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Abstract5

We present a semi-streaming algorithm for k-mer spectral analysis of6

DNA sequencing reads, together with a derivative approach that is fully7

streaming. The approach can also be applied to genomic, transcriptomic,8

and metagenomic data sets. We develop two tools for short-read analysis9

based on these approaches, a method for semi-streaming k-mer-based error10

trimming, and a method for the analysis of error profiles in short reads11

using a streaming sublinear approach. These tools are implemented in the12

khmer software package, which is freely available under the BSD License13

at github.com/ged-lab/khmer/.14

1 Introduction15

K-mer spectral analysis is a powerful approach to error detection and16

correction in shotgun sequencing data that uses k-mer abundances to find17

likely errors in the data [1]. Approaches derived from spectral analysis18

can be very effective: spectral error correction achieves high accuracy, and19

Zhang et al. (2014) show that spectral k-mer trimming is considerably20

more effective at removing errors than quality score-based approaches21

[2, 3]. However, spectral analysis is also very compute intensive: most22

implementations count all the k-mers in sequencing data sets, which can23

be memory- or I/O-intensive for large data sets [3].24

Streaming and semi-streaming algorithms can offer improved algorith-25

mic and computational efficiency in the analysis of large data sets [4, 5].26

Streaming algorithms typically examine the data only once, and have27

small, fixed memory usage. Semi-streaming algorithms may examine the28
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data a few times, with memory requirements that scale sublinearly with29

the size of the input data [6]. Streaming algorithms have not been ap-30

plied to k-mer spectral analysis of sequencing reads, although Melsted et31

al. developed an effective streaming algorithm for calculating aggregate32

statistics of k-mer distributions from sequencing data [7], and the Lighter33

error corrector uses a low-memory semi-streaming multipass approach to34

do efficient error correction [8].35

Brown et al. (2012) introduced a streaming algorithm for downsam-36

pling read data sets to normalize read coverage spectra, termed “digital37

normalization” (or “diginorm”) [9]. This procedure estimates the k-mer38

coverage of each read in a stream using an online algorithm. Reads above a39

certain estimated coverage are set aside and their k-mers are not tracked.40

The diginorm algorithm only examines the data once, and counts only41

the k-mers in retained reads, leading to sublinear memory usage for high-42

coverage data sets [9].43

Here we develop a semi-streaming algorithm for k-mer spectral anal-44

ysis, based on digital normalization, that can detect and remove errors45

in sequencing reads. This algorithm operates in sublinear memory with46

respect to the input data, and examines the data at most twice. The47

approach offers a general framework for streaming sequence analysis and48

could be used for error correction and variant calling. Moreover, the ap-49

proach can be applied generically to data sets with variable sequencing50

coverage such as transcriptomes, metagenomes, and amplified genomic51

DNA. We also provide a fully streaming approach for estimating per-52

position sequencing error rates in reads that operates in fixed memory53

and only examines part of the input data.54

2 Methods55

The code used to generate all of the results in this paper is available56

at http://github.com/ged-lab/2014-streaming/; see README.md in that57

directory for instructions. The paper is completely reproducible from58

source data. The screed and khmer packages (screed v0.8 and khmer v1.4)59

were used to generate the results in this paper; both are freely available60

at http://github.com/ged-lab/ under a BSD license.61

2.1 Making synthetic data sets62

We computationally constructed three small short-read DNA data sets63

for initial exploration of ideas. All synthetic sequences have equiproba-64

ble A/C/G/T. All synthetic reads are 100bp long and were sampled with65

1% error. The “simple genome” data set consists of 1000 reads chosen66

uniformly from a 1 kb randomly constructed genome. The “simple tran-67

scriptome” data set consists of 568 reads chosen uniformly from synthetic68

transcripts containing different subsets of four 250-base exons, with ex-69

pression levels varying by a factor of 30 from minimum to maximum. The70

“simple metagenome” data set consists of reads sampled from three differ-71

ent 500 bp sequences, across 30 fold variation in abundance. In all three72
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cases, the errors during read sampling were recorded for comparison with73

predictions.74

2.2 Real data sets75

We used three shotgun Illumina data sets: a genomic data set from E.76

coli, a mRNAseq data set from Mus musculus, and a mock community77

metagenome. For E. coli, we took a 5m read subset of ERA000206 from78

[10]. For mRNAseq, we used a 10m read subset of GSE29209 from [11].79

For the mock metagenome, we used a 20m read subset of SRR60624980

from [12]. Prior to analysis, we eliminated any read with an ’N’ in it and81

filtered the reads by mapping to the known references, yielding the read82

numbers in Table 1.83

2.3 K-mer cardinality statistics84

K-mer counts in Table 5 were calculated using the HyperLogLog cardi-85

nality counting algorithm [13]. The implementation used is implemented86

in khmer, script sandbox/unique-kmers.py, using the default error rate87

of 0.01.88

2.4 K-mer spectral analysis89

All spectral error analysis was done by finding the beginning and end90

point of runs of low-abundance k-mers in each read. For normalized data,91

we used a low-abundance cutoff of 3; for non-normalized data, we used a92

low-abundance cutoff of 10. These cutoffs were chosen by examining the93

k-mer abundance plot (Figure 1).94

Spectral error analysis was implemented in the khmer module Python95

function find spectral error positions. We used96

report-errors-by-read.py to predict errors on normalized data, and97

calc-errors-few-pass.py to do semi-streaming error analysis; both scripts98

are in 2014-streaming/pipeline/. Variable coverage error analysis was99

enabled with the -V parameter to both scripts.100

2.5 Digital normalization101

We ran digital normalization on all data sets using khmer’s102

normalize-by-median.py script, with a k-mer size of 20 and a target103

coverage of 20; these parameters have been shown to yield good perfor-104

mance for assembly prefiltering [9, 14]. khmer relies on a memory efficient105

Count-Min Sketch data structure that yields occasional inaccurate counts;106

memory parameters were chosen for each data set so that the false positive107

rate was under 1%, below which it has no significant effect on outcomes108

[3].109

2.6 Read mapping and error correction110

We used Quake v0.3.5, Jellyfish 1.1.11, Boost 1.57.0, and bowtie2 v2.1.0 to111

generate results [2, 15, 16, 17]. bowtie2 was run with default parameters.112
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Quake’s count-qmers was used to generate a k-mer count with -q 33 -k113

14, and correct was also run with -q 33 -k 14. The correction threshold114

(-c) was chosen automatically by Quake as per the manual, and was 7.94115

for E. coli diginorm, 7.2 for E. coli original, and 6.26 for the high-coverage116

mRNAseq sample.117

2.7 Semi-streaming error analysis and trimming118

We used the script calc-errors-few-pass.py to do semi-streaming error119

analysis; it is available in the 2014-streaming repository. We used a120

normalization coverage threshold of 20 and a trusted k-mer cutoff of 3.121

The khmer script trim-low-abund.py was used for semi-streaming er-122

ror trimming, with the same parameters as above. The khmer script123

calc-error-profile.py was used for sublinear time and space error anal-124

ysis with default parameters. The pipeline script125

report-errhist-2pass.py was used for comparison purposes.126

The calc-error-profile.py script iterates through the read data set,127

loading low-coverage reads into the graph and analyzing the error posi-128

tions in high-coverage reads using the spectral error location function as129

above. The script exits when any one of three conditions is met: (1) in the130

most recent sample of 25,000 reads, more reads have been profiled than131

loaded into the graph; (2) more than 20,000 reads total have profiled; or132

(3) more than 100m reads have been loaded. The second condition was133

satisfied for both data sets analyzed in this work.134

3 Results135

3.1 Coverage-normalized data can be used to lo-136

cate and correct errors in high-coverage shotgun137

sequencing data138

Digital normalization eliminates many erroneous k-mers, while retaining139

the majority of true k-mers [9]. Our initial question was whether we could140

apply spectral error analysis to genomic short read data using counts from141

digitally normalized data. This would allow us to take advantage of the142

space savings of digital normalization when storing and examining k-mer143

counts. We tested this on a synthetic data set and an E. coli data set.144

We then compared the performance of the Quake genomic error counter145

on the original and digitally normalized counts from the E. coli data [2].146

Simulated data: We first applied digital normalization to a simulated147

data set with known errors. We generated the synthetic data set from148

a simulated low-complexity genome (“simple genome”; see Methods for149

generation and Table 1 for data set details). We then applied digital150

normalization to these synthetic reads, normalizing to a median 20-mer151

coverage of 20 (k=20, C=20).152

The k-mer spectrum before and after digital normalization is shown153

in Figure 1. While the total number of k-mers decreased in the digi-154

tally normalized data set, the separation between the high count k-mers155
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Name Number of reads Description
simple genome 1000 1kb genome; no repeats
E. coli MG1655 4,863,836 Subset of ERA000206 ([10])
simple transcriptome 568 300:1 high:low abundance; shared exons
mouse mRNAseq 7,915,339 Subset of GSE29209 ([11])
simple metagenome 2,347 316:1 high:low abundance species
mock metagenome 18,805,251 Subset of SRR606249 ([12])

Table 1: Data sets used for evaluation.

and the low-count k-mers remains clear. The key concept underlying k-156

mer spectral error analysis is that in a high-coverage data set, these high157

count k-mers will represent correct k-mers, while the low count k-mers are158

produced by errors in the reads. Simple classification methods suffice to159

identify and trim or correct these low-count k-mers.160
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Figure 1: K-mer spectrum of a simple artificial data set, before and
after digital normalization. The peaks at the origin represents erro-
neous k-mers resulting from (simulated) error; the peaks centered at
80 (original) and 20 (diginorm) represent k-mers truly present in the
genome, which are shared among many reads.

We next used k-mer counts from the downsampled read set to detect161

errors in the original read set. The algorithm is straightforward: we look162

for bases at the beginning or ends of low-abundance runs of k-mers in each163

read, which should signify the locations of errors. We used a “trusted k-164

mer” cutoff of C0 = 3 as our abundance cutoff, below which we assumed k-165

mers were erroneous (see Methods). The results are presented in Table 2.166

Of the 633 simulated reads from the simple genome that contain one or167

more errors, predicted errors matched the known truth exactly for 485 of168
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Simple genome Original counts Diginorm counts
Perfect detection (TP) 474 485
No errors (TN) 355 366
Miscalled errors (FP) 159 148
Mispredicted errors (FP) 12 1
Missed errors (FN) 0 0
Sensitivity 100% 100%
Specificity 67.5% 71.1%

Table 2: Results from spectral error detection on 1000 synthetic reads
from a simulated 10kb genome, using k-mer counts from original or
digitally normalized reads. The counts in the table are the number
of reads where all errors were detected perfectly (TP), errors were
present and none were called (TN), one or more errors were miscalled
(one type of FP), errors were mistakenly called in an error-free read
(the other type of FP), and errors present in a read were missed (FN).

them (true positives), and 366 reads were correctly predicted to contain169

no errors (true negatives). 0 reads were falsely predicted to have no errors170

(false negatives). The errors in 148 reads were miscalled – while the reads171

each had one or more errors, the positions were not correctly called – and172

one read was incorrectly predicted to contain errors, leading to a total of173

149 false positives. From this, we calculated the prediction sensitivity to174

be 100% and the prediction specificity to be 71.1%.175

When we applied spectral error detection using the counts from the176

original (un-normalized) reads, we saw similar results: 474 TP, 355 TN,177

171 FP, and 0 FN, for a sensitivity of 100% and a specificity of 67.5%178

(Table 2). (Note: for this analysis we used a cutoff of C0 = 10.)179

E. coli reads: We next applied digital normalization and k-mer spec-180

tral error detection to an Illumina data set from E. coli MG1655 [18].181

In real reads, we do not know the location of errors; to calculate likely182

errors, we mapped 4.9m untrimmed reads to the known E. coli MG1655183

genome with bowtie2 [17] and recorded mismatches between the reads and184

the genome. These mismatches were taken to be errors in the reads. We185

found 8.0m errors in 2.2m reads, for an overall error rate of 1.60%.186

We then compared the results of k-mer spectral error detection with187

and without digital normalization. We used the same parameters as on188

the simulated genome (C0 = 10 for unnormalized, C0 = 3 for normalized).189

The results are presented in Table 3. Using the original counts, the sen-190

sitivities were close to the predictions from the normalized counts: using191

the original counts, we achieved a sensitivity of 99.7%, versus 99.2% us-192

ing the counts from the digitally normalized reads. The specificities were193

also comparable – 68.8% using the original counts, and 68.7% using the194

digitally normalized counts.195
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E. coli Original counts Diginorm counts
Distinct k-mers 39,677,503 26,510,104 (67%)
Perfect detection (TP) 819,233 808,657
No errors (TN) 2,782,265 2,782,403
Miscalled errors (FP) 1,082,566 1,088,787
Mispredicted errors (FP) 177,637 177,499
Missed errors (FN) 2,135 6,490
Sensitivity 99.7% 99.2%
Specificity 68.8% 68.7%

Table 3: Results from spectral error detection on 4.9m E. coli reads,
using k-mer counts from original (left column) and digitally normal-
ized (right column) reads.

original diginorm
Total reads, after Quake 4,805,561 4,804,947
Erroneous reads discarded 58,275 58,889
Total bp 441,752,819 441,701,309
Total errors remaining 47,510 41,455
Per-base error rate 0.011% 0.009%

Table 4: Comparison of Quake results when run on the same E. coli
data set, using k-mer counts from either the original data set (orig-
inal) or the digitally normalized reads (diginorm). All numbers are
post-error correction; the original error rate was 1.60%.

Sample original unique k-mer count normalized unique k-mer count
E. coli 39,677,503 26,510,104 (67.8%)
mouse mRNAseq 54,177,799 48,058,631 (88.7%)
mock metagenome 201,459,416 201,093,236 (99.8%)

Table 5: Unique k-mer counts for original and normalized data sets
using a k-mer size of 20 and the specified coverage cutoff. Digital
normalization reduces the total number of k-mers in the data set for
high coverage data sets.

Sample original read count normalized read count
E. coli 4,863,836 1,609,639 (33.1%)
Mouse RNAseq 7,915,339 3,832,453 (48.4%)
Mock metagenome 18,805,251 17,353,291 (92.2%)

Table 6: Read counts for original and normalized data sets using a k-
mer size of 20 and the specified coverage cutoff. Digital normalization
reduces the total number of reads for later analyses.
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E. coli error correction with Quake: While the results above196

suggest that simple spectral error detection works equally well both before197

and after digital normalization, we were concerned that we might lose198

informative reads and k-mers during digital normalization. To evaluate199

this, we used Quake [2] to perform error correction on the data set using200

the k-mer counts from the digitally normalized reads, and compared the201

results to error correction with the entire read data set.202

The results of running Quake on the original data using counts from203

the original and digitally normalized data are shown in Table 4. The204

performance was essentially the same: Quake brought the overall error205

rate in the data set from 1.60% (8.0m errors) to 0.01% (40,000 errors).206

These results demonstrate that digitally normalized counts retain all of207

the information necessary for effective error correction with Quake, despite208

there being many fewer k-mers (Table 5) and far fewer reads (Table 6)209

being used as input into the k-mer count table.210

3.2 Coverage-normalized data can be used to lo-211

cate errors in variable coverage shotgun sequencing212

data213

One of the drawbacks of spectral abundance analysis is that it does not di-214

rectly apply to data with variable coverage. For example, metagenomic or215

transcriptomic data sets typically contain reads from both high-abundance216

and low-abundance molecules. This in turn leads to high coverage and217

low coverage reads in the same data set. This variability in coverage con-218

founds naive spectral analysis for two reasons: first, erroneous k-mers from219

very high abundance regions can accumulate and increase in abundance220

over the threshold for trusted k-mers, thus appearing to be correct (the221

so-called “curse of deep sequencing” [19]); and second, correct reads from222

low coverage regions yield k-mers below the trusted k-mer threshold that223

appear to be incorrect. In practice, therefore, error analysis for metage-224

nomic and transcriptome data uses other approaches than direct spectral225

error analysis [20, 21, 22].226

Digital normalization works on genomic data, with even coverage, as227

well as on variable coverage data such as transcriptome and metagenome228

data [9, 14, 23]. Using the reference-free estimator of per-read coverage229

developed for digital normalization, the median k-mer abundance within a230

read, we developed a general approach that enables spectral error analysis231

on variable coverage data. We then applied this to two synthetic data sets232

as well as two real data sets, a mock shotgun metagenome and mRNAseq233

data from mouse.234

Coverage-normalized spectral error analysis: Using digital nor-235

malization, we should be able to address both the problem of too high236

coverage and too low coverage. First, by applying digital normalization to237

variable coverage data and then working only with the k-mer counts from238

the normalized reads, we can avoid counting high abundance errors as239

correct. Second, by ignoring reads with a low estimated coverage, we can240
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counts
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Figure 2: Coverage-normalized spectral error analysis. Reads are nor-
malized, and high-coverage reads are subjected to spectral error anal-
ysis with the normalized counts, while low-coverage reads are ignored.

avoid misclassifying true low-abundance k-mers as errors. The process is241

shown in Figure 2.242

Simulated data: To test this approach, we generated two more syn-243

thetic data sets, “simple metagenome” and “simple mRNAseq,” which244

contain both high- and low-abundance species (see Table 1 for data set245

details). After generating synthetic reads with a 1% error rate and ap-246

plying digital normalization (k=20/C=20), we again used the normalized247

counts to do spectral error detection. However, we used a modified algo-248

rithm that only examined reads with a median k-mer abundance of C or249

greater.250

The results of running error detection on the synthetic metagenome251

and mRNAseq data sets are shown in Table 7.252

For the simple mRNAseq data set, 524 of 568 reads (92.3%) met the253

coverage criterion. Of the 524 reads analyzed, the errors in 228 erroneous254

reads were called perfectly (TP) and 235 of the reads with no errors were255

correctly called as error-free (TN). No reads were incorrectly determined256

to be error-free (FN). Of the remaining 61 errors, 52 were miscalled (reads257

with errors were called correctly but the locations were not correctly deter-258

mined) and 9 reads were incorrectly called as erroneous when they were in259

fact correct. We calculated the prediction sensitivity to be 100% and the260

prediction specificity to be 79.4%. For the simple metagenome data set,261
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simple mRNAseq simple metagenome
Total reads 568 2347
High coverage reads 524 (92.3%) 2254 (96.0%)
Perfect detection (TP) 228 978
No errors (TN) 235 1098
Miscalled errors (FP) 52 170
Mispredicted errors (FP) 9 6
Missed errors (FN) 0 2
Sensitivity 100% 99.8%
Specificity 79.4% 86.2%

Table 7: Variable coverage spectral error detection on two synthetic
data sets, a simple mRNAseq data set and a simple metagenome.
Per-read coverage was estimated by median k-mer abundance within
the read, and only the reads with estimated coverage at or above the
specified threshold were analyzed. Digitally normalized counts were
used for the spectral error analysis.

2254 of 2347 reads (96.0%) met the coverage criterion, with 978 TP, 1098262

TN, 2 FN, and 176 FP, for a prediction sensitivity of 99.8% and a pre-263

diction specificity of 86.2%. (In neither case did we include low-coverage264

reads in the statistics.)265

Importantly, these results are roughly comparable to the results on the266

synthetic genome (100.0% sensitivity and 71.1% specificity with the same267

parameters; see Table 2).268

mRNAseq data: To evaluate coverage-normalized spectral analysis269

on real data, we applied variable coverage spectral error analysis to 7.9m270

mouse mRNAseq reads [24]. After calling errors in the reads by mapping271

them back to the known genomes, we used spectral analysis to identify272

putative errors. The results are shown in Table 8, second column. We273

achieved 80.4% sensitivity and 88.7% specificity on the 5.4m high coverage274

reads in this data set.275

Mock metagenome data: We next applied our approach to 18.8m276

reads from a diverse mock community data set [12]. We found 4,954,341277

reads were at or above this coverage threshold. Here errors were again278

calculated by mapping the reads to the known reference and finding mis-279

matches. The results are shown in Table 8, third column. We achieve280

87.1% sensitivity and 98.0% specificity on the high coverage reads.281

Error correcting variable coverage data with Quake: There282

are many sophisticated error correction algorithms implemented for shot-283

gun genome data, but relatively few work directly on variable coverage284

data such as mRNAseq [20, 21]. Digital normalization, in theory, could285

enable the use of any spectral error correction algorithm on the high cov-286

erage components of data sets.287
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mouse mRNAseq mock metagenome
Total reads 7,915,339 18,805,251
High coverage reads 5,379,738 (68.0%) 4,954,341 (26.4%)
Perfect detection (TP) 1,099,492 115,925
No errors (TN) 3,560,733 4,723,053
Miscalled errors (FP) 429,842 54,041
Mispredicted errors (FP) 22,384 44,178
Missed errors (FN) 267,287 17,144
Sensitivity 80.4% 87.1%
Specificity 88.7% 98.0%

Table 8: The results of variable coverage spectral error detection on
two real variable coverage data sets, a mouse mRNAseq data set and
a mock shotgun metagenome. Per-read coverage was estimated by
median k-mer abundance within the read, and only the reads with
estimated coverage at or above the specified threshold were analyzed.
Digitally normalized counts were used for the spectral error analysis.

mRNAseq diginorm
Total reads 7,915,339
High coverage reads 5,379,738
Erroneous reads discarded 509,979
Total bp after correction 348,994,329
Total errors remaining 1,469,618
Per-base error rate 0.42%

Table 9: Results of running Quake on high-coverage reads from mouse
mRNAseq, using k-mer counts from the digitally normalized reads.
The original error rate was 1.0%.

To evaluate this, we again used Quake (a genomic error corrector)288

to correct the high coverage mRNAseq reads using the diginorm counts.289

We first extracted the 5.4m reads with estimated coverage greater than290

or equal to 20 from the mouse mRNAseq data set, and then digitally291

normalized the data. We next applied the Quake error corrector to the292

unnormalized high-coverage reads using the k-mer counts from the nor-293

malized reads, as with the E. coli data set. Quake discarded 510,000 reads294

and corrected the remainder, bringing the error rate from 1.0% to 0.42%295

- see Table 9. As with E. coli, this suggests that sufficient information296

remains in the digitally normalized data to do an effective job of error297

correction.298
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3.3 A semi-streaming algorithm can be used for299

spectral error analysis300

The spectral error detection approach outlined above is a 2-pass offline al-301

gorithm for any given data set - the first pass normalizes the read set and302

records the k-mer abundances, while the second pass analyzes the reads303

for low-abundance k-mers. Even with digital normalization reducing the304

number of k-mers under consideration, this 2-pass approach is time con-305

suming on large data sets. Below, we develop an approach that considers306

many of the reads only once.307

Semi-streaming analysis of coverage-saturated regions: Shot-308

gun sequencing oversamples most regions – for example, for a 100x cov-309

erage genomic data set, we would expect 50% or more of the genome to310

be represented by more than 100 reads. This is a consequence of the311

Poisson-random sampling that underlies shotgun sequencing [25]. This312

oversampling provides an opportunity, however: if we regard the read313

data set as a stream of incoming data randomly sampled from a pool of314

molecules, high-abundance species or subsequences within the pool will315

be more highly sampled in the stream than others, and will thus generally316

appear earlier in the stream. For example, in mRNAseq, highly expressed317

transcripts should almost always be sampled much more frequently than318

low-expressed transcripts, and so more reads from highly expressed tran-319

scripts will be seen in any given subset.320

With this in mind, we can adapt the same approaches used in previous321

sections to do semi-streaming error analysis by detecting and analyzing322

high-coverage reads during the first pass. Here we again use the median k-323

mer abundance of the k-mers in a read to estimate that read’s abundance324

[9]; crucially, this can be done at any point in a stream, by using the325

online k-mer counting functionality of khmer to determine the abundance326

of k-mers seen thus far in the stream [3].327

The conceptual idea is presented in Figure 3. On the first pass, low-328

coverage reads would be incorporated into the k-mer database and set329

aside for later analysis, while high-coverage reads would be analyzed for330

errors. On the second pass, the set aside reads would be checked for331

coverage again, and either ignored or analyzed for errors. Crucially, this332

second pass involves at most another full pass across the data, but only333

when the entire data set is below the coverage threshold; the larger the334

high coverage component of the data, the smaller the fraction of the data335

that is examined twice.336

In Figure 4, we show diginorm-generated coverage saturation curves337

for both real and error-free simulated reads from E. coli MG1655. In both338

cases, after the first 1m reads, the majority of reads have an estimated339

coverage of 20 or higher, and hence can be used for error analysis on the340

remainder of the data encountered in the first pass.341

Moreover, because only the normalized counts are used in spectral342

analysis, the approach should apply equally well to data sets with uneven343

coverage, i.e. metagenomes and transcriptomes. To test this, we first344

apply this semi-streaming error detection approach to the three synthetic345

data sets used earlier, and then to the three real data sets.346
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Figure 3: Diagram of semi-streaming error detection. In a first pass
over the read data, reads are loaded in until the graph locus to which
they belong is saturated. From that point on, reads are examined
for errors and not loaded into the graph. In a second pass, only the
subset of reads loaded into the graph are examined for errors.

Streaming error analysis of synthetic data: Using the semi-347

streaming approach on the “simple genome” reads, we obtain nearly iden-348

tical numbers to the full two-pass approach: 485 TP, 365 TN, 150 FP,349

and 0 FN, for a sensitivity of 100% and a specificity of 70.9% (Table 10).350

However, with the semi-streaming algorithm, only 320 of the 1000 reads351

are examined twice. Likewise, for the “simple mRNAseq” and “simple352

metagenome” data sets, we obtain identical and nearly identical results,353

respectively; due to differences in the order in which reads are examined,354

the simple metagenome fails to detect one true positive and erroneously355

finds errors in three extra reads. On the mRNAseq data set, 33.1% of the356

reads are examined twice, and on the metagenome, 380 of 2347 (16.2%)357

of the reads are examined twice.358

Semi-streaming error analysis of real data: We also get sim-359

ilar quality results on the real data sets when comparing two-pass error360

detection with semi-streaming error detection (Table 11). For E. coli,361

with semi-streaming error detection we obtain a sensitivity of 99.4% and362

a specificity of 68.7%, compared to 99.2% and 68.7% with the two-pass363

approach (Table 3). For the mRNAseq data set, we see a sensitivity of364
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simple genome simple mRNAseq simple metagenome
Number of passes 1.32 1.16 1.33
Perfect detection (TP) 485 228 977 (-1)
No errors (TN) 365 (-1) 235 1095 (-3)
Miscalled errors (FP) 148 52 171 (+1)
Mispredicted errors (FP) 2 (+1) 9 9 (+3)
Missed errors (FN) 0 0 2
Sensitivity 100.0% 100.0% 99.8%
Specificity 70.9% 79.4% 85.9%

Table 10: Results from applying semi-streaming error detection to
the same synthetic data sets as in Table 2 and Table 7. Number of
passes is the average number of times each read in the data set was
examined; numbers in parentheses give the difference between these
numbers and the previous results.

E. coli mouse mRNAseq mock metagenome
Number of passes 1.33 1.48 1.92
Perfect detection (TP) 810,896 1,162,662 (+61,370 116,833
No errors (TN) 2,781,961 3,552,261 4,717,494
Miscalled errors (FP) 1,087,775 418,481 53,349 (-692)
Mispredicted errors (FP) 177,914 30,856 (+8472) 49,737 (+5559)
Missed errors (FN) 5263 (-1227) 215,478 (-51,809) 16,928
Sensitivity 99.4% 84.4% (+4.0%) 87.3%
Specificity 68.7% 88.8% 97.9%

Table 11: Results from applying semi-streaming error detection to the
same real data sets as in Table 3 and Table 8. Number of passes is the
average number of times each read in the data set was examined; un-
less noted in parentheses, numbers were within 1% of non-streaming
results.
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Figure 4: Saturation curve of a real and a simulated E. coli read data
set. Reads are collected when they have an estimated coverage of
less than 20; in the early phase (< 1m reads), almost all reads are
collected, but by 2m reads into the data set, the majority of reads
come from loci with an estimated sequencing depth of > 20 and are
rejected.

84.4% with semi-streaming vs 80.4% with two-pass, and a specificity of365

88.8% vs 88.7% for semi-streaming vs two-pass, respectively. And for the366

mock metagenome, we have a sensitivity of 87.3% with semi-streaming,367

vs 87.1% with the two-pass approach; and a specificity of 97.9% for semi-368

streaming and 98.0% two-pass (compare Table 11 and Table 8). However,369

the semi-streaming approach examined the E. coli data only 1.33 times,370

the mRNAseq data 1.48 times, and the metagenome data 1.92 times on371

average.372

3.4 A semi-streaming algorithm can be used for373

error trimming374

Once errors can be detected with a semi-streaming algorithm, errors can375

also be removed by trimming reads at the first base predicted to be erro-376

neous in a read. This approach is remarkably effective, but can require377

considerably more memory than quality-score based trimming [3]. More-378

over, it is generally implemented as an offline (two-pass) algorithm. Be-379

low, we apply the same semi-streaming approach shown in Figure 3 to380

trimming reads.381

Semi-streaming error trimming on synthetic data: On the382

“simple genome” with counts from the digitally normalized reads, this383
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trimming approach eliminates 149 reads entirely and truncates another384

392 reads. Of the 100,000 bp in the simulated reads, 31,910 (31.9%) were385

removed by the trimming process. In exchange, trimming eliminated all386

of the errors, bringing the overall error rate from 0.63% to 0.00%.387

For the simple metagenome we used the variable abundance approach388

described above and only trimmed reads with estimated coverage of 20 or389

higher. Here, of 2347 reads containing 234,700 bp, 314 reads (13.4%) were390

removed and 851 reads (36.3%) were trimmed, discarding a total of 74,321391

bases (31.7%). Of 1451 errors total, all but 61 were eliminated, bringing392

the overall per-base error rate from 0.62% to 0.04%. The simple mRNAseq393

data set showed similar improvement: 83 of 568 reads were removed, and394

208 were trimmed, removing 19,507 of 56,800 bases (34.34%). The initial395

error rate was 0.65% and the final error rate was 0.07%.396

Semi-streaming error trimming on real data: Applying the397

semi-streaming error trimming to the E. coli MG1655 data set, we trimmed398

2.0m reads and removed 50,281 reads entirely. Of 8.0m errors, all but399

203,345 were removed, bringing the error rate from 1.49% to 0.07%. Trim-400

ming discarded 53 Mbp of the original 486 Mbp (11.1%).401

On the mouse mRNAseq data set, semi-streaming error trimming re-402

moved 919,327 reads and trimmed 648,322 reads, removing 19.8% of the403

total bases, bringing the overall error rate from 1.59% to 1.21%. When we404

measured only the error rate in the high-coverage reads, trimming brought405

the error rate from 1.20% to 0.42%. On the mock metagenome data set,406

27,554 reads were removed and 171,705 reads were trimmed, removing407

0.36% of bases; this low percentage is because of the very low coverage of408

most of the reads in this data set.409

3.5 Illumina error rates and error profiles can be410

determined from a small sample of sequencing data411

With Illumina sequencing, average and per-position error rates may vary412

between sequencing runs, but are typically systematic within a run [26].413

Melsted and Halldorson (2014) introduced an efficient streaming approach414

to estimating per-run sequencing error, but this approach does not apply415

to error rates by position within reads [7]. Here, k-mer spectral error416

analysis can be used to calculate per-position relative sequencing error for417

entire data sets [3].418

We can adapt the streaming approaches above to efficiently provide419

estimates for subsets of the data. The basic idea is to consume reads until420

some reads have saturated, and then to calculate error rates for new reads421

from the saturated loci in the graph. This can be done in one pass for422

data sets with sufficiently high coverage data: as shown above (Figure 4),423

in some data sets, most of the reads will have sufficient coverage to call424

errors by the time 20% of the data set has been consumed.425

Using the same error detection code as above, we implemented a sub-426

linear memory/sublinear time algorithm that collects reads until some427

regions have reached 20x coverage, or 200,000 reads have surpassed a cov-428

erage of 10x (see Methods for details). In either case, all reads at or above429
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Figure 5: Error spectrum of reads in the E. coli data set. The sublinear
k-mer spectrum analysis is calculated based on saturation of a fraction
of the data set, while the two-pass spectral analysis uses all of the
data. bowtie2 mismatches are based on all mapped reads. The y
values for the k-mer spectral analyses are scaled by a factor of four
for ease of comparison.

a coverage of 10 are analyzed for errors, with a trusted k-mer cutoff of 3.430

In Figure 5 and Figure 6 we show the resulting error profiles for the E.431

coli and mouse RNAseq data sets, compared with the profile obtained by432

examining the locations of mismatches to the references. We also show433

the error profile obtained with the full two-pass approach (using digital434

normalization and then error detection as above) for comparison.435

In the E. coli data set (Figure 5), we see the increase in error rate436

towards the 3’ end of the gene that is characteristic of Illumina sequenc-437

ing [27]. All three error profiles agree in shape (Pearson’s correlation438

of 0.99 between each pair) although they are offset considerably in ab-439

solute magnitude. The k-mer error profile was calculated from the first440

850,000 reads, but is consistent across five other subsets of the data cho-441

sen randomly with reservoir sampling (data not shown); all five subsets442

had Pearson’s correlation coefficients greater than 0.99 with the bowtie2443

mapping profile and the two-pass spectral approach.444

The RNAseq error profile exhibits two large spikes, one at position445

34 and one at position 69. Both spikes appear to be genuine and cor-446

relate with large numbers of Ns in those positions in the original data447

set. The spikes are present in the profiles derived from two-pass spectral448

analysis as well as the bowtie2 mismatch calculation. However, the sub-449

linear approach does not detect them when using the first 675,000 reads.450

This is because of the choice of subsample: five other subsamples, cho-451

sen randomly from the entire data set with reservoir sampling, match the452

17

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.890v1 | CC-BY 4.0 Open Access | rec: 12 Mar 2015, publ: 12 Mar 2015

P
re
P
rin

ts



0 10 20 30 40 50 60 70 80

Position in read

0.00

0.01

0.02

0.03

0.04

0.05

Fr
e
q
u
e
n
cy

 o
f 

e
rr

o
rs

 a
t 

th
a
t 

p
o
si

ti
o
n

bowtie2 mismatches

k-mer subsample (scaled)

k-mer 2pass (scaled)

Figure 6: Error spectrum of reads in the mouse RNAseq data set. The
sublinear k-mer spectrum analysis is calculated based on saturation of
a fraction of the data set, while the two-pass spectral analysis uses all
of the data, and bowtie2 mismatches are based on all mapped reads.
The peak of errors at position 34 in the bowtie2 mapping reflects
errors that in the first part of the data set are called as Ns, and
hence are ignored by the sublinear error analysis; see text for details.
Note, the bowtie2 mismatch rates are larger than the spectral rates,
so for ease of comparison the y values for the k-mer spectral analyses
are scaled by a factor of four.

match the two-pass spectral analysis (data not shown). The error profiles453

calculated from all six subsamples with the sublinear algorithm have a454

Pearson’s correlation coefficient greater than 0.96 with the error profiles455

from the full two-pass spectral approach and the bowtie2 mismatches.456

3.6 Performance on full mRNAseq and metage-457

nomic data sets458

In practice, the space and time performance of both digital normaliza-459

tion and the generalized streaming approach presented here depend on460

specific details of the data set under analysis and the precise implemen-461

tation of the coverage estimator. While our intention in this paper is to462

demonstrate the general streaming approach, we note that even our naive463

implementation for e.g. streaming trimming is useful and can be applied464

to very large data sets. For high coverage data, we can efficiently error-465

trim 10s of millions of reads in both sublinear memory and fewer than466

two passes across the data. In Table 13, we show the summary statis-467

tics for streaming error trimming of the full mouse mRNAseq and mock468
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Data set pre-trim error % bp trim % reads trim post-trim error
E. coli 1.49% 11.05% 41.9% 0.07%
mouse mRNAseq 1.59% 13.9% 19.8% 1.21%
(high coverage only) 1.20% 20.4% 29.0% 0.42%
Mock metagenome 0.31% 0.4% 1.1% 0.28%
(high coverage only) 0.16% 1.4% 3.5% 0.07%

Table 12: A summary of trimming statistics for semi-streaming error
trimming. Error rates before and after trimming were estimated by
mapping. “High coverage” numbers refer to the subset of reads with
C ≥ 20 that were subject to analysis.

Data set mouse mRNAseq mock metagenome
Total reads 81.3m 103.2m
Total bp 6.18 Gbp 10.4 Gbp
High-coverage reads 74.6m 91.9m
Number of passes 1.18 1.43
% reads trim 25.0% 11.75%
% bp trim 13.74% 4.03%
Pre-trim error rate 1.89% 0.27%
Post-trim error rate 1.30% 0.15%

Table 13: Results of streaming error trimming on complete data sets.
Error rates before and after trimming were estimated by mapping.

metagenome data; in contrast to the smaller subsets used previously (see469

Table 12), when we consider the full data sets the majority of reads are470

examined only once (see “Number of passes”, Table 13).471

3.7 Time and space considerations472

Shotgun DNA sequencing gives us a stream of items representing sentences473

(“reads”) randomly sampled from a larger text, with replacement. In this474

paper, our primary goal is to efficiently identify the locations of errors in475

these reads by finding differences with respect to the (unknown) source476

text; however, this problem is a gateway to a larger set of interesting477

domain problems, which includes estimating the true abundance of the478

sentences in the larger text and determining the complete composition of479

the source text.480

There are several distinct features of this problem that bear mention-481

ing. The first is that important details of the source text, such as its size482

and statistical composition, may be completely unknown; that is, often483

the reads themselves are the most specific information we have about the484

source text. Second, the source text may be incompletely sampled by the485

reads, and whether or not it is completely sampled may not be known in486

advance. And third, read data sets are typically stored on disk, at least in487

current implementations; our goal is to identify more efficient approaches488

19

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.890v1 | CC-BY 4.0 Open Access | rec: 12 Mar 2015, publ: 12 Mar 2015

P
re
P
rin

ts



First pass: digital normalization - reduced set of k-mers.

Second pass: spectral analysis of data with reduced k-mer set.

First pass: collection of low-abundance reads + analysis of saturated reads.

Second pass: analysis of collected low-abundance reads.

First pass: collection of low-abundance reads + analysis of saturated reads.

(a)

(b)

(c)

two-pass;
reduced memory

few-pass;
reduced memory

online; streaming.

Figure 7: A summary of the three approaches to k-mer spectral anal-
ysis presented above. (a) Digital normalization reduces the set of k-
mers to be used for the second pass analysis of the full data set. (b)
Combining online saturation analysis with collection of reads yields a
few-pass algorithm. (c) When all of the data does not need to be ana-
lyzed, online detection of saturation can be used to drive the analysis
of saturated portions of the reads and graph.

to examining these data sets without necessarily moving to a pure stream-489

ing model, which allows us to make use of the semi-streaming paradigm490

introduced by Feigenbaum et al. [6].491

We address this problem by making use of k-mer spectra, a common492

approach in which reads are treated as subpaths through a De Bruijn493

graph, and errors in the reads are identified by finding low-frequency sub-494

paths [1]. We generalize this approach by building the graph with an495

online algorithm and detecting regions of the graph saturated by obser-496

vations. These regions can then be used for per-read analysis without497

necessarily examining the entire data set.498

Detecting graph saturation: We detect graph saturation with dig-499

ital normalization. The digital normalization algorithm is, in Python500

pseudocode:501

for read in data:502

if coverage(read, table) < DESIRED:503

add_read_to_graph(read, graph)504

analyze(read)505

This is a single-pass algorithm that can be implemented in fixed space506

using a Count-Min Sketch to store the De Bruijn graph necessary for cov-507

erage estimation [28, 3]. For any error-containing data set with coverage508

greater than DESIRED, the graph requires space less than the size of the509

input - typically space sublinear in the data size, for any fixed-size source510

text (see Figure 4 and [3]).511
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The digital normalization algorithm was developed as a filter, in which512

the reads are passed on to another program (such as a de novo assembler)513

for further analysis – these later analyses are typically based on multi-pass,514

heavyweight algorithms. Here, digital normalization is performing lossy515

compression, reducing the number of error-containing sentences while at-516

tempting to retain the structure of the De Bruijn graph [9, 3, 14]. This517

reliance on a post-normalization heavyweight analysis step limits the ap-518

plicability of digital normalization and presents challenges in the analysis519

of extremely large data sets, which motivated this work.520

Semi-streaming analysis: The algorithm for semi-streaming analy-521

sis of reads is as follows:522

for read in data: # first pass523

if coverage(read, graph) < DESIRED:524

add_read_to_graph(read, graph)525

save(read)526

else:527

analyze(read)528

529

for read in saved_reads: # second pass530

if coverage(read, graph) >= DESIRED:531

analyze(read)532

Here, the space used for the graph remains identical to the digital normal-533

ization algorithm and is typically sublinear in space for high coverage data534

sets, but the algorithm is no longer single-pass, and requires re-examining535

some subset of the input data in a second pass. In the worst case scenario,536

with an undersampled source text (or randomly generated sentences), this537

is a fully offline two-pass approach that requires re-examining all of the538

input data for the second pass. In practice, most real data sets will require539

fewer than two passes: graphically, any deviation from the identity line in540

a saturation analysis as in Figure 4 yields a few-pass algorithm.541

Reduction to a streaming algorithm: The semi-streaming algo-542

rithm can be turned into a purely streaming algorithm in several special543

cases - specifically, whenever reads need not be saved for a second pass.544

One example is given above, in determining the error profile of sequencing545

reads: here the error profile can be determined from only a small portion546

of the data.547

Another example of a purely streaming approach is when some portion548

of correct data can be discarded, e.g. because of oversampling. (One549

biological application for this occurs when the data set generated is large550

enough to guarantee very high coverage of the entire genome.) In this551

case, rather than saving reads for a second pass, only saturated reads are552

analyzed, while reads that are not from saturated regions in the graph553

are simply discarded. Applying this approach to the E. coli data set554

used above, approximately 1/3 of the reads would be discarded while the555

remaining 2/3 would be analyzed (see “Number of passes”, Table 11).556
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Summary: A summary of the three approaches developed above is557

presented in Figure 7. The two-pass approach in Figure 7(a) yields more558

efficient memory use, but with no advantage in execution time. The few-559

pass approach (Figure 7(b) combines the lower memory use with fewer560

passes across the data, and becomes more efficient as the coverage of561

the data set grows. Finally, the fully streaming approach in Figure 7(c)562

enables one-pass (or less) approaches for certain problems.563

4 Discussion564

4.1 Digital normalization can be applied effec-565

tively to short reads prior to error detection and566

correction.567

Tracking k-mer abundances in large short-read data sets is part of many568

error detection and correction algorithms, but this process can be time569

and memory intensive. Here we show that for some data sets and several570

analyses, digital normalization can be used to reduce the total number of571

k-mers under consideration without strongly affecting results.572

For example, with a real E. coli data set, digital normalization reduced573

the number of k-mers by a third (Table 3, Distinct k-mers) while spectral574

error prediction yielded essentially the same sensitivity and specificity of575

error predictions (compare columns in Table 3). Moreover, when we ran576

the Quake error corrector on the reads using unnormalized and normalized577

counts (Table 4), we achieved nearly identical results, demonstrating that578

the digitally normalized data set retained all of the information necessary579

for error correction.580

4.2 K-mer counts from digitally normalized reads581

can be used to error correct mRNAseq data582

Spectral error correction approaches typically rely on assumptions of uni-583

form sequence coverage, but these assumptions are violated by several584

types of data, including mRNAseq and shotgun metagenome data. Digi-585

tal normalization can be used to generate k-mer spectra with even cover-586

age, allowing existing spectral error analysis approaches to be applied to587

data from samples with non-uniform abundances. We demonstrated this588

by using spectral error detection with digitally normalized data to predict589

errors in both synthetic and real RNAseq and metagenome data (Tables 7590

and 8). We then again used Quake to error correct high-coverage portions591

of an mRNAseq data set, which yielded promising results (Table 9), al-592

though we note that the unusually high per-position error rate in this data593

may have led to poor results (Figure 6).594

This again demonstrates that digitally normalized data retains the in-595

formation necessary to error correct high coverage reads, despite having596

many fewer k-mers and total reads (Table 5 and Table 6). Note that597

we used the Quake software because it provided the option of using k-598

mer counts separate from the reads under analysis. While improved error599
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correction algorithms exist and could be evaluated with some modifica-600

tion, we believe the best path forward is to integrate the semi-streaming601

approach into an error corrector (below).602

4.3 Short-read error detection can be done effi-603

ciently with a streaming few-pass sublinear-memory604

algorithm605

K-mer spectral error detection, trimming, and correction approaches are606

typically implemented as a two-pass offline algorithm, in which k-mer607

counts are collected in a first pass and then reads are corrected in a second608

pass. While several algorithms that run in sublinear memory do exist609

(e.g., Lighter [8]), these are still offline algorithms that require two or610

more passes across the data.611

In high coverage data sets it is possible to implement a more algo-612

rithmically efficient approach, by detecting reads that are high coverage613

in the context of reads previously encountered in the same pass of the614

data. We implemented this by integrating k-mer spectral error analysis615

directly into the digital normalization algorithm, and showed that on sev-616

eral synthetic and real data sets, we achieved nearly identical predictions617

to the full two-pass algorithm with an algorithm that is less than two pass618

(compare Table 8 to Table 11).619

This near-equivalence of results is somewhat surprising, in that we ap-620

pear to be able to reduce a two-pass offline algorithm to a semi-streaming621

approach requiring sublinear memory and fewer than two passes with little622

alteration of results. While data set characteristics affect the algorithmic623

performance (see “Time and space considerations”, above), the algorithm624

performs more efficiently with more data – a good trend.625

As with digital normalization, a basic semi-streaming approach is very626

simple to implement: with an online way to count k-mers, the algorithm627

is approximately 10 lines of Python code. The approach also requires very628

few parameter choices: the only two parameters are k-mer size and target629

coverage. However, we do not yet know how these parameters interact630

with read length, error rate, or data set coverage; systematic evaluation631

of parameters and the development of underlying theory is left for future632

work. In practice, we expect that additional work will need to be done633

to adapt existing error correction approaches to use the semi-streaming634

approach.635

4.4 Error trimming can be done efficiently with636

a semi-streaming algorithm637

We next adapted the error detection algorithm to do semi-streaming error638

trimming on genomic, metagenomic, and transcriptomic data. On high639

coverage components of variable coverage data sets, this led to a substan-640

tial decrease in errors - up to an order of magnitude (Table 12).641

The implementation of semi-streaming error trimming used in this642

paper is somewhat inefficient, and relies on redundantly storing all of the643

reads needed for the second pass on disk during the first pass. In the worst644
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case, where all reads are low coverage, a complete copy of the data set645

may need to be stored on disk! This is an area for future improvement.646

However, when we look at full data sets, fewer than half the reads are647

examined twice (see Number of passes, Table 13).648

4.5 Data-set wide error profiles can be calculated649

in sublinear time and memory650

The ability to analyze high-coverage reads without examining the entire651

data set offers some intriguing possibilities. One concrete application that652

we demonstrate here is the use of high coverage reads to infer data-set653

wide error characteristics for shotgun data, in a way that is robust to the654

sample type [26]. This approach could also be integrated directly into655

sequencers to assess whether the target coverage has been obtained, and656

perhaps stop sequencing. More generally, the approach of using saturat-657

ing coverage to truncate computational analysis may have application to658

streaming sequencing technologies such as SMRT and Nanopore sequenc-659

ing, where realtime feedback between sequencing and sequence analysis660

could be useful [29, 30].661

4.6 Worst-case and best-case scenarios: when is662

error trimming best applied?663

Here we introduce an approach to removing erroneous k-mers from large664

sequencing data sets with a semi-streaming algorithm that can be used665

on variable coverage data sets. When should this be applied?666

The general semi-streaming algorithm is most time-efficient on data667

sets where much of the data is high coverage, because the second pass668

across the data is limited to the set of reads that is low coverage on the669

first pass (Figure 3). Even though the coverage of the data sets may670

not be known in advance, the approach is robust to low-coverage data:671

low-coverage reads can simply be ignored.672

One particularly appealing aspect of the variable coverage error trim-673

ming approach is that it does not need to be modified for different data674

sets: the underlying algorithm can be applied equally to genomic, mR-675

NAseq, and metagenome data sets, although read lengths, error rates,676

and data set coverage will affect the quality of results. On high coverage677

genomic data sets, trimming can be made more stringent by eliminating678

all low-abundance k-mers as erroneous, but even if this is not done, the679

underlying approach is equally efficient.680

Digital normalization was developed primarily to decrease the memory681

requirements for De Bruijn graph assembly by eliminating erroneous k-682

mers; diginorm can reduce the memory requirements for Velvet by more683

than an order of magnitude [9]. However, diginorm also alters the coverage684

of the data set, which may affect the performance of assemblers or other685

downstream analysis steps that rely on coverage. While semi-streaming686

error trimming removes at least as many k-mers as digital normalization687

(and generally should remove many more), k-mer based error trimming688

should have a much smaller and far less biasing effect on data set coverage.689
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Moreover, trimming eliminates fewer reads than digital normalization.690

This may make trimming a more palatable pre-filter for assembly than691

digital normalization.692

We caution against using variable coverage error trimming before mapping-693

based abundance analyses such as transcript quantification, ChIP-seq, or694

variant calling. Variable coverage error trimming preferentially retains695

low-abundance reads and eliminates portions of high abundance reads,696

which may bias results.697

4.7 Conclusions698

We describe a time- and memory- efficient algorithmic approach to k-mer699

spectral error detection and read trimming based on read-local analysis700

of coverage. This approach can be applied generically to variable cov-701

erage data, including mRNAseq and shotgun metagenome reads. More-702

over, the approach should be straightforward to integrate into existing703

k-mer based spectral analyses, including error correction and assembly704

pipelines. Future applications could include semi-streaming error correc-705

tion, reference-free variant calling, and reference-free analysis of streaming706

sequencing data.707
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