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Abstract. Pawns is a programming language under development that8

supports algebraic data types, polymorphism, higher order functions and9

“pure” declarative programming. It also supports impure imperative fea-10

tures including destructive update of shared data structures via pointers,11

allowing significantly increased efficiency for some operations. A novelty12

of Pawns is that all impure “effects” must be made obvious in the source13

code and they can be safely encapsulated in pure functions in a way14

that is checked by the compiler. Execution of a pure function can per-15

form destructive updates on data structures that are local to or even-16

tually returned from the function without risking modification of the17

data structures passed to the function. This paper describes the shar-18

ing analysis which allows impurity to be encapsulated. Aspects of the19

analysis are similar to other published work, but in addition it handles20

explicit pointers and destructive update, higher order functions including21

closures and pre- and post-conditions concerning sharing for functions.22

Keywords: functional programming language, destructive update, muta-23

bility, effects, algebraic data type, sharing analysis, aliasing analysis24

1 Introduction25

This paper describes the sharing analysis done by the compiler for Pawns [1],26

a programming language that is currently under development. Pawns supports27

both declarative and imperative styles of programming. It supports algebraic28

data types, polymorphism, higher order programming and “pure” declarative29

functions, allowing very high level reasoning about code. It also allows imperative30

code, where programmers can consider the representation of data types, obtain31

pointers to the arguments of data constructors and destructively update them.32

Such code requires the programmer to reason at a much lower level and consider33

aliasing of pointers and sharing of data structures. Low level “impure” code can34

be encapsulated within a pure interface and the compiler checks the purity. This35

requires analysis of pointer aliasing and data structure sharing, to distinguish36

data structures that are only visible to the low level code (and are therefore37

safe to update) from data structures that are passed in from the high level code38

(for which update would violate purity). The main aim of Pawns is to get the39
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benefits of purity for most code but still have the ability to write some key40

components using an imperative style, which can significantly improve efficiency41

(for example, a more than twenty-fold increase in the speed of inserting an42

element into a binary search tree).43

There are other functional programming languages, such as ML [2], Haskell44

[3] and Disciple [4], that allow destructive update of shared data structures but45

do not allow this impurity to be encapsulated. In these languages the ability46

to update the data structure is connected to its type1. For a data structure to47

be built using destructive update its type must allow destructive update and48

any code that uses the data structure can potentially update it as well. This49

prevents simple declarative analysis of the code and can lead to a proliferation50

of different versions of a data structure, with different parts being mutable. For51

example, there are four different versions of lists, since both the list elements52

and the “spine” may (or may not) be mutable, and sixteen different versions53

of lists of pairs. There is often an efficiency penalty as well, with destructive54

update requiring an extra level of indirection in the data structure (an explicit55

“reference” in the type with most versions of ML and Haskell). Pawns avoids56

this inefficiency and separates mutability from type information, allowing a data57

structure to be mutable in some contexts and considered “pure” in others. The58

main cost from the programmer perspective is the need to include extra annota-59

tions and information in the source code. This can also be considered a benefit,60

as they provide useful documentation and error checking. The main implemen-61

tation cost is additional analysis done by the compiler, which is the focus of this62

paper.63

The rest of this paper assumes some familiarity with Haskell and is structured64

as follows. Section 2 gives a brief overview of the relevant features of Pawns.65

An early pass of the compiler translates Pawns programs into a simpler “core”66

language; this is described in Section 3. Section 4 describes the abstract domain67

used for sharing analysis algorithm, Section 5 defines the algorithm itself and68

Section 6 gives an extended example. Section 7 briefly discusses precision and69

efficiency issues. Section 8 discusses related work and Section 9 concludes.70

2 An overview of Pawns71

A more detailed introduction to Pawns is given in [1]. Pawns has many simi-72

larities with other functional languages. It supports algebraic data types with73

parametric polymorphism, higher order programming and curried function defi-74

nitions. It uses strict evaluation. In addition, it supports destructive update via75

“references” (pointers) and has a variety of extra annotations to make impure76

effects more clear from the source code and allow them to be encapsulated in77

pure code. Pawns also supports a form of global variables (called state variables)78

which support encapsulated effects, but we do not discuss them further here as79

they are handled in essentially the same way as other variables in sharing analy-80

sis. Pure code can be thought of in a declarative way, were values can be viewed81

1 Disciple uses “region” information to augment types, with similar consequences.
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abstractly, without considering how they are represented. Code that uses de-82

structive update must be viewed at a lower level, considering the representation83

of values, including sharing. We discuss this lower level view first, then briefly84

present how impurity can be encapsulated to support the high level view. We85

use Haskell-like syntax for familiarity.86

2.1 The low level view87

Values in Pawns are represented as follows. Constants (data constructors with88

no arguments) are represented using a value in a single word. A data constructor89

with N > 0 arguments is represented using a word that contains a tagged pointer90

to a block of N words in main memory containing the arguments. For simple91

data types such as lists the tag may be empty. In more complex cases some92

bits of the pointer may be used and/or a tag may be stored in a word in main93

memory along with the arguments. Note that constants and tagged pointers94

are not always stored in main memory and Pawns variables may correspond to95

registers that contain the value. Only the arguments of data constructors are96

guaranteed to be in main memory. An array of size N is represented in the same97

way as a data constructor with N arguments, with the size given by the tag.98

Functions are represented as either a constant (for functions that are known99

statically) or a closure which is a data constructor with a known function and a100

number of other arguments.101

Pawns has a Ref t type constructor, representing a reference/pointer to a102

value of type t (which must be stored in memory). Conceptually we can think of103

a corresponding Ref data constructor with a single argument, but this is never104

explicit in Pawns code. Instead, there is an explicit dereference operation: *vp105

denotes the value vp points to. There are two ways references can be created:106

let bindings and pattern bindings. A let binding *vp = val allocates a word107

in main memory, initializes it to val and makes vp a reference to it (Pawns108

omits Haskell’s let and in keywords; the scope is the following sequence of109

statements/expressions). In a pattern binding, if *vp is the argument of a data110

constructor pattern, vp is bound to a reference to the corresponding argument of111

the data constructor if pattern matching succeeds (there is also a primitive that112

returns a reference to the ith element of an array). Note it is not possible to ob-113

tain a reference to a Pawns variable: variables do not denote memory locations.114

However, a variable vp of type Ref t denotes a reference to a memory loca-115

tion containing a value of type t and the memory location can be destructively116

updated by *vp := val.117

Consider the following code. Two data types are defined. The code creates a118

reference to Nil (Nil is stored in a newly allocated memory word) and a reference119

to that reference (a pointer to the word containing Nil is put in another allocated120

word). It also creates a list containing constants Blue and Red (requiring the121

allocation of two cons cells in memory; the Nil is copied). It deconstructs the122

list to obtain pointers to the head and tail of the list (the two words in the first123

cons cell) then destructively updates the head of the list to be Red.124
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data Colour = Red | Green | Blue125

data Colours = Nil | Cons Colour Colours -- like List Colour126

...127

*np = Nil -- np = ref to (copy of) Nil128

*npp = np -- npp = ref to (copy of) np129

cols = Cons Blue (Cons Red *np) -- cols = [Blue, Red]130

case cols of131

(Cons *headp *tailp) -> -- get ref to head and tail132

*headp := Red -- update head with Red133

The memory layout after the assignment can be pictured as follows, where134

boxes represent main memory words and Ref and Cons followed by an arrow135

represent pointers (no tag is used in either case):136

cols = Cons Red Cons Red Nil

Nilnp = Ref

npp = Ref Ref

headp = Ref

tailp = Ref
137

The destructive update above changes the values of both headp and cols138

(the representations are shared). One of the novel features of Pawns is that the139

source code must be annotated with “!” to make it obvious when each “live”140

variable is updated. If both headp and cols are used later, the assignment141

statement above must be written as follows, with headp prefixed with “!” and142

an additional annotation attached to the whole statement indicating cols may143

be updated:144

*!headp := Red !cols -- update *headp (and cols)145

We say that the statement directly updates headp and indirectly updates146

cols, due to sharing of representations. Similarly, if headp was passed to a147

function that may update it, additional annotations are required. For example,148

(assign !headp Red) !cols makes the direct update of headp and indirect149

update of cols clear. Sharing analysis is used to ensure that source code contains150

all the necessary annotations. One aim of Pawns is that any effects of code should151

be made clear by the code. Pawns is an acronym for Pointer Assignment With152

No Surprises.153

Pawns functions have extra annotations in type signatures to document which154

arguments may be updated. For additional documentation, and help in sharing155

analysis, there are annotations to declare what sharing may exist between ar-156

guments when the function is called (a precondition) and what extra sharing157

may be added by executing the function (called a postcondition, though it is the158

union of the pre- and post-condition that must be satisfied after a function is159

executed). For example, we may have:160
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assign :: Ref t -> t -> ()161

sharing assign !p v = _ -- p may be updated162

pre nosharing -- p&v don’t share when called163

post *p = v -- assign may make *p alias with v164

assign !p v =165

*!p := v166

The “!” annotation on parameter p declares the first argument of assign167

is mutable. The default is that arguments are not mutable. As well as check-168

ing for annotations on assignments and function calls, sharing analysis is used169

to check that all parameters which may be updated are declared mutable in170

type signatures, and pre- and post-conditions are always satisfied. For example,171

assuming the previous code which binds cols, the call assign !tailp !cols172

annotates all modified variables but violates the precondition of assign because173

there is sharing between tailp and cols at the time of the call. Violating this174

precondition allows cyclic structures to be created, which is important for un-175

derstanding the code. If the precondition was dropped, the second argument of176

assign would also need to be declared mutable in the type signature and the177

assignment to p would require v to be annotated. In general, there is an inter-178

dependence between “!” annotations in the code and pre- and post-conditions.179

More possible sharing at a call means more “!” annotations are needed, more180

sharing in (recursive) calls and more sharing when the function returns.181

Curried functions and higher order code are supported by attaching sharing182

and destructive update information to each arrow in a type, though often the183

information is inferred rather than being given explicitly in the source code. For184

example, implicit in the declaration for assign above is that assign called with185

a single argument of type Ref t creates a closure of type t -> () containing186

that argument (and thus sharing the object of type t). The explicit sharing187

information describes applications of this closure to another argument. There188

is a single argument in this application, referred to with the formal parameter189

v. The other formal parameter, p, refers to the argument of the closure. In190

general, a type with N arrows in the “spine” has K + N formal parameters in191

the description of sharing, with the first K parameters being closure arguments.192

The following code defines binary search trees of integers and defines a func-193

tion that takes a pointer to a tree and inserts an integer into the tree. It uses194

destructive update, as would normally be done in an imperative language. The195

declarative alternative must reconstruct all nodes in the path from the root down196

to the new node. Experiments using our prototype implementation of Pawns indi-197

cate that for long paths this destructive update version is as fast as hand-written198

C code whereas the “pure” version is more than twenty times slower, primarily199

due to the overhead of memory allocation.200

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.907v2 | CC-BY 4.0 Open Access | rec: 25 Jun 2015, publ: 25 Jun 2015

P
re
P
ri
n
ts



6

data Tree = TNil | Node Tree Int Tree201

bst_insert_du :: Int -> Ref Tree -> ()202

sharing bst_insert_du x !tp = _ -- tree gets updated203

pre nosharing -- integers are atomic so204

post nosharing -- it doesn’t share205

bst_insert_du x !tp =206

case *tp of207

TNil ->208

*!tp := Node TNil x TNil -- insert new node209

(Node *lp n *rp) ->210

if x <= n then211

(bst_insert_du x !lp) !tp -- update lp (and tp)212

else213

(bst_insert_du x !rp) !tp -- update rp (and tp)214

2.2 The high level view215

Whenever destructive update is used in Pawns, programmers must be aware of216

potential sharing of data representations and take a low level view. In other217

cases it is desirable to have a high level view of values, ignoring how they are218

represented and any sharing that may be present. For example, in the two trees219

t1 and t2 depicted below, it is much simpler if we do not have to care or know220

about the sharing between the trees and within tree t1. The high level view is221

they are both just Node (Node TNil 123 TNil) 123 (Node TNil 123 TNil).222

t1 = Node t2 = Node

Node 123 Node Node 123 Node

TNil 123 TNil TNil 123 TNil
223

Pawns has a mechanism to indicate that the high level view is taken. Pre-224

and post-conditions can specify sharing with a special pseudo-variable named225

abstract2. The sharing analysis of the Pawns compiler allows a distinction226

between “abstract” variables, which share with abstract and for which the227

programmer takes a high level view, and “concrete” variables for which the pro-228

grammer must understand the representation and explicitly declare all sharing229

in pre- and post-conditions. The analysis checks that no live abstract variables230

can be destructively updated. Thus if a function has a parameter which is up-231

dated, it must be declared mutable and must not be declared to share with232

abstract in the precondition (non-mutable parameters may or may not share233

with abstract). Checking of preconditions ensures that abstract variables are234

not passed to functions which expect concrete data structures. For example, an235

abstract tree cannot be passed to bst_insert_du because the precondition al-236

lows no sharing with abstract. It is important that the tree structure is known237

2 There is conceptually a different abstract variable for each distinct type.
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when bst_insert_du is used because the result depends on it. For example,238

inserting into the right subtree of t2 only affects this subtree whereas inserting239

into the right subtree of t1 (which has the same high level value) also changes240

the left subtree of both t1 and t2. Note that concrete variables can be passed241

to functions which allow abstract arguments. Pawns type signatures that have242

no annotations concerning destructive update or sharing implicitly indicate no243

arguments are destructively updated and the arguments and result share with244

abstract. Thus a subset of Pawns code can look like and be considered as pure245

functional code.246

The following code defines a function which takes a list of integers and returns247

a binary search tree containing the same integers. Though it uses destructive up-248

date internally, this impurity is encapsulated and it can therefore be viewed as249

a pure function. The list that is passed in as an argument is never updated and250

the tree returned is abstract so it is never subsequently updated (a concrete tree251

could be returned if an explicit postcondition with nosharing was given). An252

initially empty tree is created locally. It is destructively updated by inserting253

each integer of the list into it (using list_bst_du, which calls bst_insert_du),254

then the tree is returned. Within the execution of list_bst it is important to255

understand the low level details of how the tree is represented, but this informa-256

tion is not needed outside the call.257

data Ints = Nil | Cons Int Ints258

259

list_bst :: Ints -> Tree -- pure function from Ints to Tree260

-- implicit sharing information:261

-- sharing list_bst xs = t262

-- pre xs = abstract263

-- post t = abstract264

list_bst xs =265

*tp = TNil -- create pointer to empty tree266

list_bst_du xs !tp -- insert integers into tree267

*tp -- return (updated) tree268

list_bst_du :: Ints -> Ref Tree -> ()269

sharing list_bst_du xs !tp = _ -- tree gets updated270

pre xs = abstract271

post nosharing272

list_bst_du xs !tp =273

case xs of274

(Cons x xs1) ->275

bst_insert_du x !tp -- insert head of list into tree276

list_bst_du xs1 !tp -- insert rest of list into tree277

Nil -> ()278
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3 Core Pawns279

An early pass of the Pawns compiler converts all function definitions into a280

core language by flattening nested expressions, introducing extra variables et281

cetera. A variable representing the return value of the function is introduced and282

expressions are converted to bindings for variables. A representation of the core283

language version of code is annotated with type, liveness and other information284

prior to sharing analysis. We just describe the core language here. The right side285

of each function definition is a statement (described using the definition of type286

Stat below), which may contain variables, including function names (Var), data287

constructors (DCons) and pairs containing a pattern (Pat) and statement for288

case statements. All variables are distinct except for those in recursive instances289

of Stat and variables are renamed to avoid any ambiguity due to scope.290

data Stat = -- Statement, eg291

Seq Stat Stat | -- stat1 ; stat2292

EqVar Var Var | -- v = v1293

EqDeref Var Var | -- v = *v1294

DerefEq Var Var | -- *v = v1295

DC Var DCons [Var] | -- v = Cons v1 v2296

Case Var [(Pat, Stat)] | -- case v of pat1 -> stat1 ...297

Error | -- (for uncovered cases)298

App Var Var [Var] | -- v = f v1 v2299

Assign Var Var | -- *!v := v1300

Instype Var Var -- v = v1::instance_of_v1_type301

302

data Pat = -- patterns for case, eg303

Pat DCons [Var] -- (Cons *v1 *v2)304

Patterns in the core language only bind references to arguments — the ar-305

guments themselves must be obtained by explicit dereference operations. Pawns306

supports “default” patterns but for simplicity of presentation here we assume all307

patterns are covered in core Pawns and we include an error primitive. Similarly,308

we just give the general case for application of a variable to N > 0 arguments;309

our implementation distinguishes some special cases. Memory is allocated for310

DerefEq, DC (for non-constants) and App (for unsaturated applications which311

result in a closure).312

The runtime behaviour of Instype is identical to EqVar but it is treated dif-313

ferently in type analysis. Sharing and type analysis cannot be entirely separated.314

Destructive update in the presence of polymorphic types can potentially violate315

type safety or “preservation” — see [5], for example. For a variable whose type316

is polymorphic (contains a type variable), we must avoid assigning a value with317

a less general type. For example, in *x = [] the type of *x is “list of t”, where318

t is a type variable. Without destructive update it should be possible to use *x319

wherever a list of any type is expected. However, if *x is then assigned a list320

containing integers (which has a less general type), passing it to a function that321
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expects a list of functions violates type safety (“calling” an arbitrary integer is322

not safe). Pawns allows expressions to have their inferred types further instan-323

tiated using “::”, and the type checking pass of the compiler also inserts some324

type instantiation. The type checking pass ensures that direct update does not325

involve type instantiation but to improve flexibility, indirect update is checked326

during the sharing analysis.327

4 The abstract domain328

The representation of the value of a variable includes some set of main memory329

words (arguments of data constructors). Two variables share if the intersection330

of their sets of main memory words is not empty. The abstract domain for331

sharing analysis must maintain a conservative approximation to all sharing, so332

we can tell if two variables possibly share (or definitely do not share). The333

abstract domain we use is a set of pairs (representing possibly intersecting sets334

of main memory locations) of variable components. The different components of335

a variable partition the set of main memory words for the variable.336

The components of a variable depend on its type. For non-recursive types337

other than arrays, each possible data constructor argument is represented sep-338

arately. For example, the type Maybe (Maybe (Either Int Int)) can have an339

argument of an outer Just data constructor, an inner Just and Left and Right.340

A component can be represented using a list of x.y pairs containing a data con-341

structor and an argument number, giving the path from the outermost data con-342

structor to the given argument. For example, the components of the type above343

can be written as: [Just.1], [Just.1,Just.1], [Just.1,Just.1,Left.1] and344

[Just.1,Just.1,Right.1]. If variable v has value Just Nothing, the expres-345

sion v.[Just.1] represents the single main memory word containing the occur-346

rence of Nothing.347

For Ref t types we proceed as if there was a Ref data constructor, so348

vp.[Ref.1] represents the word vp points to. For function types, values may349

be closures. A closure that has had K arguments supplied is represented as a350

data constructor ClK with these K arguments; these behave in the same way351

as other data constructor arguments with respect to sharing, except Pawns pro-352

vides no way to obtain a pointer to a closure argument. Closures also contain353

a code pointer and an integer which are not relevant to sharing so they are ig-354

nored in the analysis. We also ignore the subscript on the data constructor for355

sharing analysis because type and sharing analysis only give a lower bound on356

the number of closure arguments. Our analysis orders closure arguments so that357

the most recently supplied argument is first (the reverse of the more natural358

ordering). Consider the code below, where foo is a function that is defined with359

four or more arguments. The sharing analysis proceeds as if the memory layout360

was as depicted in the diagram. The pre- and post-conditions of foo are part of361

the type information associated with c1, c2 and c3.362
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*ip = 123

c1 = foo ip Nil

c2 = c1

c3 = c2 True

ip = Ref 123

c1 = Cl Nil Ref

c2 = Cl

c3 = Cl True Nil Ref

363

For arrays, [Array_.1] is used to represent all words in the array. The ex-364

pression, x.[Array_.1,Just.1] represents the arguments of all Just elements365

in an array x of Maybe values. For recursive types, paths are “folded” [6] so there366

are a finite number of components. If a type T has sub-component(s) of type367

T we use the empty path to denote the sub-component(s). In general, we con-368

struct a path from the top level and if we come across a sub-component of type369

T that is in the list of ancestor types (the top level type followed by the types of370

elements of the path constructed so far) we just use the path to the ancestor to371

represent the sub-component. Consider the following mutually recursive types372

that can be used to represent trees which consist of a node containing an integer373

and a list of sub-trees:374

data RTrees = Nil | Cons RTree RTrees375

data RTree = RNode Int RTrees376

For type RTrees we have the components [] (this folded path represents both377

[Cons.2] and [Cons.1,RNode.2], since they are of type RTrees), [Cons.1]378

and [Cons.1,RNode.1]. The expression t.[Cons.1,RNode.1] represents the379

set of memory words that are the first argument of RNode in variable t of type380

RTrees. For type RTree we have the components [] (for [RNode.2,Cons.1],381

of type RTree), [RNode.1] and [RNode.2] (which is also the folded version of382

[RNode.2,Cons.2], of type RTrees). In our sharing analysis algorithm we use383

a function fc (fold component) which takes a v.c pair, and returns v.c′ where384

c′ is the correctly folded component for the type of variable v. For example,385

fc (ts.[Cons.2]) = ts.[], assuming ts has type RTrees.386

As well as containing pairs of components for distinct variables which may387

alias, the abstract domain contains “self-alias” pairs for each possible component388

of a variable which may exist. Consider the following two bindings and the389

corresponding diagram (as with Cons, no tag is used for RNode):390

t = RNode 2 Nil

ts = Cons t Nil

t = RNode 2 Nil

ts = Cons RNode Nil

391

With our domain, the most precise description of sharing after these two392

bindings is as follows. We represent an alias pair as a set of two variable com-393

ponents. The first five are self-alias pairs and the other two describe the sharing394

between t and ts.395
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{{t.[RNode.1], t.[RNode.1]},396

{t.[RNode.2], t.[RNode.2]},397

{ts.[], ts.[]},398

{ts.[Cons.1], ts.[Cons.1]},399

{ts.[Cons.1,RNode.1], ts.[Cons.1,RNode.1]},400

{t.[RNode.1], ts.[Cons.1,RNode.1]},401

{t.[RNode.2], ts.[]}}402

Note there is no self-alias pair for t.[] since there is no strict sub-part of t403

that is an RTree. Similarly, there is no alias between ts.[Cons.1] and any part404

of t. Although the value t is used as the first argument of Cons in ts, this is not405

a main memory word that is used to represent the value of t (indeed, the value406

of t has no Cons cells). The tagged pointer value stored in variable t (which407

may be in a register) is copied into the cons cell. Such descriptions of sharing are408

an abstraction of computation states. The set above abstracts all computation409

states in which t is a tree with a single node, ts is a list of trees, elements of410

ts may be t or have t as a subtree, and there are no other live variables with411

non-atomic values.412

5 The sharing analysis algorithm413

We now describe the sharing analysis algorithm. Overall, the compiler attempts414

to find a proof that for a computation with a depth D of (possibly recursive)415

function calls, the following condition C holds, assuming C holds for all compu-416

tations of depth less than D. This allows a proof by induction that C holds for417

all computations that terminate normally.418

C: For all functions f , if the precondition of f is satisfied (abstracts the compu-419

tation state) whenever f is called, then420

1. for all function calls and assignment statements in f , any live variable that421

may be updated at that point in an execution of f is annotated with “!”,422

2. there is no update of live “abstract” variables when executing f ,423

3. all parameters of f which may be updated when executing f are declared424

mutable in the type signature of f ,425

4. the union of the pre- and post-conditions of f abstracts the state when426

f returns plus the values of mutable parameters in all states during the427

execution of f ,428

5. for all function calls in f , the sharing information among the actual pa-429

rameters is a subset of the sharing information among formal parameters as430

declared in the precondition, modulo variable renaming,431

6. for all function calls and assignment statements in f , any live variable that432

may be directly updated at that point is updated with a value of the same433

type or a more general type, and434

7. for all function calls and assignment statements in f , any live variable that435

may be indirectly updated at that point only shares with variables of the436

same type or a more general type.437
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The algorithm is applied to each function definition in core Pawns to compute438

an approximation to the sharing before and after each statement (we call it the439

alias set). This can be used to check points 1, 2, 4, 5 and 7 above; 5 allows440

the induction hypothesis to be used. Point 3 is established using point 1 and441

a simple syntactic check that any parameter of f that is annotated “!” in the442

definition is declared mutable in the type signature (parameters are considered443

live throughout the definition). Point 6 relies on 3 and the type checking pass.444

The core of the algorithm is to compute the alias set after a statement, given445

the alias set before the statement. This is applied recursively for compound446

statements in a form of abstract execution.447

We do not prove correctness of the algorithm but hope our presentation is448

sufficiently detailed to have uncovered any bugs. A proof would have a separate449

case for each kind of statement in the core language, showing that if the initial450

alias set abstracts the execution state before the statement the resulting alias set451

abstracts the execution state after the statement. This would require a more for-452

mal description of execution states and their relationship with the core language453

and the abstract domain. The abstract domain relies on type information so the454

sharing analysis relies on type preservation in the execution. Type preservation455

also relies on sharing analysis. Thus a completely formal approach must tackle456

both problems together. Although our approach is not formal, we do state the457

key condition C, which has points relating to both sharing and types, and we458

include Instype in the core language.459

The alias set used at the start of a definition is the precondition of the func-460

tion. This implicitly includes self-alias pairs for all variable components of the461

arguments of the function and the pseudo-variables abstractT for each type T462

used. Similarly, the postcondition implicitly includes self-alias pairs for all com-463

ponents of the result (and the abstractT variable if the result is abstract)3. As464

abstract execution proceeds, extra variables from the function body are added465

to the alias set and variables that are no longer live can be removed to improve466

efficiency. For each program point, the computed alias set abstracts the compu-467

tation state at that point in all concrete executions of the function that satisfy468

the precondition. For mutable parameters of the function, the sharing computed469

also includes the sharing from previous program points. The reason for this spe-470

cial treatment is explained when we discuss the analysis of function application.471

The alias set computed for the end of the definition, with sharing for local vari-472

ables removed, must be a subset of the union of the pre- and post-condition of473

the function.474

Before sharing analysis, a type checking/inference pass is completed which475

assigns a type to each variable and function application. This determines the476

components for each variable. Polymorphism is also eliminated as follows. Sup-477

pose we have a function take :: Int -> [a] -> [a] sharing take n xs =478

ys pre nosharing post ys = xs which returns the list containing the first n479

elements of xs. For each call to take, the pre- and post-conditions are deter-480

3 Self-aliasing for arguments and results is usually desired. For the rare cases it is not,
we may provide a mechanism to override this default in the future.
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mined based on the type of the application. An application to lists of Booleans481

will have two components for each variable whereas an application to lists of lists482

of Booleans will have four. When analysing the definition of take we instantiate483

type variables such as a above to Ref (). This type has a single component484

which can be shared to represent possible sharing of arbitrary components of485

an arbitrary type. Finally, we assume there is no type which is an infinite chain486

of refs, for example, type Refs = Ref Refs (for which type folding results in487

an empty component rather than a [Ref.1] component; this is not a practical488

limitation).489

Suppose a0 is the alias set just before statement s. The following algo-490

rithm computes alias(s, a0), the alias set just after statement s. The algorithm491

structure follows the recursive definition of statements and we describe it using492

pseudo-Haskell, interspersed with discussion. The empty list is written [], non-493

empty lists are written [a, b, c] or a:b:c:[] and ++ denotes list concatenation.494

At some points we use high level declarative set comprehensions to describe what495

is computed and naive implementation may not lead to the best performance.496

alias (Seq stat1 stat2) a0 = -- stat1; stat2

alias stat2 (alias stat1 a0)

alias (EqVar v1 v2) a0 = -- v1 = v2

let

self1 = {{v1.c, v1.c} | {v2.c, v2.c} ∈ a0}
share1 = {{v1.c1, v.c2} | {v2.c1, v.c2} ∈ a0}

in

a0 ∪ self1 ∪ share1

alias (DerefEq v1 v2) a0 = -- *v1 = v2

let

self1 = {{v1.[Ref.1], v1.[Ref.1]}} ∪
{{fc(v1.(Ref.1 :c)), fc(v1.(Ref.1 :c))} | {v2.c, v2.c} ∈ a0}

share1 = {{fc(v1.(Ref.1 :c1)), v.c2} | {v2.c1, v.c2} ∈ a0}
in

a0 ∪ self1 ∪ share1

Sequencing is handled by function composition. To bind a fresh variable v1 to497

a variable v2 the self-aliasing of v2 is duplicated for v1 and the aliasing for each498

component of v2 is duplicated for v1. Binding *v1 to v2 is done in a similar way,499

but the components of v1 must have Ref.1 prepended to them and the result500

folded, and the [Ref.1] component of v1 self-aliases. Folding is only needed for501

the rare case of types with recursion through Ref.502
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alias (Assign v1 v2) a0 = -- *v1 := v2

let

self1 = {{v1.[Ref.1], v1.[Ref.1]}} ∪
{{fc(v1.(Ref.1 :c)), fc(v1.(Ref.1 :c))} | {v2.c, v2.c} ∈ a0}

share1 = {{fc(v1.(Ref.1 :c1)), v.c2} | {v2.c1, v.c2} ∈ a0}
-- al = possible aliases for v1.[Ref.1]

al = {va.ca | {v1.[Ref.1], va.ca} ∈ a0}
-- (live variables in al+v1 must be annotated with !

-- and must not share with abstract)

selfal = {{fc(va.(ca++c)), fc(va.(ca++c))} |
va.ca ∈ al ∧ {v2.c, v2.c} ∈ a0}

shareal = {{fc(va.(ca++c1)), v.c2} |
va.ca ∈ al ∧ {v2.c1, v.c2} ∈ a0} ∪

{{fc(va.(ca++c)), fc(v1.(Ref.1 :c))} |
va.ca ∈ al ∧ {v2.c, v2.c} ∈ a0}

in if v1 is a mutable parameter then

a0 ∪ self1 ∪ share1 ∪ selfal ∪ shareal

else let

-- old1 = old aliases for v1, which can be removed

old1 = {{v1.(Ref.1 :d : c1), v.c2} | {v1.(Ref.1 :d : c1), v.c2} ∈ a0}
in (a0 \ old1) ∪ self1 ∪ share1 ∪ selfal ∪ shareal

Assignment to an existing variable *v1 adds the same sharing as for binding503

a fresh variable, but there are two extra complications. First, *v1 may be an504

alias for components of other variables (the live subset of these variables and505

v1 must be annotated with “!” on the assignment statement; checking such506

annotations is a primary purpose of the sharing analysis). All these variable507

components must have the same sharing added as *v1. The components must be508

concatenated and folded appropriately. Second, if v1 is not a mutable parameter509

the existing sharing with a path strictly longer than [Ref.1] can safely be510

removed, improving precision. The component v1.[Ref.1] represents the single511

memory word which is overwritten and whatever the old contents shared with512

is no longer needed to describe the sharing for v1. For mutable parameters the513

old value may share with variables from the calling context and we retain this514

information, as explained later. Consider the example below, where t and ts are515

as before, local variable v1 is a reference to the element of ts and it is assigned516

v2, which is RNode 3 Nil.517

Initial state

t = RNode 2 Nil

ts = Cons RNode Nil

v1 = Ref

v2 = RNode 3 Nil

After *!v1 := v2 !ts

t = RNode 2 Nil

ts = Cons RNode Nil

v1 = Ref

v2 = RNode 3 Nil

518
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Because {ts.[Cons.1], v1.[Ref.1]} is in any correct approximation to the519

initial state, ts will be in al and will have sharing with v2 added. The old sharing520

of v1 with t will be discarded. Note that we cannot discard the old sharing of521

ts with t for two reasons. First, the assignment updates only one memory word522

whereas there may be other words also represented by ts.[Cons.1]. Second,523

we only know ts.[Cons.1] possibly aliases v1.[Ref.1] — no definite aliasing524

information is maintained. In some cases the old sharing of v1 is discarded and525

immediately added again. Consider the following example, which creates a cyclic526

list.527

Initial state
v1 = Ref

v2 = Cons Red Cons

v3 = Cons Blue Nil

After *!v1 := !v2
v1 = Ref

v2 = Cons Red Cons

v3 = Cons Blue Nil

528

The old sharing between v1 and v3 is discarded but added again (via share1)529

because v2 also shares with v3. Correctness of the algorithm when cyclic terms530

are created depends on the abstract domain we use. A more expressive domain531

could distinguish between different cons cells in a list. For example, if types are532

“folded” at the third level of recursion rather than the first, the domain can533

distinguish three classes of cons cells, where the distance from the first cons cell,534

modula three, is zero, one or two. For a cyclic list with a single cons cell, that535

cons cell must be in all three classes and our algorithm would need modification536

to achieve this. However, in our domain types are folded at the first level of537

recursion so we have a unique folded path for each memory cell in cyclic data538

structure (cyclic terms can only be created with recursive types). There is no539

distinction between the first and second cons cell in a list, for example.540

alias (DC v dc [v1, . . . vN]) a0 = -- v = Dc v1...vN

let

self1 = {{fc(v.[dc.i]), fc(v.[dc.i])} | 1 ≤ i ≤ N} ∪
{{fc(v.(dc.i:c1)), fc(v.(dc.j:c2))} | {vi.c1, vj .c2} ∈ a0}

share1 = {{fc(v.(dc.i:c1)), w.c2} | {vi.c1, w.c2} ∈ a0}
in

a0 ∪ self1 ∪ share1

The DerefEq case can be seen as equivalent to v1 = Ref v2 and binding a541

variable to a data constructor with N variable arguments is a generalisation. If542

there are multiple vi that share, the corresponding components of v must also543

share; these pairs are included in self1.544
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alias (EqDeref v1 v2) a0 = -- v1 = *v2

let

self1 = {{v1.c, v1.c} | {v2.(Ref.1 :c), v2.(Ref.1 :c)} ∈ a0}
share1 = {{v1.c1, v.c2} | {v2.(Ref.1 :c1), v.c2} ∈ a0}
empty1 = {{v1.[], v.c} | {v1.[], v.c} ∈ (self1 ∪ share1)}

in

if the type of v1 has a [] component then

a0 ∪ self1 ∪ share1

else --- avoid bogus sharing with empty component

(a0 ∪ self1 ∪ share1) \ empty1

The EqDeref case is similar to the inverse of DerefEq in that we are removing545

Ref.1 rather than prepending it. However, if the empty component results we546

must check that such a component exists for the type of v1.547

alias (App v f [v1, . . . vN]) a0 = -- v = f v1...vN

let

“f(w1, . . . wK+N ) = r” is used to declare sharing for f

mut = the arguments that are declared mutable

post = the postcondition of f along with the sharing for

mutable arguments from the precondition,

with parameters and result renamed with

f.[Cl.K], . . . f.[Cl.1], v1, . . . vN and v, respectively

-- (the renamed precondition of f must be a subset of a0,

-- and mutable arguments of f and live variables they share

-- with must be annotated with ! and must not share with

-- abstract)

-- selfc+sharec needed for possible closure creation

selfc = {{v.[Cl.i], v.[Cl.i]} | 1 ≤ i ≤ N} ∪
{{v.((Cl.(N + 1− i)) :c1), v.((Cl.(N + 1− j)) :c2)} |

{vi.c1, vj .c2)} ∈ a0} ∪
{{v.((Cl.(i+N)) :c1), v.((Cl.(j +N)) :c2)} |

{f.((Cl.i) :c1), f.((Cl.j) :c2)} ∈ a0}
sharec = {{v.((Cl.(N + 1− i)) :c1), x.c2} | {vi.c1, x.c2)} ∈ a0} ∪

{{v.((Cl.(i+N)) :c1), x.c2} | {f.((Cl.i) :c1), x.c2} ∈ a0}
-- postt+postm needed for possible function call

postt = {{x1.c1, x3.c3} | {x1.c1, x2.c2} ∈ post ∧ {x2.c2, x3.c3} ∈ a0}
postm = {{x1.c1, x2.c2} | {x1.c1, vi.c3} ∈ a0 ∧ {x2.c2, vj .c4} ∈ a0 ∧

{vi.c3, vj .c4} ∈ post ∧ vi ∈ mut ∧ vj ∈ mut}
in

a0 ∪ selfc ∪ sharec ∪ postt ∪ postm

For many App occurrences the function is known statically and we can deter-548

mine if the function is actually called or a closure is created instead. However,549
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in general we must assume either could happen and add sharing for both. If a550

closure is created, the first N closure arguments share with the N arguments of551

the function call and any closure arguments of f share with additional closure552

arguments of the result (this requires renumbering of these arguments). Anal-553

ysis of function calls relies on the sharing and mutability information attached554

to all arrow types. Because Pawns uses the syntax of statements to express pre-555

and post-conditions, our implementation uses the sharing analysis algorithm to556

derive an explicit alias set representation (currently this is done recursively, with557

the level of recursion limited by the fact than pre- and post-conditions must not558

contain function calls). Here we ignore the details of how the alias set represen-559

tation is obtained. The compiler also uses the sharing information immediately560

before an application to check that the precondition is satisfied, all required “!”561

annotations are present and abstract variables are not modified.562

Given that the precondition is satisfied, the execution of a function results in563

sharing of parameters that is a subset of the union of the declared pre- and post-564

conditions (we assume the induction hypothesis holds for the sub-computation,565

which has a smaller depth of recursion). However, any sharing between non-566

mutable arguments that exists immediately after the call must exist before the567

call. The analysis algorithm does not add sharing between non-mutable argu-568

ments in the precondition as doing so would unnecessaily restrict how “high569

level” and “low level” code can be mixed. It is important we can pass a variable570

to a function that allows an abstract argument without the analysis conclud-571

ing the variable subsequently shares with abstract, and therefore cannot be572

updated. Thus post is just the declared postcondition plus the subset of the573

precondition which involves mutable parameters of the function, renamed ap-574

propriately. The last N formal parameters, wK+1 . . . wK+N are renamed as the575

arguments of the call, v1 . . . vN and the formal result r is renamed v. The formal576

parameters w1 . . . wK represent closure arguments K . . . 1 of f. Thus a variable577

component such as w1.[Cons.1] is renamed f.[Cl.K,Cons.1].578

It is also necessary to include one step of transitivity in the sharing informa-579

tion: if variable components x1.c1 and x2.c2 alias in post and x2.c2 and x3.c3580

(may) alias before the function call, we add an alias of x1.c1 and x3.c3 (in postt).581

Function parameters are proxies for the argument variables as well as any vari-582

able components they may alias and when functions are analysed these aliases583

are not known. This is why the transitivity step is needed, and why mutable584

parameters also require special treatment. If before the call, x1.c1 and x2.c2 may585

alias with mutable parameter components vi.c3 and vj .c4, respectively, and the586

two mutable parameter components alias in post then x1.c1 and x2.c2 may alias587

after the call; this is added in postm. Consider the example below, where we588

have a pair v1 (of references to references to integers) and variables x and y589

share with the two elements of v1, respectively. When v1 is passed to function590

f1 as a mutable parameter, sharing between x and y is introduced. The sharing591

of the mutable parameter in the postcondition, {v1.[Pair.1,Ref.1,Ref.1],592

v1.[Pair.2,Ref.1,Ref.1]}, results in sharing between x and y being added in593

the analysis.594
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Initial state

x = Ref

1 2

v1 = Pair Ref Ref

y = Ref Ref Ref

After (f1 !v1) !x!y

x = Ref

1 2

v1 = Pair Ref Ref

y = Ref Ref Ref595

f1 :: Pair (Ref (Ref Int)) -> ()596

sharing f1 !v1 = _597

pre nosharing598

post *a = *b; v1 = Pair a b599

f1 !v1 =600

case v1 of (Pair rr1 rr2) -> *rr1 := *rr2 !v1601

The need to be conservative with the sharing of mutable parameters in the602

analysis of function definitions (the special treatment in Assign) is illustrated603

by the example below. Consider the initial state, with variables v1 and v2 which604

share with x and y, respectively. After f2 is called x and y share, even though605

the parameters v1 and v2 do not share at any point in the execution of f2. If606

mutable parameters were not treated specially in the Assign case, nosharing607

would be accepted as the postcondition of f2 and the analysis of the call to608

f2 would then be incorrect. The sharing is introduced between memory cells609

that were once shared with v1 and others that were once shared with v2. Thus610

in our algorithm, the sharing of mutable parameters reflects all memory cells611

that are reachable from the parameters during the execution of the function.612

Where the mutable parameters are assigned in f2, the sharing of the parameters613

previous values (rr1 and rr2) is retained. Thus when the final assignment is614

processed, sharing between the parameters is added and this must be included615

in the postcondition. Although this assignment does not modify v1 or v2, the616

“!” annotations are necessary and alert the reader to potential modification of617

variables that shared with the parameters when the function was called.618

Initial state

v1 = Ref Ref Ref 1

v2 = Ref Ref Ref 2

x = Ref

y = Ref

After (f2 !v1 !v2) !x!y

v1 = Ref Ref Ref 1

Ref 10

v2 = Ref Ref Ref 2

Ref 20

x = Ref

y = Ref

619
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f2 :: Ref (Ref (Ref Int)) -> Ref (Ref (Ref Int)) -> ()620

sharing f2 !v1 !v2 = _621

pre nosharing622

post **v1 = **v2623

f2 !v1 !v2 =624

*r10 = 10 -- ref to new cell containing 10625

*rr10 = r10 -- ref to above ref626

*r20 = 20 -- ref to new cell containing 20627

*rr20 = r20 -- ref to above ref628

rr1 = *v1 -- save *v1629

rr2 = *v2 -- save *v2630

*!v1 := rr10 -- update *v1 with Ref (Ref 10)631

*!v2 := rr20 -- update *v2 with Ref (Ref 20)632

*rr1 := *rr2 !v1!v2 -- can create sharing at call633

alias Error a0 = ∅ -- error

alias (Case v [(p1, s1), . . . (pN , sN)]) a0 = -- case v of ...

let

old = {{v.c1, v2.c2} | {v.c1, v2.c2} ∈ a0}
in ⋃

1≤i≤N aliasCase a0 old v pi si

aliasCase a0 av v (Pat dc [v1, . . . vN]) s = -- (Dc *v1...*vN) -> s

let

avdc = {{fc(v.(dc.i : c1)), w.c2} | {fc(v.(dc.i : c1)), w.c2} ∈ av}
rself = {{vi.[Ref.1], vi.[Ref.1]} | 1 ≤ i ≤ N}
vishare = {{fc(vi.(Ref.1 :c1)), fc(vj .(Ref.1 :c2))} |

{fc(v.(dc.i : c1)), fc(v.(dc.j : c2))} ∈ av}
share = {{fc(vi.(Ref.1 :c1)), w.c2} | {fc(v.(dc.i : c1)), w.c2))} ∈ av}

in

alias s (rself ∪ vishare ∪ share ∪ (a0 \ av) ∪ avdc)

For a case expression we return the union of the alias sets obtained for each of634

the different branches. For each branch we only keep sharing information for the635

variable we are switching on that is compatible with the data constructor in that636

branch (we remove all the old sharing, av, and add the compatible sharing, avdc).637

Note we use a high level declarative definition for avdc (and other variables)638

which implicitly uses the inverse of fc. To deal with individual data constructors639

we consider pairs of components of arguments i and j which may alias in order640

to compute possible sharing between vi and vj , including self-aliases when i = j.641

The corresponding component of vi (prepended with Ref and folded) may alias642

the component of vj . For example, if v of type RTrees is matched with Cons *v1643

*v2 and v.[] self-aliases, we need to find the components which fold to v.[]644

(v.[Cons.2] and v.[Cons.1,RNode.2]) in order to compute the sharing for v2645
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and v1. Thus we compute that v2.[Ref.1], may alias v1.[Ref.1,RNode.2].646

This can occur if the data structure is cyclic, such as the example below where v647

is a list containing a single tree with 2 in the node and v as the children (hence it648

represents a single infinite branch). Note that v1.[Ref.1,RNode.2] represents649

both the memory cell containing the Cons pointer and the cell containing Nil.650

2 Cons

v = Cons RNode Nil

v1 = Ref

v2 = Ref
651

alias (Instype v1 v2) a0 = -- v1 = v2::t

alias (EqVar v1 v2) a0

-- (if any sharing is introduced between v1 and v2,

-- v2 must not be indirectly updated later while live)

Type instantiation is dealt with in the same way as variable equality, with652

the additional check that if any sharing is introduced, the variable with the more653

general type is not implicitly updated later while still live (it is sufficient to check654

there is no “!v2” annotation attached to a later statement).655

6 Example656

We now show how this sharing analysis algorithm is applied to the binary search657

tree code given earlier. We give a core Pawns version of each function and the658

alias set before and after each statement, plus an additional set at the end659

which is the union of the pre- and post-conditions of the function. To save660

space, we write the alias set as a set of sets where each inner set represents661

all sets containing exactly two of its members. Thus {{a, b, c}} represents a set662

of six alias pairs: aliasing between all pairs of elements, including self-aliases.663

The return value is given by variable ret and variables absL and absT are the664

versions of abstract for type Ints and Tree, respectively.665

list_bst xs = -- 0666

v1 = TNil -- 1667

*tp = v1 -- 2668

list_bst_du xs !tp -- 3669

ret = *tp -- 4670

We start with the precondition: a0 = {{xs.[Cons.1], absL.[Cons.1]},671

{xs.[], absL.[]}}. Binding to a constant introduces no sharing so a1 = a0.672

a2 = a1 ∪ {tp.[Ref.1]}. The function call has precondition a0∪{{tp.[Ref.1]},673

{tp.[Ref.1,Node.2]}}, which is a superset of a2. Since tp is a mutable ar-674

gument the precondition sharing for tp is added: a3 = a2 ∪ {{tp.[Ref.1,675
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Node.2]}}. The final sharing includes the return variable, ret: a4 = a3 ∪676

{{ret.[],tp.[Ref.1]}, {ret.[Node.2],tp.[Ref.1,Node.2]}}. After remov-677

ing sharing for the dead (local) variable tp we obtain a subset of the union of678

the pre- and post-conditions, which is a0∪{{ret.[],absT.[]}, {ret.[Node.2],679

absT.[Node.2]}}.680

list_bst_du xs !tp = -- 0681

case xs of682

(Cons *v1 *v2) -> -- 1683

x = *v1 -- 2684

xs1 = *v2 -- 3685

v3 = bst_insert_du x !tp -- 4686

v4 = list_bst_du xs1 !tp -- 5687

ret = v4 -- 6688

Nil -> -- 7689

ret = () -- 8690

-- after case -- 9691

We start with the precondition, a0 = {{tp.[Ref.1]}, {tp.[Ref.1,Node.2]},692

{xs.[Cons.1],absL.[Cons.1]}, {xs.[],absL.[]}}. The Cons branch of the693

case introduces sharing for v1 and v2: a1 = a0 ∪ {{xs.[Cons.1], absL.[Cons.1],694

v1.[Ref.1], v2.[Ref.1,Cons.1]}, {v2.[Ref.1], xs.[], absL.[]}}. The list695

elements are atomic so a2 = a1. The next binding makes the sharing of xs1 and696

xs the same: a3 = a2 ∪ {{v2.[Ref.1], xs.[], xs1.[], absL.[]}, {v1.[Ref.1],697

xs.[Cons.1], xs1.[Cons.1], absL.[Cons.1], v2.[Ref.1,Cons.1]}}. This can698

be simplified by removing the dead variables v1 and v2. The precondition of the699

calls are satisfied and a6 = a5 = a4 = a3. For the Nil branch we remove the in-700

compatible sharing for xs from a0: a7 = {{tp.[Ref.1]}, {tp.[Ref.1,Node.2]},701

{absL.[Cons.1]}, {absL.[]}} and a8 = a7. Finally, a9 = a6∪a8. This contains702

all the sharing for mutable parameter tp and, ignoring local variables, is a subset703

of the union of the pre- and post-conditions, a0.704

bst_insert_du x !tp = -- 0705

v1 = *tp -- 1706

case v1 of707

TNil -> -- 2708

v2 = TNil -- 3709

v3 = TNil -- 4710

v4 = Node v2 x v3 -- 5711

*!tp := v4 -- 6712

ret = () -- 7713

(Node *lp *v5 *rp) -> -- 8714

n = *v5 -- 9715

v6 = (x <= n) -- 10716

case v6 of717

True -> -- 11718
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v7 = (bst_insert_du x !lp) !tp -- 12719

ret = v7 -- 13720

False -> -- 14721

v8 = (bst_insert_du x !rp) !tp -- 15722

ret = v8 -- 16723

-- end case -- 17724

-- end case -- 18725

Here a0 = {{tp.[Ref.1]}, {tp.[Ref.1,Node.2]}} and a1 = a0 ∪ {{v1.[],726

tp.[Ref.1]}, {tp.[Ref.1,Node.2], v1.[Node.2]}}. For the TNil branch we727

remove the v1 sharing so a4 = a3 = a2 = a0 and a5 = a4 ∪ {{v4.[]},728

{v4.[Node.2]}}. After the destructive update, a6 = a5∪{{v4.[], tp.[Ref.1]},729

{v4.[Node.2], tp.[Ref.1,Node.2]}} (v4 is dead and can be removed) and a7 =730

a6. For the Node branch we have a8 = a1 ∪ {{v1.[], tp.[Ref.1], lp.[Ref.1],731

rp.[Ref.1]}, {tp.[Ref.1,Node.2], lp.[Ref.1,Node.2], rp.[Ref.1,Node.2],732

v5.[Ref.1], v1.[Node.2]}}. The same set is retained for a9 . . . a17 (assuming733

the dead variable v5 is retained), the preconditions of the function calls are sat-734

isfied and the required annotations are present. Finally, a18 = a17 ∪ a7, which735

contains all the sharing for tp, and after eliminating local variables we get the736

postcondition, which is the same as the precondition.737

7 Discussion738

Imprecision in the analysis of mutable parameters could potentially be reduced739

by allowing the user to declare that only certain parts of a data structure are740

mutable, as suggested in [1]. It is inevitable we lose some precision with recursion741

in types, but it seems that some loss of precision could be avoided relatively742

easily. The use of the empty path to represent sub-components of recursive types743

results in imprecision when references are created. For example, the analysis of744

*vp = Nil; v = *vp concludes that the empty component of v may alias with745

itself and the Ref component of vp (in reality, v has no sharing). Instead of the746

empty path, a dummy path of length one could be used. Flagging data structures747

which are known to be acyclic could also improve precision for Case. A more748

agressive approach would be to unfold the recursion an extra level, at least for749

some types. This could allow us to express (non-)sharing of separate subtrees750

and whether data structures are cyclic, at the cost of more variable components,751

more complex pre- and post-conditions and more complex analysis for Assign752

and Case.753

Increasing the number of variable components also decreases efficiency. The754

algorithmic complexity is affected by the representation of alias sets. Currently755

we use a naive implementation, using just ordered pairs of variable components756

as the set elements and a set library which uses an ordered binary tree. The size757

of the set can be O(N2), where N is the maximum number of live variable com-758

ponents of the same type at any program point (each such variable component759

can alias with all the others). In typical code the number of live variables at760
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any point is not particularly large. If the size of alias sets does become problem-761

atic, a more refined set representation could be used, such as the set of sets of762

pairs representation we used in Section 6, where sets of components that all alias763

with each other are optimised. There are also simpler opportunities for efficiency764

gains, such as avoiding sharing analysis for entirely pure code. We have not stress765

tested our implementation or run substantial benchmarks as it is intended to be766

a prototype, but performance has been encouraging. Translating the tree inser-767

tion code plus a test harness to C, which includes the sharing analysis, takes768

around half the time of compiling the resulting C code using GCC. Total com-769

pilation time is less than half that of GHC for equivalent Haskell code and less770

than one tenth that of MLton for equivalent ML code. The Pawns executable is771

around 3–4 times as fast as the others.772

8 Related work773

Related programming languages are discussed in [1]; here we restrict attention774

to work related to the sharing analysis algorithm. The most closely related work775

is that done in the compiler for Mars [7], which extends similar work done for776

Mercury [8] and earlier for Prolog [9]. All use a similar abstract domain based on777

the type folding method first proposed in [6]. Our abstract domain is somewhat778

more precise due to inclusion of self-aliasing, and we have no sharing for con-779

stants. In Mars it is assumed that constants other than numbers can share. Thus780

for code such as xs = []; ys = xs our analysis concludes there is no sharing781

between xs and ys whereas the Mars analysis concludes there may be sharing.782

One important distinction is that in Pawns sharing (and mutability) is de-783

clared in type signatures of functions so the Pawns compiler just has to check the784

declarations are consistent, rather than infer all sharing from the code. However,785

it does have the added complication of destructive update. As well as having to786

deal with the assignment primitive, it complicates handling of function calls and787

case statements (the latter due to the potential for cyclic structures). Mars,788

Mercury and Prolog are essentially declarative languages. Although Mars has789

assignment statements the semantics is that values are copied rather than de-790

structively updated — the variable being assigned is modified but other variables791

remain unchanged. Sharing analysis is used in these languages to make the im-792

plementation more efficient. For example, the Mars compiler can often emit code793

to destructively update rather than copy a data structure because sharing anal-794

ysis reveals no other live variables share it. In Mercury and Prolog the analysis795

can reveal when heap-allocated data is no longer used, so the code can reuse or796

reclaim it directly instead of invoking a garbage collector.797

These sharing inference systems use an explicit graph representation of the798

sharing behaviour of each segment of code. For example, code s1 may cause799

aliasing between (a component of) variables a and b (which is represented as800

an edge between nodes a and b) and between c and d and code s2 may cause801

aliasing between b and c and between d and e. To compute the sharing for the802

sequence s1;s2 they use the “alternating closure” of the sharing for s1 and s2,803
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which constructs paths with edges alternating from s1 and s2, for example a-b804

(from s1), b-c (from s2), c-d (from s1) and d-e (from s2).805

The sharing behaviour of functions in Pawns is represented explicitly, by a806

pre- and post-condition and set of mutable arguments but there is no explicit807

representation for sharing of statements. The (curried) function alias s rep-808

resents the sharing behaviour of s and the sharing behaviour of a sequence of809

statements is represented by the composition of functions. This representation810

has the advantage that the function can easily use information about the current811

sharing, including self-aliases, and remove some if appropriate. For example, in812

the [] branch of the case in the code below the sharing for xs is removed and813

we can conclude the returned value does not share with the argument.814

map_const_1 :: [t] -> [Int]815

sharing map_const_1 xs = ys pre nosharing post nosharing816

map_const_1 xs =817

case xs of818

[] -> xs -- can look like result shares with xs819

(_:xs1) -> 1:(map_const_1 xs1)820

There is also substantial work on sharing analysis for logic programming821

languages using other abstract domains, notably the set-sharing domain of [10]822

(a set of sets of variables), generally with various enhancements — see [11] for a823

good sumary and evaluation. Applications include avoiding the “occurs check”824

in unification [12] and exploiting parallelism of independent sub-computations825

[13]. These approaches are aimed at identifying sharing of logic variables rather826

than sharing of data structures. For example, although the two Prolog goals p(X)827

and q(X) share X, they are considered independent if X is instantiated to a data828

structure that is ground (contains no logic variables). Ground data structures in829

Prolog are read-only and cause no problem for parallelism or the occurs check,830

whether they are shared or not. For this reason, the set-sharing domain is often831

augmented with extra information related to groundness [11]. In Pawns there832

are no logic variables but data structures are mutable, hence their sharing is833

important.834

However, the set-sharing domain (with enhancements) has been adapted to835

analysis of sharing of data structures in object oriented languages such as Java836

[14]. One important distinction is that Pawns supports algebraic data types837

which allow a “sum of products”: there can be a choice of several data con-838

structors (a sum), where each one consists of several values as arguments (a839

product). Java and most other imperative and object oriented languages do not.840

Products are supported by objects containing several values but the only choice841

(sum) is whether the object is null or not. Java objects and pointers in most842

imperative languages are similar to a Maybe algebraic data type, with Nothing843

corresponding to null. A Ref cannot be null. The abstract domain of [14] uses844

set-sharing plus additional information about what objects are definitely not845

null. For Pawns code that uses Refs this information is given by the data type846

— the more expressive types allow us to trivially infer some information that is847
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obscured in other languages. For code that uses Maybe, our domain can express848

the fact that a variable is definitely Nothing by not having a self-alias of the849

Just component. The rich structural information in our domain fits particularly850

well with algebraic data types. There are also other approches to and uses of851

alias analysis for imperative languages, such as [15] and [16], but these are not852

aimed at precisely capturing information about dynamically allocated data. A853

more detailed discussion of such approaches is given in [7].854

9 Conclusion855

Purely declarative languages have the advantage of avoiding side effects, such856

as destructive update of function arguments. This makes it easier to combine857

program components, but some algorithms are hard to code efficiently without858

flexible use of destructive update. A function can behave in a purely declara-859

tive way if destructive update is allowed, but restricted to data structures that860

are created inside the function. The Pawns language uses this idea to support861

flexible destructive update encapsulated in a declarative interface. It is designed862

to make all side effects “obvious” from the source code. Because there can be863

sharing between the representations of different arguments of a function, local864

variables and the value returned, sharing analysis is an essential component of865

the compiler. It is also used to ensure “preservation” of types in computations.866

Sharing analysis has been used in other languages to improve efficiency and to867

give some feedback to programmers but we use it to support important features868

of the programming language.869

The algorithm operates on (heap allocated) algebraic data types, including870

arrays and closures. In common with other sharing analysis used in declara-871

tive languages it supports binding of variables, construction and deconstruction872

(combined with selection or “case”) and function/procedure calls. In addition, it873

supports explicit pointers, destructive update via pointers, creation and applica-874

tion of closures and pre- and post-conditions concerning sharing attached to type875

signatures of functions. It also uses an abstract domain with additional features876

to improve precision. Early indications are that the performance is acceptable:877

compared with other compilers for declarative languages, the prototype Pawns878

compiler supports encapsulated destructive update, is fast and produces fast879

executables.880
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