
old = {{v.c1,va.co} | {v.c1,v2.co} € a0}
in

U1<i<N aliasCase a0 old v p; s;

aliasCase a0 av v (Pat dc [v1,...vn]) s = - (Dc *vl...xvN) -> s

let

avdc = {{fc(v.(dc.i:c1)),w.ca} | {fc(v.(dc.i: c1)),w.co} € av}

rself = {{v;.[Ref.1],v;.[Ref.1]} |1 <i< N}

vishare = {{fc(v;.(Ref.1:c1)),fc(v;.(Ref.1:c2))} |

{fc(v.(dc.i: ¢1)),fc(v.(dc.j: c2))} € av}

share = {{fc(v;.(Ref.1:c1)),w.ca} | {fc(v.(dc.i: ¢1)),w.c2))} € av}
in

alias s (rself Uvishare U share U (a0 \ av) U avdc)

634 For a case expression we return the union of the alias sets obtained for each of
s the different branches. For each branch we only keep sharing information for the
66 variable we are switching on that is compatible with the data constructor in that
s branch (we remove all the old sharing, av, and add the compatible sharing, avdc).
s Note we use a high level declarative definition for avdc (and other variables)
630 which implicitly uses the inverse of fc. To deal with individual data constructors
s0 we consider pairs of components of arguments ¢ and j which may alias in order
1 to compute possible sharing between v; and v;, including self-aliases when 7 = j.
s> The corresponding component of v; (prepended with Ref and folded) may alias
3  the component of v;. For example, if v of type RTrees is matched with Cons *v1
ee  *v2 and v. [] self-aliases, we need to find the components which fold to v. []
s (v.[Cons.2] and v. [Cons.1,RNode.2]) in order to compute the sharing for v2
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and vi. Thus we compute that v2.[Ref.1], may alias v1.[Ref.1,RNode.2].
This can occur if the data structure is cyclic, such as the example below where v
is a list containing a single tree with 2 in the node and v as the children (hence it
represents a single infinite branch). Note that v1. [Ref.1,RNode.2] represents
both the memory cell containing the Cons pointer and the cell containing Nil.

‘ 2 I Cons ‘

v = Cons —— | RNode | Nil |

Ref /

vl =
v2 = Ref
alias (Instype vl v2) a0 = -— vl = v2::t

alias (EqVar vl v2) a0
-- (if any sharing is introduced between vl and v2,
-- v2 must not be indirectly updated later while live)

Type instantiation is dealt with in the same way as variable equality, with
the additional check that if any sharing is introduced, the variable with the more
general type is not implicitly updated later while still live (it is sufficient to check
there is no “!v2” annotation attached to a later statement).

6 Example

We now show how this sharing analysis algorithm is applied to the binary search
tree code given earlier. We give a core Pawns version of each function and the
alias set before and after each statement, plus an additional set at the end
which is the union of the pre- and post-conditions of the function. To save
space, we write the alias set as a set of sets where each inner set represents
all sets containing exactly two of its members. Thus {{a,b,c}} represents a set
of six alias pairs: aliasing between all pairs of elements, including self-aliases.
The return value is given by variable ret and variables absL and absT are the
versions of abstract for type Ints and Tree, respectively.

list_bst xs = -0
vl = TNil -1
*tp = vl -2
list_bst_du xs !tp -3
ret = *tp -- 4

We start with the precondition: ag = {{xs.[Cons.1], absL.[Cons.1]},
{xs.[1, absL.[1}}. Binding to a constant introduces no sharing so a; = ayg.
az = a1 U {tp. [Ref.1]}. The function call has precondition agU{{tp. [Ref .11},
{tp. [Ref.1,Node.2]}}, which is a superset of as. Since tp is a mutable ar-
gument the precondition sharing for tp is added: ag = az U {{tp.[Ref.1,
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o6 Node.2]}}. The final sharing includes the return variable, ret: as = az U
s {{ret.[],tp.[Ref.1]1}, {ret.[Node.2],tp.[Ref.1,Node.2]}}. After remov-
s ing sharing for the dead (local) variable tp we obtain a subset of the union of
eo  the pre- and post-conditions, which is agU{{ret. [1,absT. [1}, {ret. [Node.2],
0 absT. [Node.2]}}.

ee1 list_bst_du xs !tp = -0
682 case xs of

683 (Cons *vl *v2) -> -1
684 x = *vl - 2
685 xsl = *v2 -3
686 v3 = bst_insert_du x !tp -- 4
687 v4 = list_bst_du xsl !tp --5
688 ret = v4 -- 6
689 Nil -> -7
690 ret = () -- 8
691 -— after case -9
692 We start with the precondition, ag = {{tp. [Ref.11}, {tp. [Ref.1,Node.2]},

s {xs.[Cons.1],absL. [Cons.1]}, {xs.[],absL. [1}}. The Cons branch of the
s0s case introduces sharing for v1 and v2: a; = ag U {{xs. [Cons.1], absL. [Cons. 1],
s v1.[Ref.1], v2.[Ref.1,Cons.1]}, {v2.[Ref.1], xs.[], absL. [1}}. The list
es elements are atomic so as = a;. The next binding makes the sharing of xs1 and
7 xs thesame: a3 = az U {{v2. [Ref.1], xs.[],xs1.[],absL.[1}, {vl. [Ref.1],

s xs.[Cons.1], xs1.[Cons.1], absL. [Cons.1], v2. [Ref.1,Cons.1]}}. This can
eo be simplified by removing the dead variables v1 and v2. The precondition of the
0 calls are satisfied and ag = a5 = a4 = a3. For the Nil branch we remove the in-
71 compatible sharing for xs from ag: a7 = {{tp. [Ref.11}, {tp. [Ref.1,Node.2]},

72 {absL. [Cons.1]}, {absL.[1}} and ag = a7. Finally, ag = agUag. This contains
73 all the sharing for mutable parameter tp and, ignoring local variables, is a subset
704 of the union of the pre- and post-conditions, ag.

75 bst_insert_du x !tp = -- 0
706 vl = *tp -1
707 case vl of

708 TNil -> - 2
709 v2 = TNil -3
710 v3 = TNil -- 4
711 v4 = Node v2 x v3 -- 5
712 *1tp = v4 -- 6
713 ret = () - 7
714 (Node *1p *v5 *rp) -> -8
715 n = *vb -9
716 v6 = (x <= n) -- 10
717 case v6 of

718 True —-> - 11
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719 v7 = (bst_insert_du x !1p) !tp - 12
720 ret = v7 -- 13
721 False -> -- 14
722 v8 = (bst_insert_du x !rp) !tp -- 15
73 ret = v8 -- 16
724 -— end case -- 17
725 —-- end case -- 18

726 Here ag = {{tp. [Ref.1]}, {tp. [Ref.1,Node.2]}} and a; = ao U {{v1.[],
= tp.[Ref.1]}, {tp.[Ref.1,Node.2], v1.[Node.2]}}. For the TNil branch we
7s remove the vl sharing so ay = a3 = as = ap and a5 = ayg U {{v4.[1},
720 {v4.[Node.2]}}. After the destructive update, ag = asU{{v4.[], tp. [Ref.11},
70 {v4.[Node.2], tp. [Ref.1,Node.2]}} (v4 is dead and can be removed) and a7 =
m  ag. For the Node branch we have ag = a3 U {{v1.[], tp. [Ref.1], 1p. [Ref.1],
2 rp.[Ref.1]}, {tp. [Ref.1,Node.2],1p. [Ref.1,Node.2], rp. [Ref.1,Node.2],
73 v5.[Ref.1], v1. [Node.2]}}. The same set is retained for ag...ai7 (assuming
74 the dead variable v5 is retained), the preconditions of the function calls are sat-
s isfied and the required annotations are present. Finally, a1s = a17 U ay, which
16 contains all the sharing for tp, and after eliminating local variables we get the
77 postcondition, which is the same as the precondition.

= 7 Discussion

79 Imprecision in the analysis of mutable parameters could potentially be reduced
mo by allowing the user to declare that only certain parts of a data structure are
71 mutable, as suggested in [1]. It is inevitable we lose some precision with recursion
2 in types, but it seems that some loss of precision could be avoided relatively
n3  easily. The use of the empty path to represent sub-components of recursive types
s results in imprecision when references are created. For example, the analysis of
us *vp = Nil; v = *vp concludes that the empty component of v may alias with
76  itself and the Ref component of vp (in reality, v has no sharing). Instead of the
7 empty path, a dummy path of length one could be used. Flagging data structures
us  which are known to be acyclic could also improve precision for Case. A more
no  agressive approach would be to unfold the recursion an extra level, at least for
70 some types. This could allow us to express (non-)sharing of separate subtrees
1 and whether data structures are cyclic, at the cost of more variable components,
72 more complex pre- and post-conditions and more complex analysis for Assign
3 and Case.

754 Increasing the number of variable components also decreases efficiency. The
s algorithmic complexity is affected by the representation of alias sets. Currently
76 We use a naive implementation, using just ordered pairs of variable components
77 as the set elements and a set library which uses an ordered binary tree. The size
78 of the set can be O(N?), where N is the maximum number of live variable com-
70 ponents of the same type at any program point (each such variable component
70 can alias with all the others). In typical code the number of live variables at
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71 any point is not particularly large. If the size of alias sets does become problem-
w2 atic, a more refined set representation could be used, such as the set of sets of
763 pairs representation we used in Section 6, where sets of components that all alias
s with each other are optimised. There are also simpler opportunities for efficiency
s gains, such as avoiding sharing analysis for entirely pure code. We have not stress
w6 tested our implementation or run substantial benchmarks as it is intended to be
w7 a prototype, but performance has been encouraging. Translating the tree inser-
s tion code plus a test harness to C, which includes the sharing analysis, takes
w0 around half the time of compiling the resulting C code using GCC. Total com-
7o pilation time is less than half that of GHC for equivalent Haskell code and less
m  than one tenth that of MLton for equivalent ML code. The Pawns executable is
72 around 34 times as fast as the others.

= 8 Related work

7 Related programming languages are discussed in [1]; here we restrict attention
s to work related to the sharing analysis algorithm. The most closely related work
76 is that done in the compiler for Mars [7], which extends similar work done for
7 Mercury [8] and earlier for Prolog [9]. All use a similar abstract domain based on
s the type folding method first proposed in [6]. Our abstract domain is somewhat
779 more precise due to inclusion of self-aliasing, and we have no sharing for con-
70 stants. In Mars it is assumed that constants other than numbers can share. Thus
= for code such as xs = []; ys = xs our analysis concludes there is no sharing
2 between xs and ys whereas the Mars analysis concludes there may be sharing.
783 One important distinction is that in Pawns sharing (and mutability) is de-
s clared in type signatures of functions so the Pawns compiler just has to check the
s declarations are consistent, rather than infer all sharing from the code. However,
s 1t does have the added complication of destructive update. As well as having to
77 deal with the assignment primitive, it complicates handling of function calls and
788 case statements (the latter due to the potential for cyclic structures). Mars,
e Mercury and Prolog are essentially declarative languages. Although Mars has
0 assignment statements the semantics is that values are copied rather than de-
1 structively updated — the variable being assigned is modified but other variables
72 remain unchanged. Sharing analysis is used in these languages to make the im-
73 plementation more efficient. For example, the Mars compiler can often emit code
74 to destructively update rather than copy a data structure because sharing anal-
75 ysis reveals no other live variables share it. In Mercury and Prolog the analysis
6 can reveal when heap-allocated data is no longer used, so the code can reuse or
77 reclaim it directly instead of invoking a garbage collector.

708 These sharing inference systems use an explicit graph representation of the
79 sharing behaviour of each segment of code. For example, code s; may cause
s0 aliasing between (a component of) variables a and b (which is represented as
sn  an edge between nodes a and b) and between c and d and code sy may cause
g2 aliasing between b and ¢ and between d and e. To compute the sharing for the
g3 sequence si;So they use the “alternating closure” of the sharing for s; and s,
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sa  Which constructs paths with edges alternating from s; and so, for example a-b
s (from s1), b-c (from s3), c-d (from s1) and d-e (from s3).

806 The sharing behaviour of functions in Pawns is represented explicitly, by a
sz pre- and post-condition and set of mutable arguments but there is no explicit
sz representation for sharing of statements. The (curried) function alias s rep-
s0  resents the sharing behaviour of s and the sharing behaviour of a sequence of
s statements is represented by the composition of functions. This representation
su has the advantage that the function can easily use information about the current
si2  sharing, including self-aliases, and remove some if appropriate. For example, in
sz the [] branch of the case in the code below the sharing for xs is removed and
s we can conclude the returned value does not share with the argument.

sis map_const_1 :: [t] -> [Int]

816 sharing map_const_1 xs = ys pre nosharing post nosharing

s17 map_const_1 xs =

818 case xs of

819 [1 -> xs -- can look like result shares with xs

820 (_:xs1) -> 1:(map_const_1 xsl1)

821 There is also substantial work on sharing analysis for logic programming

22 languages using other abstract domains, notably the set-sharing domain of [10]
o3 (a set of sets of variables), generally with various enhancements — see [11] for a
g4 good sumary and evaluation. Applications include avoiding the “occurs check”
s in unification [12] and exploiting parallelism of independent sub-computations
226 [13]. These approaches are aimed at identifying sharing of logic variables rather
sz than sharing of data structures. For example, although the two Prolog goals p (X)
w28 and q(X) share X, they are considered independent if X is instantiated to a data
e20  structure that is ground (contains no logic variables). Ground data structures in
s Prolog are read-only and cause no problem for parallelism or the occurs check,
s whether they are shared or not. For this reason, the set-sharing domain is often
e augmented with extra information related to groundness [11]. In Pawns there
g3 are no logic variables but data structures are mutable, hence their sharing is
s« important.

835 However, the set-sharing domain (with enhancements) has been adapted to
s3s  analysis of sharing of data structures in object oriented languages such as Java
gz [14]. One important distinction is that Pawns supports algebraic data types
ss  which allow a “sum of products”: there can be a choice of several data con-
g0 structors (a sum), where each one consists of several values as arguments (a
s0  product). Java and most other imperative and object oriented languages do not.
s Products are supported by objects containing several values but the only choice
s (sum) is whether the object is null or not. Java objects and pointers in most
a3  imperative languages are similar to a Maybe algebraic data type, with Nothing
sae  corresponding to null. A Ref cannot be null. The abstract domain of [14] uses
as  set-sharing plus additional information about what objects are definitely not
ss  null. For Pawns code that uses Refs this information is given by the data type
s — the more expressive types allow us to trivially infer some information that is
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ss  obscured in other languages. For code that uses Maybe, our domain can express
a9 the fact that a variable is definitely Nothing by not having a self-alias of the
go Just component. The rich structural information in our domain fits particularly
ss1 well with algebraic data types. There are also other approches to and uses of
s2 alias analysis for imperative languages, such as [15] and [16], but these are not
53 aimed at precisely capturing information about dynamically allocated data. A
s« more detailed discussion of such approaches is given in [7].

s 9  Conclusion

sss  Purely declarative languages have the advantage of avoiding side effects, such
ss7  as destructive update of function arguments. This makes it easier to combine
gs program components, but some algorithms are hard to code efficiently without
so flexible use of destructive update. A function can behave in a purely declara-
so tive way if destructive update is allowed, but restricted to data structures that
g1 are created inside the function. The Pawns language uses this idea to support
ss2 flexible destructive update encapsulated in a declarative interface. It is designed
s3  to make all side effects “obvious” from the source code. Because there can be
ss sharing between the representations of different arguments of a function, local
ss variables and the value returned, sharing analysis is an essential component of
ss  the compiler. It is also used to ensure “preservation” of types in computations.
ss7  Sharing analysis has been used in other languages to improve efficiency and to
s give some feedback to programmers but we use it to support important features
so of the programming language.

870 The algorithm operates on (heap allocated) algebraic data types, including
en arrays and closures. In common with other sharing analysis used in declara-
sz tive languages it supports binding of variables, construction and deconstruction
e3  (combined with selection or “case”) and function/procedure calls. In addition, it
sra  supports explicit pointers, destructive update via pointers, creation and applica-
ers  tion of closures and pre- and post-conditions concerning sharing attached to type
ers  signatures of functions. It also uses an abstract domain with additional features
sz to improve precision. Early indications are that the performance is acceptable:
srs  compared with other compilers for declarative languages, the prototype Pawns
sro  compiler supports encapsulated destructive update, is fast and produces fast
so  executables.
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