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ABSTRACT  

Stream classification provides a means to understand the diversity and distribution of channels 

and floodplains that occur across a landscape while drawing linkages between geomorphic form 

and process. Accordingly, stream classification is frequently employed as a watershed planning, 

management, and restoration tool. At the same time, there has been intense debate and criticism 

of particular frameworks, on the grounds that these frameworks classify stream reaches based 

largely on their physical form, rather than direct measurements of the hydrogeomorphic 

processes operating therein. Despite this critical debate surrounding stream classifications, and 

their ongoing use in applied watershed management, direct comparisons of channel classification 

frameworks are rare. Here we apply four classification frameworks that contain a range of form- 

and process-based methods within a watershed of high conservation interest in the Columbia 

River Basin, U.S.A. We compare the results of the River Styles Framework, Natural Channel 

Classification, Rosgen Classification System, and a channel form-based statistical classification 

at 33 field-monitored sites. For stream network-based frameworks (Natural Channel 

Classification and River Styles) we compare classification outputs across the entire Middle Fork 

John Day Watershed. We found that the four frameworks consistently classified reach types into 

similar groups based on each reach or segment’s dominant hydrogeomorphic elements. Where 

divergence in classified channel types occurred, differences can be attributed to the (a) spatial 

scale of input data used, (b) the requisite metrics and their order in completing a framework’s 

decision tree and/or (c) whether the framework attempts to classify current or historic channel 

form. The relative agreement between frameworks indicates that criticism of classification based 

simply on whether a classification contains form-based measurements, devalues each 
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framework’s relative merits. These form-based criticisms may also ignore the geomorphic tenet 

that channel form reflects formative hydrogeomorphic processes across a given landscape. 

 

1. INTRODUCTION 

The physical form of a stream channel is the result of the coupled climatic, biotic, and 

hydrogeomorphic processes acting upon it [1,2,3]. Accordingly, the classification of rivers into 

reach types based on their physical characteristics lends insight into the formative processes that 

shape rivers, and the range of river characteristics that occur across a landscape [3,4]. These 

insights can be leveraged when assessing river condition relative to pre-disturbance 

characteristics and/or prioritizing the management and restoration of degraded streams [5,6,7]. 

There are numerous frameworks for classifying streams, many of which have diverse spatial and 

temporal output scales (see [8,9,10]).Over the past two decades, there has been intense debate 

and criticism of the utility of particular frameworks [11,12,13,14,15] in the context of river 

management and restoration. These criticisms range from the spatiotemporal limitations of a 

given framework, to criticisms of the decisions that can arise when a framework is misapplied, to 

the fact that measurements of process rates (e.g. sediment flux, bank migration) are absent from 

most frameworks and process is often inferred from channel form. An unfortunate effect of these 

criticisms is that river classification frameworks, regardless of their utility have been overlooked, 

not for what they provide, but for perceptions of classification’s past (mis)applications.  

 

The discussion of individual stream classification frameworks has been subsumed in a broader 

conversation, often focused on stream restoration [14,16,17], that differentiates frameworks in 

terms of whether they are ‘form-based’ or ‘process-based’, criticizing the former as overly 
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simplistic. Yet to condemn frameworks on the notion that they are ‘only form-based’ is to ignore 

a basic tenet of geomorphology, that form implies process [3]. That is, measurements of river 

form are direct reflections of the processes acting to shape that form [1,2,18,19]. Indeed, nearly 

all classification frameworks use metrics that describe the capacity of a channel to perform 

geomorphic work and adjust laterally within a valley bottom. For example, many classifications 

include channel gradient, measures of valley setting or entrenchment, and sediment 

characteristics; [9,20,21,22]. We argue that the separation of classification frameworks into 

‘form-based’ and ‘process-based’ approaches strips the debate of each framework’s relative 

merits [23]. This common simplification implies that the two approaches are at best, distinct, and 

at worst, mutually exclusive. In reality, the line between form and process is blurred as river 

form and hydrogeomorphic processes are directly related. 

 

In a long history of disagreement between proponents and detractors of particular classification 

frameworks, and over the relative utility of form- versus process-based classification in general, 

it is of note that direct comparisons of frameworks are exceedingly rare [13,24,25,26]. This may 

be due to the inherent difficulty in comparing methodologies that produce results over vastly 

different spatial scales and which seek to describe past or present river condition. These 

methodologies also often require disparate types and amounts of input data, analysis time, and 

geomorphic expertise to complete. Nevertheless, the geomorphic community would benefit from 

a more clear understanding of the degree to which various river classifications, which differ in 

their inclusion of process or form, reach similar or disparate conclusions with regard to their 

output [3]. 
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This paper applies four classification frameworks across a watershed of high conservation 

interest in the Pacific Northwest, USA. Each of these frameworks contains, to varying degrees, 

metrics that reflect the form of channels and floodplains, and/or the processes operating upon 

those channels and floodplains. Our goal is to perform one of the first direct comparisons of 

classification frameworks at the watershed scale, and in so doing, to elucidate the similarities and 

differences between classification outputs. Where frameworks differ, we attempt to ascertain the 

methodological differences that lead to divergence in classification. We further explore the 

complexity of each analysis, along with the requisite amount of time and degree of geomorphic 

expertise necessary for successful river classification using each framework. Herein we focus on 

the River Styles Framework (RSF; [9]), Natural Channel Classification (NCC) [27], and the 

popular Rosgen Classification System (RCS; [28,29]). We contrast these with an example of a 

flexible statistical classification approach that clusters field-measured, reach-scale data into 

channel form-based groups. Of the many classification frameworks that are available [3], this 

research aims to familiarize watershed scientists with four distinct approaches. These 

frameworks have been selected given their popularity in management and restoration, the fact 

that their outputs span a wide spatiotemporal range, and the varying degree to which they 

directly or indirectly account for processes operating in river systems (Table 1).  

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.885v2 | CC-BY 4.0 Open Access | rec: 2 Jul 2015, publ: 2 Jul 2015

P
re
P
rin

ts



Table 1. Summaries of the four classification frameworks applied to wadeable streams of the Middle Fork John Day River: River 
Styles, Columbia Basin Natural Channel Classification, Rosgen Classification System, and statistical classification. 

Classification 
Framework 
(abbreviation) 

Description Examples  Data requirements Classified 
output  

References 

River Styles 
Framework 
(RS) 

A hierarchical, multi-scale 
classification scheme for describing 
river character and behavior. River 
Styles can be used to understand river 
condition, recovery potential and 
prioritize management. 

Use in river management 
practice across NSW, 
Australia [9,30,31] 
 
Correlates to downstream 
sediment storage and 
landscape connectivity 
[32,33,34,35,36] 
 
Ecological community 
composition varies as a 
function of River Styles 
[37,38] 

Field, remote-sensing and 
other GIS data on geology, 
hydrology, and stream 
geomorphic setting to identify 
broad-scale to local controls 
on river character and 
behavior. 

Continuous 
stream network 
(NHD+) 

[9,30,31,39] 

Columbia 
Basin Natural 
Channel 
Classification 
(NCC) 

NCC is a model-based stream 
classification using a machine-learning 
(support vector machine) algorithm to 
group reaches based on their historic, 
undisturbed planform. Divides reaches 
into groups based on channel width 
before sub-dividing on reach-level 
remote sensing data. 

A historic planform map 
and dataset for the 
Columbia River Basin  
[27] 

Remotely-sensed channel 
slope, discharge, valley 
confinement, sediment 
supply, and sediment size are 
used as predictors of channel 
planform in a modeling 
framework. 

Continuous, 
pre-disturbance 
stream network 
(NHD) 

[27] 

Rosgen 
Classification 
System (RCS) 

RCS is a stream-reach taxonomy based 
on field-collected empirical data that 
classifies geomorphic stream features 
to identify stream types by numerically 
bounded physical metrics. This is 
arguably the most commonly used 
stream classification system in North 

RCS can be employed to 
successfully restore a reach 
to a reference condition, 
provided that the reference 
reach is stable [40] 
 
RCS stream type 

Valley morphology for broad 
context, and reach-scale 
monitoring data to calculate 
basic dimensionless metrics 
linking form to physical 
processes. 

Individual 
reaches within a 
stream network 
(field-
monitored 
reaches) 

[28,29] 
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America and the world. classifications provide 
inferences into the 
sensitivity of stream 
reaches to natural channel 
changes [41] 

Statistical 
Classification 
(SC) 

Statistical classification refers to any 
classification methods used to 
differentiate or group stream reaches, 
watersheds, etc. based on multiple 
physical, chemical, and/or biological 
attributes. Attributes are often selected 
for their role in driving or responding 
to dominant processes within a 
catchment. 

Comparing restored, 
forested, and urban 
channels [42]; Identifying 
vegetation communities 
and environmental filters 
[43]; classification of 
desert washes [44] 

Requires reach-scale 
monitoring data for “bottom-
up” classifications. Requires 
remote sensing and GIS data 
to classify reaches from the 
“top-down” or correlate 
classified reaches to larger-
scale environmental or 
physical processes. 

Individual 
reaches within a 
stream network 
(field-
monitored 
reaches). Can 
be applied to 
networks if 
inputs are 
available for 
stream 
segments/netwo
rks. 

[3,43,44] 
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2. METHODS  

The Middle Fork of the John Day River (MFJD; Oregon, USA) is 117 km long and drains 2051 

km2 within the Columbia River Basin (Figure 1). The MFJD watershed was chosen for this 

research given the wealth of stream data available there, largely as a result of ongoing watershed 

monitoring aimed at understanding physical factors limiting salmonid population resilience 

(Section 2.2). These data enabled completion of the four classification frameworks herein 

(Sections 2.3 – 2.6). 

 

Figure 1.Map of the Middle Fork John Day Watershed, Oregon, USA.The 33 Columbia 

Habitat Monitoring Program (CHaMP) reaches monitored between 2012-2013are shown in 
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circles. The National Landcover Dataset (USGS) is presented as the base map to illustrate 

biophysical gradients across the watershed. 

 

2.1. LANDSCAPE, HYDROLOGIC, AND ECOLOGICAL SETTING 

The landscape of the MFJD basin is largely composed of metamorphic and igneous rocks 

underlain by basalt and older extrusive rock, which have been uplifted and reworked to create a 

watershed marked by steep-sloped canyons, deeply dissected highlands, dissected tablelands, and 

rounded uplands containing broad meadows. The watershed is generally semi-arid, receiving 560 

mm of annual precipitation throughout the basin on average [45]. However, the John Day Basin 

is also marked by a distinct elevation-dependent precipitation gradient: the upper 10% of 

elevations receive an average of 880 mm of precipitation, while the lowest 10% receive 370 mm. 

Average annual streamflow measured at the Ritter, Oregon gauging station (USGS #14044000, 

Ad = 1334 km2; 83 years of record) is 7.4 m3s-1.This varies considerably from the spring months 

when snowmelt in the uplands causes peak flows that average21.0 m3 s-1to summer baseflows 

that average 1.1 m3s-1. Lowland vegetation is dominated by sagebrush (Artemisia sp.) and 

grasslands interspersed with juniper (Juniperus sp.), while uplands are comprised of forests 

dominated by subalpine fir (Abieslasiocarpa), Engelmann spruce (Piceaengelmannii), lodgepole 

pine (Pinuscontorta spp. latifolia) and Douglas fir (Pseudotsuga menziesii) [46]. Riparian 

vegetation ranges from gallery cottonwood (Populusbalsamifera) forests, to alder (Alnus spp.) 

and willow (Salix spp.) shrublands, to wetland meadows dominated by sedges (Carex spp.), 

graminoids, and forbs [46]. 

 

2.2. SALMONID CONSERVATION AND WATERSHED MONITORING 
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Reductions in native fish populations throughout the Columbia River Basin, including the MFJD, 

have led to large-scale aquatic habitat monitoring across the Columbia Basin. In particular, 

steelhead trout (Oncorhynchusmykiss), listed as threatened under the U.S. Endangered Species 

Act, have seen drastic reductions in the size of their runs [47], presumably due to a combination 

of  anthropogenic habitat degradation and hydropower development throughout the basin [48]. 

As a result, watersheds throughout the Columbia River Basin have received intensive monitoring 

efforts to document the status and trend of salmonid populations and habitat. 

 

The MFJD is also monitored as part of the larger Columbia Habitat Monitoring Program 

(CHaMP; http://www.champmonitoring.org). CHaMPdata, which are used herein to complete 

the four classification frameworks, are collected at wadeable, perennial streams throughout the 

Columbia River Basin[49].Here we use survey data from the MFJD watershedcollected during 

2012 and 2013 (n = 33 sites) describing channel bankfull width and depth, gradient, substrate, 

and sinuosity. Discrete sampling reaches in the 2012-2013 dataset are twenty times as long as the 

bankfull channel width at each site and range from 120 to 360 meters in length.  

 

2.3. THE RIVER STYLES FRAMEWORK 

The River Styles framework seeks to provide a “coherent set of procedural guidelines with which 

to document the geomorphic structure and function of rivers, and appraise patterns of river types 

and their biophysical linkages in a catchment context”[9]. In practice, the RSF offers the 

potential for a process-based, watershed-scale classification system for rivers, with implications 

for prioritizing their management and restoration. It consists of four distinct stages that progress 

from (1) classifying landscapes and current river form and function, to (2) assessing geomorphic 
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river condition in context of reach evolution, to (3) understanding and forecasting trajectories of 

river change, and (4) prioritizing catchment management. A full description of the methods 

entailed in the RSF can be found in [9]. Here we describe the application of stage one of the 

RSF, which has been completed for the MFJD as part of an ongoing effort to contextualize site-

specific CHaMP monitoring data in a watershed-wide framework [50]. Stage one provides a 

baseline assessment of current reach types (referred to as ‘river styles’) in a system with 

emphasis on longitudinal variability of river form (i.e. longitudinal profile analyses) along the 

mainstem channel and tributary network.  

 

The RSF begins with the classification of landscape units (Figure S.1). Each landscape unit has a 

propensity to contain a unique distribution of river styles. Within a given landscape unit, stream 

reaches are classified based on their valley confinement, presence or absence of floodplains, 

channel planform, distribution of in-channel and floodplain geomorphic units, and dominant 

channel substrate (Table 2). In contrast to the other classification systems presented herein and 

those used among practitioners (e.g. [22,28]), there is no intrinsic limit on the number of river 

styles that may occur in a watershed of interest. In practice, once the diversity of river styles for a 

particular watershed is known, a river styles tree (FiguresS.2 – S.4) can be constructed that 

allows for the classification of any stream segment from those found in the watershed. The top-

level discriminator in the RSF is valley confinement (Figures S.2 – S.4), which Brierley and 

Fryirs[9] define as “the proportion of the channel length that abuts a confining margin on either 

side.” Therein, confined channel reaches abut a confining margin along more than 90% of their 

length, laterally unconfined channel reaches abut a confining margin along less than 10% of their 
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length, and partly confined channel reaches abut a confining margin along 11-89% of their 

length [9].  

 

We used O’Brien and Wheaton’s [2015] delineation of river styles for the MFJD where the 

boundaries between landscape units were defined using geospatial datasets for elevation (10 m 

and 1 m digital elevation models;[51]), slope, underlying geology [52], dominant vegetation[53], 

and Level IV EcoRegion boundaries [49]. Following the delineation of landscape units, 

individual river styles were initially digitized on the National Hydrography Dataset (NHD; as 

polylines in ArcGIS; ESRI, Redlands, CA) using aerial photos ([54]; 1 m resolution) and 

elevation datasets as a guide. Field visits were conducted in the summer of 2012 and 2013 to 

confirm the accuracy of these delineations, refine the distinguishing characteristics of each river 

style and its location in the river style tree (FiguresS.2 – S.4) and pinpoint boundaries between 

river styles. 

 

Because the RSF is a hierarchical framework, components of it can be considered both form- and 

process-based (Table 2). For example, individual River Styles are classified in part by their 

behavior (i.e. interpreting how instream and floodplain geomorphic features (landforms) are 

formed and reworked under various flow regimes). This interpretation is ratified via geomorphic 

mapping during field visits to sites [50]. The initial differentiation of reaches is conducted at the 

valley setting scale, based on valley confinement. This serves as an analog to Montgomery’s [55] 

process domains, which reflect the channel’s access to sediment sources and the mechanisms 

through which sediment reaches the channel (Table 2). Stream power is estimated continuously 

along the channel can be used to infer reach boundaries [9]. Within each valley setting, river 
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styles are classified based on metrics of channel form that are directly tied to geomorphic 

processes like stream discharge and power that govern sediment transport. These metrics include 

channel planform (and the presence or absence of a channel), the array of instream and 

floodplain geomorphic units along the reach and bed material texture (Table 2). 
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Table 2. Form-based channel metrics included in classification analyses. Note that inclusion of metrics in each classification framework 
reflects only the stages that were completed in this research, and that ‘processes’ only include geomorphic dynamics, and exclude ecological 
processes. 

Metric of channel form Relationship to channel processes RSF NCC RCS  Clustering 

Bankfull width  Transport competence via stream 
power[56,57,58,59]   X X 

Gradient or channel slope Transport competence via stream power 
[56,57,58,59] X X X X 

Presence or absence of channels 

Magnitude/frequency of flow[9] 

Presence of hyporheic flow[9] 

Valley sedimentation/filling [30] 

X    

Distribution of floodplains 
Accommodation space for flow[39] 

Influence of vegetation on flow[60] 
X    

Sinuosity 

Competence via slope/stream power[61,62] 

Ability for lateral adjustment[63] 

Input of vegetation/sediment from banks[64] 

X  X X 

Number of channels Accommodation space for flow[9] X    

Lateral channel stability 
Ability for lateral adjustment[65] 

Input of vegetation/sediment [64,65,66] 
X    

D16, D50, D84 Transport competence [61,62] X   X 

Unit stream power  Transport competence [56,57,58,59] X    

Site discharge Transport competence via stream power 
[56,57,58,59]  X   

Integrated wetted width Transport competence via stream power 
[56,57,58,59]    X 

Valley width Ability for lateral adjustment [9,60] X  X  
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Supply of sediment and vegetation [27,55,64] 

Bankfull depth Transport competence [61,62]   X  

Width: depth ratio  
Transport Competence [67] 

Influence of Vegetation on Flow [68] 
  X X 

Valley confinement  
Ability for lateral adjustment [9,60] 

Supply of sediment and vegetation [27,55,64] 
X X   

Entrenchment ratio  

Accommodation space for flow [60] 

Transport competence via stream power 
[56,57,58,59] 

Ability for lateral adjustment [69] 

Input of sediment and vegetation[27,55,64] 

  X  

Bed material (categorical) Transport competence [61,62]   X  

Geomorphic units (channel and 
floodplain) 

Transport competence [70] 

Transport regime[71] 

Magnitude/duration/frequency of 
flooding[9,39,56,71] 

Influence of vegetation on flow[72,73] 

X    

Relative reach slope Relative sediment supply (surplus/deficit) [27]  X   

Upstream basin land cover Sediment supply/caliber [27]  X   
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2.4 NATURAL CHANNEL CLASSIFICATION 

Natural channel classification [27] seeks to predict the background, or pre-disturbance, planform 

of alluvial channels found in an area of interest. To this end, Beechie and Imaki [27] constructed 

a probabilistic map of pre-disturbance channel planforms across the Columbia River Basin, USA 

(drainage area 674,500 km2). NCC classes include confined channels and four channel patterns 

for unconfined reaches: straight, meandering, island-braided, and braided. These four 

unconfined channel patterns are commonly identified planforms for alluvial, floodplain rivers 

[18,20,74], which have distinctly different morphologies, dynamics, and ecological attributes 

[74,75]. In NCC, confinement is considered as the ratio of bankfull width to valley width, and 

unconfined channels are those where the valley floor width is more than four times the bankfull 

width. Predictor variables in the model were based on known physical controls on channel 

pattern, including channel gradient, discharge, valley confinement, sediment supply, and 

sediment size [76]. Channel slope, discharge, and confinement were estimated directly from 

digital elevation models. Relative reach slope, percent of watershed in unvegetated alpine terrain, 

and percent of watershed in fine-grained erosive sediments were hypothesized to be surrogates 

for sediment supply and size, respectively. Relative slope is the slope of a reach minus the slope 

of its upstream neighbor. Positive relative slope values indicate that a reach is steeper than its 

upstream neighbor (likely sediment supply-limited or undersupplied), and for a given slope and 

discharge is likely be narrower, deeper, and more armored [20,77], whereas negative values 

indicate that a reach is more likely to have low transport capacity relative to bed load supply (i.e., 

transport-limited or oversupplied), and will likely be wider, shallower, and finer grained or less 

armored. 
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For all channel segments with bankfull width > 8 m, attributes were assigned to each 200-m long 

reach in the study area (> 2,000,000 reaches) based on available geospatial data, and adjacent 

reaches with similar characteristics were then aggregated into sets of geomorphically meaningful 

reaches. A sample of more than 30 relatively natural reaches of each channel pattern was 

selected as the training data set (i.e., the natural channel pattern was not obscured by 

contemporary land use or dams); hence, the model should predict channel patterns expected in 

the absence of human impacts, rather than current channel form. A support vector machine 

(SVM) classifier was used to relate all 63 possible combinations of reach attributes to channel 

pattern using a total training data set of 147 reaches. The multiple models were evaluated using 

cross-validation (classification accuracy), and the most accurate SVM model was then used to 

predict channel pattern for all reaches in the study area. Bootstrapping of the final model created 

1000 separate predictions of channel pattern for each reach, and the consistency of predictions 

was used as an indicator of model uncertainty for each reach. For example, if 85% of the 

predictions for a reach were ‘braided,’ we considered that reach to have a high likelihood of 

having a braided channel pattern. This statistical approach produces maps of (1) the most likely 

channel pattern for each reach in the Columbia River Basin, and (2) uncertainty in the channel 

pattern prediction. For channels with bankfull width <8 m, reaches were classified as pool-riffle, 

plane-bed, step-pool or cascade based on channel gradient [22].  

 

Like the RSF, NCC contains elements based in process and form. NCC uses channel 

confinement to first predict whether natural patterns can be expressed (unconfined channels), or 

whether the valley bottom is too narrow to allow significant meandering and side-channel 

formation. Basin-scale measurements of land cover and surficial geology are used to characterize 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.885v2 | CC-BY 4.0 Open Access | rec: 2 Jul 2015, publ: 2 Jul 2015

P
re
P
rin

ts



18 
 

the likely  sediment supply and sediment size delivered to each reach [55]. In addition, remotely 

sensed measurements of channel characteristics (i.e. channel width, gradient, and relative slope) 

reflect the ability of a reach to transport supplied sediment [59,78,79]. Together, these are used 

to estimate the equilibrium form of each reach in the basin.  

 

2.5. ROSGEN CLASSIFICATION SYSTEM 

The Rosgen Classification System (RCS; [28,80]) is widely used to assess channel condition in 

the context of reach-scale stream restoration projects, providing a standardized workflow for 

river classification based on a field survey of the geomorphic characteristics of a particular 

stream reach. RCS consists of four hierarchical stages of classification moving from coarse to 

fine spatial scales [29]. In Level I, the system uses spatial data describing valley confinement, 

channel planform, local soil types, hydrologic regime, and watershed physiography to establish a 

broad geomorphic characterization of river reaches. In Level II, the geomorphic characteristics of 

a site (e.g. entrenchment ratio, width/depth ratio, sinuosity, median grain size, and gradient) are 

assessed and a particular stream type is assigned to the reach using the decision tree first 

presented by Rosgen [28]. Like the RSF and NCC, in Level II the RCS emphasizes valley setting 

and confinement early in the process. RCS uses a field-measured entrenchment ratio (channel 

wetted width at two times bankfull depth divided by the bankfull width), which is analogous to 

the valley width to bankfull width ratio  that NCC uses to calculate channel confinement. In 

Level III, the stream’s condition is assessed based on channel planform, bed and bank stability, 

occurrence and type of riparian vegetation, and any alterations in flow regime. Finally, stream 

types delineated in Levels II and III are field-checked by direct measurements of sediment 
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transport and size, flow, bed/bank stability, and rates of bank erosion to ensure a valid stream 

type classification has been made (Level IV). 

 

We classified the 33 CHaMP reaches in the Middle Fork John Day watershed (Figure 1) using 

Levels I and II of the RCS. We used DEMs (10 m and 0.1 m grid resolution), aerial imagery (1 

m resolution), and ground-based assessments to infer the Level I valley types surrounding each 

CHaMP reach. Delineation of bankfull elevation was completed by trained technicians in the 

field and surveyed as part of the CHaMP topographic survey. Calculations of width-to-depth 

ratio, channel sinuosity, entrenchment ratio, and channel gradient were derived from CHaMP 

topographic survey DEMs (0.1 m grid resolution) using the River Bathymetry Toolkit (RBT; 

[81]). A bankfull water surface was derived by detrending a DEM and best-fitting a water stage 

through the measured bankfull points and examining inflections in the hydraulic geometry using 

the CHaMP Topo Toolbar (https://sites.google.com/a/northarrowresearch.com/champtools/). 

Measurements that typically are derived from cross sections using RCS were derived from 

averages of 100+ of cross sections spaced at 1-meter intervals at every CHaMP site and 

processed using the RBT. These metrics allowed us to categorize each CHaMP reach into broad 

level RCS stream types (A-G). By combining broad RCS stream types with median grain size 

data (D50) collected during CHaMP surveys, we classified each site into a final channel type 

according to the RCS classification. Although we did not explicitly validate our reach type 

delineations in the field (e.g. Level IV as described above), the wealth of on-the-ground 

photographs and high-resolution topographic data (0.1 m-resolution DEMs) collected as part of 

CHaMP surveys were used to ensure the validity of classified reaches. 
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Perhaps more so than the RSF or NCC, Level II of the RCS is a form-based approach, relying on 

measurements of channel geometry and bed material size to classify stream reaches (Table 2; 

[29]). It has received criticism in the geomorphic literature for being a strictly form-based 

approach [14,16,17]. At the same time, the RCS, like the other classification frameworks used 

here, relies on measurements of channel form as surrogates for geomorphic process, and perhaps 

more so than the other three approaches, requires direct field-based measurements to do so. For 

example, a channel’s entrenchment ratio reflects its ability to adjust laterally across the valley 

bottom and access floodplain sediments, while measurements of gradient and bed material size 

reflect the capability of the channel to transport supplied sediment [61,62]. 

 

2.6 STATISTICAL CLASSIFICATION 

Multivariate statistical classification provides a flexible framework to identify patterns between 

reaches based on channel form and/or landscape setting. Multivariate statistical approaches, 

including hierarchical clustering, use distance measures to group stream reaches based on their 

similarity (or dissimilarity) across multiple stream attributes [82]. Statistical classification is a 

family of techniques, rather than a single technique, allowing flexibility in the input data used, 

the distance measure used to compare similarity across observations, and in the case of 

clustering, the algorithm used to identify meaningful groups of observations [83]. Here we show 

an example of how these techniques can be employed in the spirit of the other stream 

classifications compared here.  

 

We classified the 33 CHaMP reaches in the Middle Fork John Day Watershed by clustering 

reaches on multiple instream geomorphic attributes: bankfull width, wetted width, site sinuosity, 
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stream gradient, bankfull width to depth ratio, and D16, D50, and D84 particle size. CHaMP 

metrics that reflect sediment size and channel form were selected in order to maintain 

consistency with data used in the classifications presented in Sections 2.3, 2.4, and 2.5. We 

selected a partitioning around medoids clustering algorithm in R (cluster package; [84]), a 

divisive clustering technique, to identify clusters of distinct reach types based on the Euclidean 

distance between reaches’ instream geomorphic attributes. We validated differences in stream 

attributes between reach clusters using PERMANOVA [85]. We plotted the cluster solution 

within a principal components analysis (PCA) of the same stream channel attributes, visually 

comparing CHaMP reaches classified under each method (RSF, NCC, RCS, clustering). Full 

statistical methods and results are presented in the supporting information (Text S1). 

 

The statistical classification applied here is purely form-based, incorporating geomorphic process 

only by grouping channels on their physical attributes’ similarity (Table 2). Field-derived 

measurements of channel gradient, bankfull channel dimensions, and bed material size were used 

to describe channel form, which, in aggregate, reflect the ability of a given stream reach to 

transport supplied sediment, similar to how RCS estimates process using form-based attributes 

(Section 2.5). An important distinction between the statistical classification and the other three 

classifications used here is how they incorporate valley setting. While RSF, NCC, and RCS 

estimate sediment supply and delivery processes by classifying valley setting (albeit at a later 

stage in RCS), the statistical clustering employed here does not use valley confinement or 

surrogates (stream order, valley slope) to estimate a channel’s propensity to adjust laterally and 

receive sediment inputs from the valley. 
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2.7 ASSESSING CLASSIFICATION FRAMEWORK AGREEMENT 

To compare the level of agreement between each classification framework at the 33 CHaMP 

sites discussed in Section 2.2, we compared classifications by approximating analogous reach 

types between each classification framework. We began by using the eight reach types identified 

by Natural Channel Classification, as these descriptors provided intuitive descriptors of channel 

planforms and associated physical characteristics. For each NCC reach type, we identified the 

most closely related reach types from the RSF, the RCS (using top-level channel types A-G), and 

statistical clustering. Where available (RSF, RCS), decision trees were used to select those reach 

types that best approximated each NCC type based on common geomorphic metrics (gradient, 

geomorphic units present, planform). In the case of statistical clustering, the geomorphic 

attributes inherent to each of the four clusters (Figure 4) were used to approximate the 

corresponding NCC reach type.  

 

Those RSF, RCS, and statistical clustering reach types that were most closely related to each 

NCC type were classified as being in “good” agreement (e.g. all geomorphic attributes of the 

reach type could conceivably be present in the associated NCC channel class), while those which 

were only marginally related to each NCC class (that is, some aspects of the reach types fit with 

an NCC class while others did not) were classified as having “moderate” agreement (Table 3). 

RSF, RCS, and clustering reach types with no characteristics in common with NCC classes were 

classified as having “poor” agreement. While this method is inherently qualitative, we attempted 

to take an inclusive approach when determining agreement among reach types between 

frameworks, as considerable geomorphic variability can exist across each reach type within a 

given framework [9,29]. 
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Table 3. Cross-walking of analogous reach types between NCC, RS, RCS, and statistical clustering based on common geomorphic 
attributes. Those reach types with good (G) or moderate (M) agreement are included, while those with poor agreement are not shown 
here, but are noted in Table 4. 
 
NCC reach type  River Styles reach type       RCS reach type  Statistical cluster 
Island Braided  Low Sinuosity Planform Controlled Anabranching (G)   D (G)  2: Wide, Sinuous (M) 
   Intact Valley Fill (M) 
   Alluvial Fan (M) 
 
Meandering  Meandering Gravel Bed (G)      C (G)  4: Wide, Sinuous (G) 
   Meandering Planform-Controlled Discontinuous Floodplain (G)  E (G)  1: Narrow, Sinuous (M) 
   Low-Moderate Sinuosity Gravel Bed (M)    G (M)  2: Wide, Low-Gradient (M) 
   Low-Moderate Sinuosity Planform-Controlled Disc. Floodplain (M) F (M) 
   Bedrock-Controlled Elongate Discontinuous Floodplain (M) 
   Low-Moderate Sinuosity Gravel Bed (M) 
 
Straight   Boulder Bed (G)       A (G)  2: Wide, Low-Gradient (G) 
   Meandering Planform-Controlled Disc. Floodplain (G)   B (G)  3: Steep, Narrow (G) 
   Confined Valley – Floodplain Pockets (G)    G (M)  
   Low-Moderate Sinuosity Partly Confined Disc. Floodplain (G) 
   Low-Moderate Sinuosity Gravel Bed (G) 
   Alluvial Fan (M) 
   Bedrock-Controlled Elongate Discontinuous Floodplain (M) 
 
Confined  Entrenched Bedrock Canyon (G)     A (G)  1: Narrow, Sinuous (G) 
   Confined Valley – Floodplain Pockets (G)    F (G)  3: Steep, Narrow (G) 
   Step Cascade (G)       G (G)  2: Wide, Low Gradient (M) 
   Steep Perennial Headwater (M)      B (M) 
   Steep Ephemeral Hillslope (M) 
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Table 3. (Continued) 
NCC reach type  River Styles reach type       RCS reach type Statistical cluster 
Cascade  Step Cascade (G)       B (G)  3: Steep, Narrow (G) 
   Boulder Bed (G)       F (G)  1: Narrow, Sinuous 
   Floodplain Pockets (M)       G (G) 
   Steep Perennial Headwater (M)      A (M) 
   Steep Ephemeral Hillslope (M) 
 
 
Pool Riffle  Meandering Gravel Bed (G)      C (G)  1: Narrow, Sinuous (G) 
   Meandering Planform Controlled Discontinuous Floodplain (G)  F (G)  2: Wide, Low Gradient (G) 
   Confined Valley – Floodplain Pockets (G)    G (G)  4: Wide, Sinuous 
   Bedrock-Controlled Elongate Discontinuous Floodplain (G)  E (G) 
   Low-Moderate Sinuosity Planform Controlled Disc. Floodplain (M) B (M) 
   Meandering Partly-Confined Floodplain (M) 
 
Step Pool  Boulder Bed (G)       B (G)  3: Steep, Narrow (G) 
   Step Cascade (G)       F (G)  1: Narrow, Sinuous (M) 
   Steep Perennial Headwater (G)      G (G) 
   Steep Ephemeral Hillslope (G)      A (M) 
   Confined Valley - Floodplain Pockets (M) 
 
Plane Bed  Entrenched Bedrock Canyon (G)     A (G)  3: Steep, Narrow (G) 
   Confined Valley – Floodplain Pockets (G)    B (G)  1: Narrow, Sinuous (F) 
   Bedrock Controlled Elongate Discontinuous Floodplain (G)  C (G)  4: Wide, Sinuous (F) 
   Low-Moderate Sinuosity Planform Controlled Disc. Floodplain (G) F (G) 
   Meandering Planform Controlled Floodplain (M)   G (G) 
   Boulder Bed (M) 
   Steep Perennial Headwater (M) 
   Steep Ephemeral Hillslope (M) 
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Figure 4. Principal Components Analysis (PCA) of reaches based on gradient, D16, D50, D84, 

bankfull width, bankfull width:depth ratio, and integrated wetted width, illustrating differences 

between CHaMP reaches classified into four discrete groups using partitioning around medoids. 

Vectors of stream channel variables are plotted based on the strength of their correlation to the 

PCA (e.g. longer vectors are more strongly correlated to the channel form variable PCA). The 

first and second principal components explained 85.6% and 10.9% of the variability in the reach 

attribute data within the PCA. 
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3. RESULTS 

3.1. THE RIVER STYLES FRAMEWORK 

In total, 14 distinct river styles were classified across the MFJD Watershed. To begin, landscape 

units were classified across the watershed (Figure S.1). The river styles trees showing the 

characteristics of each river style are shown in Figures S.2 - S.4, and the distribution of river 

styles within the MFJD Watershed is shown in Figure 2A, with distinctions made based on 

valley confinement (confined, partly confined, laterally unconfined; [33]). Overall, confined 

valley channels were the most common river styles across the MFJD Watershed (86% of total 

stream length), whereas channels in partly confined valley (8%) and laterally unconfined valleys 

(6%) were far less common although they comprise the majority of the mainstem (Figure 3A). 

Small, low-order, confined channels (boulder bed and steep ephemeral hillslope river styles) 

comprised the majority of total stream length within the watershed (68%, Table 2). Regarding 

the most common classifications of CHaMP sites, 33% of sites were classified as partly confined 

valley with low-moderate sinuosity planform-controlled discontinuous floodplain reach types, 

15% were classified as confined valley with occasional floodplain pockets, and 12% each were 

classified as partly confined valley with meandering planform-controlled discontinuous 

floodplain and bedrock-controlled elongate discontinuous floodplain reach types (Figure 3A). 

Classification of all channels (approximately 4100 km total length) across the MFJD Watershed 

required roughly three to four months to complete using desktop based reach delineation and 

field work. 
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Table 4. Classification results for the four methods compared here. River Styles and Columbia Basin Natural Channel Classification 
are summarized across the entire network and at CHaMP sites, while the Rosgen Classification System and clustering classifications 
are summarized only for reaches with CHaMP channel data. 

Classification 
framework 

Reach types Total stream 
length (km) 

% Total 
length 

% CHaMP 
reaches 

# CHaMP 
reaches 

Boulder bed 1230.7 30.2 3.0 1 
Entrenched bedrock 
canyon 

121.1 3.0 6.1 2 

Occasional floodplain 
pockets 

242.5 6.0 15.2 5 

Step cascade 37.9 0.9 0 0 
Steep ephemeral hillslope 1542.3 37.9 0 0 

Confined 
valley 

Steep perennial headwater 319.4 7.8 0 0 
Meandering planform 
controlled discontinuous 
floodplain 

34.5 0.8 12.1 4 

Low sinuosity planform 
controlled anabranching 

18.2 0.5 6.1 2 

Low-moderate sinuosity 
planform-controlled 
discontinuous floodplain 

170.2 4.2 33.3 11 

Partly 
confined 
(discontinuou
s flood-plains) 

Bedrock controlled 
elongate discontinuous 
floodplain 

113.8 2.8 12.1 4 

Low-moderate sinuosity 
gravel bed 

31.9 0.8 3.0 1 

Alluvial fan 49.3 1.2 3.0 1 
Meandering gravel bed 62.9 1.5 6.1 2 

River Styles 

Laterally 
unconfined 

Intact valley fill 99.4 2.4 0 0 
Straight 132.9 7.8 24.2 8 
Meandering 34.7 2.0 9.1 3 

Columbia 
Basin Natural 
Channel 

Bankfull 
width  
> 8m Island-braided 42.8 2.5 6.1 2 
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 Confined 76.5 4.5 9.1 3 
Plane bed 431.5 25.4 24.2 8 
Pool riffle 129.9 7.7 15.2 5 
Step pool 595.3 35.1 12.1 4 

Classification 
Bankfull 
width  
< 8m 

Cascade 253.7 14.9 0 0 
A A4 12.1 4 
F F3 3.0 1 

Entrenched 

G G4c 3.0 1 
B3c 6.1 2 
B4 24.2 8 
B4a 3.0 1 

Moderately 
Entrenched B 

B4c 15.2 5 
C3b 3.0 1 C C4b 24.2 8 
E3 3.0 1 

Rosgen 
Classification 
System 

Slightly 
Entrenched 

E E4 3.0 1 
Narrow, sinuous (1) 21.2 7 
Wide, low-gradient (2) 15.2 5 
High-gradient, narrow (3) 48.5 16 

Statistical 
classification 

Wide, sinuous (4)  

 

15.2 5 
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Figure 2. Results of the four classifications. (A) River Styles, (B) Natural Channel Classes, (C) 

Rosgen Classification System, and (D) statistical classification with clustering (partitioning 

around medoids), mapped across the Middle Fork John Day Watershed. River Styles and Natural 

Channel Classes are mapped across the entire stream network, while Rosgen Classification 

System and statistical classification results are presented only for CHaMP reaches. Full River 

Style and Natural Channel Class results for CHaMP reaches are presented in Table 4. 
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Figure 3. Classification results across network and sites. Percent of total network channel 

length and percent of CHaMP sites classified into reach types using each classification 

framework (A-D). 

 

3.2 NATURAL CHANNEL CLASSIFICATION 

Natural Channel Classification derived nine channel patterns across the Columbia River Basin 

[27], eight of which were predicted within the MFJD Watershed (Figure 2B). By total stream 

length, the majority of reaches (83%) were small channels with bankfull width <8 m. Across the 

MFJD, 35% of the total reach length was classified as step-pool channels, and 25% classified as 

plane-bed channels[22]. For channels > 8 m bankfull width, 8% of the total reach length was 

classified as having a straight planform, 3% of channels classified as island-braided, and 2% 

classified as meandering (Figure 3B; Table 2). The remaining reaches >8 m were classified as 

confined channels because valley width was less than four times bankfull channel width [27]. 
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With regard to the most common classifications of CHaMP sites, 25% of sites each were 

classified as straight or plane bed reaches, with an additional 15% of sites classified as pool riffle 

(Figure 3B). Classification was completed for all channels > 3 m bankfull width over the entirety 

of the Columbia River Basin. Model development, including data collection and pre-processing - 

projecting to a common coordinate system, mosaicking of individual raster tiles and subsequent 

analysis required roughly two months to complete. Once data were collected and pre-processed, 

actual model run time was approximately 48 hours. 

 

3.3 ROSGEN CLASSIFICATION SYSTEM 

We classified 11 RCS stream types within 33 CHaMP surveyed reaches in the MFJD Watershed 

(Figure 2C). The most common stream types, each containing 24% of the CHaMP reaches, were 

B4 (stable plane bed with occasional pools) and C4b (low gradient, meandering, riffle/pool 

sequences; Figure 3C). In total, 50% of the reaches were B stream types, all of which were 

within valley type II (colluvial, moderately steep and confined), with a single exception. C 

stream types (sinuous, wide and low-gradient) were the next most common (27%) and E (highly 

sinuous, coarse-fine bed), F (entrenched, wide, moderately sinuous, low gradient), and G 

(entrenched, low-gradient, low width:depth ratio) types were the least common (3% each). Only 

one CHaMP site had a substantial length of side channels (24%), however the other metrics did 

not fit a D stream type. Therefore, we did not delineate any multi-threaded channels (RCS stream 

type D). Surveying of individual CHaMP sites required approximately eight hours of crew time 

(typically 2-4 individuals), although some of this time was spent collecting data not used in the 

classifications here. Subsequent manual RCS classification of all 33 CHaMP sites required about 

80 hours. 
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3.4 STATISTICAL CLASSIFICATION 

Because statistical clustering does not confirm an a priori set of outcomes, we compared 

multiple clustering results (two to ten clusters of channels) from the partitioning around medoids 

algorithm. We selected a four cluster final solution based on cluster fidelity, that is the statistical 

and geomorphic differences in the multiple attributes used to distinguish between groups, 

minimizing overlap between cluster groups (Figure 4; Tables S.2. – S.4.). We did this objectively 

rather than trying to create an a priori number of reach types to match the other frameworks 

number of outputs. After plotting the final cluster solution within a principal component analysis 

(PCA), the clustered stream channel attributes showed that each group differed based on multiple 

channel form attributes. The PCA indicated that the four identified clusters were meaningful 

representations of the sampled reaches and not just statistical artifacts. Each cluster was named 

based on the dominant attributes that differentiated clusters from one another. The four final 

groups consisted of (1) narrow, sinuous, high-gradient reaches (n=7), (2) wide, low-gradient, 

coarse substrate reaches with high width to depth ratios (n=5), (3) high-gradient, narrow reaches 

with moderate-sized substrates (n=16), and (4) moderate gradient, wide and sinuous, coarse-

substrate reaches (n=5; Figure 4). The number of CHaMP sites assigned into each cluster are 

shown in Figure 3D. Channel clusters were significantly different from one another 

(PERMANOVA; p< 0.05), and particle D16, D50, and D84 were the attributes that were most 

strongly correlated to the principal component analysis (Tables S.2. – S.4.). Clusters in the final 

four-cluster solution were distinct (silhouette widths 0.24-0.60; mean width 0.41; Figure 4). The 

cluster group assigned to each CHaMP site is shown in Figure 2D and Figure S.7. Because the 

same CHaMP sites were classified using statistical clustering and RCS, the data collection time 
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was identical to RCS classification detailed above. Actual run time of clustering algorithms was 

less than one minute. 

 

4. SYNTHESIS 

4.1.COMPARING OUTPUTS BETWEEN CLASSIFICATION FRAMEWORKS 

The analysis of agreement between reach types of each framework (Section 2.8; Table 3) 

generally indicates that far more often than not, frameworks produced reach type classifications 

that were congruent with one another. When comparing the level of agreement between NCC 

and each of the other three frameworks at 33 CHaMP sites (for a total of 99 comparisons), we 

found “good” agreement at 60 sites (61%), “moderate” agreement at 19 sites (19%), and “poor” 

agreement at 20 sites (Table 4). Thus, reasonable agreement was found at 80% of sites. The 

reasons that each framework’s reach classification does (or does not) agree with those of the 

other frameworks may be the result of the spatial scale of the input data, the timeframe (e.g. 

current or historic) that each framework attempts to classify, or as a result of differences in the 

each framework’s workflow. We also note that the number of output classes for a given 

classification framework may influence the degree of agreement between frameworks. This is 

particularly true in the case of statistical clustering, which contained four output classes 

compared to an average of 9 classes for RSF, RCS, and NCC. However, as clusters were 

specifically chosen to distinguish groups (i.e. minimize cluster overlap; Section 2.6), we do not 

directly explore the effect of the number of stream type classes on agreement. In the case of RSF 

and RCS, there are also nested sub-classes that allow for coarse groupings based on confinement. 

We do not compare these coarse groupings. Instead we focus on the final classes that exhibit a 

range of agreement between frameworks, and the likely reasons for this agreement (Figure 5). 
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Table 5. Classification results and agreement for each CHaMP site across the four classification frameworks. The table is sorted by 
River Styles confinement classes, River Styles channel classes, and then by statistical clusters. 
 
CHaMP 
Site ID 

Stream 
name 

UTM 
Easting 

UTM 
Northing 

Rosgen 
Class. 
System 

Statistical 
Clustering 

Natural 
Channel 
Classes 

River Styles River Style 
valley 
confinement 

 
Agreement 

CBW0558
3-250506 

Lunch 
Creek 

377638 4930916 A4 Narrow, 
sinuous 

Step Pool Boulder Bed CV RS: Good 
RCS: Mod 
Cluster: Good 

CBW0558
3-004682 

Middle 
Fork John 
Day River 

333505 4971313 B4c Wide, low-
gradient 

Island 
Braided 

Entrenched 
Bedrock 
Canyon 

CV RS: Poor 
RCS: Poor 
Cluster: Poor 

CBW0558
3-021066 

Middle 
Fork John 
Day River 

337657 4968709 F3 Wide, 
sinuous 

Confined Entrenched 
Bedrock 
Canyon 

CV RS: Good 
RCS: Good 
Cluster: Mod. 

CBW0558
3-144114 

Vinegar 
Creek 

380932 4942422 A4 Steep, 
narrow 

Step Pool Floodplain 
Pockets 

CV RS: Mod. 
RCS: Mod. 
Cluster: Good 

CBW0558
3-223986 

Bridge 
Creek 

379613 4935524 B4 Steep, 
narrow 

Plane Bed Floodplain 
Pockets 

CV RS: Good 
RCS: Good 
Cluster: Good 

CBW0558
3-456690 

Butte 
Creek 

369488 4942756 A4 Steep, 
narrow 

Plane Bed Floodplain 
Pockets 

CV RS: Good 
RCS: Good 
Cluster: Good 

OJD0345
8-000017 

West Fork 
Lick Creek 

357991 4940711 B4a Steep, 
narrow 

Step Pool Floodplain 
Pockets 

CV RS: Mod. 
RCS: Good 
Cluster: Good 

CBW0558
3-051954 

Dry Fork 
Clear 
Creek 

383698 4934662 E3 Wide, 
sinuous 

Straight Floodplain 
Pockets 

CV RS: Good 
RCS: Poor 
Cluster: Poor 

CBW0558
3-189938 

Granite 
Boulder 

369068 4945617 B4 Wide, low-
gradient 

Straight Alluvial Fan LUV RS: Mod. 
RCS: Good 
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Creek Cluster: Good 
CBW0558
3-449266 

Middle 
Fork John 
Day River 

376782 4941104 C4b Steep, 
narrow 

Meandering Low-Moderate 
Sinuosity 
Gravel Bed 

LUV RS: Mod. 
RCS: Good 
Cluster: Poor 

CBW0558
3-003826 

Summit 
Creek 

386503 4937885 G4c Narrow, 
sinuous 

Pool Riffle Meandering 
Gravel Bed  

LUV RS: Good 
RCS: Good 
Cluster: Good 

CBW0558
3-358130 

Squaw 
Creek 

388721 4936107 B4c Steep, 
narrow 

Pool Riffle Meandering 
Gravel Bed 

LUV RS: Good 
RCS: Mod. 
Cluster: Poor 

CBW0558
3-289522 

Middle 
Fork John 
Day River 

378688 4939623 C4b Steep, 
narrow 

Island-
Braided 

Bedrock-
controlled 
Elongate 
Discont. 
Floodplain 

PC RS: Poor 
RCS: Poor 
Cluster: Poor 

CBW0558
3-275954 

Middle 
Fork John 
Day River 

364436 4947549 B3c Wide, low-
gradient 

Straight Bedrock-
controlled 
Elongate 
Discont. 
Floodplain 

PC RS: Mod. 
RCS: Good 
Cluster: Good 

CBW0558
3-290034 

Middle 
Fork John 
Day River 

370912 4944299 B3c Wide, low-
gradient 

Straight Bedrock-
controlled 
Elongate 
Discont. 
Floodplain 

PC RS: Mod. 
RCS: Good 
Cluster: Good 

CBW0558
3-415218 

Middle 
Fork John 
Day River 

361529 4948510 C3b Wide, low-
gradient 

Confined Bedrock-
controlled 
Elongate 
Discont. 
Floodplain 

PC RS: Poor 
RCS: Mod. 
Cluster: Mod. 

CBW0558
3-030730 

Camp 
Creek 

352247 4942752 B4 Steep, 
narrow 

Straight Low-Moderate 
Sinuosity 
Planform-

PC RS: Good 
RCS: Good 
Cluster: Good 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.885v2 | CC-BY 4.0 Open Access | rec: 2 Jul 2015, publ: 2 Jul 2015

P
re
P
rin

ts



 

37 

Controlled 
Discontinuous 
Floodplain 

CBW0558
3-330226 

Camp 
Creek 

357015 4947826 B4c Steep, 
narrow 

Straight Low-Moderate 
Sinuosity 
Planform-
Controlled 
Discontinuous 
Floodplain 

PC RS: Good 
RCS: Good 
Cluster: Good 

CBW0558
3-118770 

North Fork 
Bridge 
Creek 

375925 4933066 A4 Narrow, 
sinuous 

Step Pool Low-Moderate 
Sinuosity 
Planform-
Controlled 
Discontinuous 
Floodplain 

PC RS: Poor 
RCS: Mod. 
Cluster: Mod. 

CBW0558
3-299658 

Clear 
Creek 

382042 4930368 B4c Narrow, 
sinuous 

Plane Bed Low-Moderate 
Sinuosity 
Planform-
Controlled 
Discontinuous 
Floodplain 

PC RS: Good 
RCS: Good 
Cluster: Mod. 

 
 
 
 
CBW0558
3-438922 

 
 
 
 
Dry Fork 
Clear 
Creek 

 
 
 
 
384597 

 
 
 
 
4933274 

 
 
 
 
C4b 

 
 
 
 
 
Narrow, 
sinuous 

 
 
 
 
Straight 

 
 
 
 
Low-Moderate 
Sinuosity 
Planform-
Controlled 
Discontinuous 
Floodplain 

 
 
 
 
PC 

 
 
 
 
RS: Poor 
RCS: Poor 
Cluster: Poor 

CBW0558
3-234122 

Clear 
Creek 

382238 4929332 B4 Steep, 
narrow 

Plane Bed Low-Moderate 
Sinuosity 

PC RS: Good 
RCS: Good 
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Planform-
Controlled 
Discontinuous 
Floodplain 

Cluster: Good 

CBW0558
3-381682 

Vinegar 
Creek 

380718 4944390 C4b Steep, 
narrow 

Plane Bed Low-Moderate 
Sinuosity 
Planform-
Controlled 
Discontinuous 
Floodplain 

PC RS: Good 
RCS: Good 
Cluster: Good 

CBW0558
3-383986 

Camp 
Creek 

353774 4936398 C4b Steep, 
narrow 

Plane Bed Low-Moderate 
Sinuosity 
Planform-
Controlled 
Discontinuous 
Floodplain 

PC RS: Good 
RCS: Good 
Cluster: Good 

CBW0558
3-404210 

Vinegar 
Creek 

379442 4940614 B4 Steep, 
narrow 

Plane Bed Low-Moderate 
Sinuosity 
Planform-
Controlled 
Discontinuous 
Floodplain 

PC RS: Good 
RCS: Good 
Cluster: Good 

CBW0558
3-477938 

Clear 
Creek 

381713 4935379 B4 Steep, 
narrow 

Straight Low-Moderate 
Sinuosity 
Planform-
Controlled 
Discontinuous 
Floodplain 

PC RS: Poor 
RCS: Good  
Cluster: Good 

OJD0345
8-000536 

Vinegar 
Creek 

378654 4940187 C4b Steep, 
narrow 

Plane Bed Low-Moderate 
Sinuosity 
Planform-
Controlled 
Discontinuous 

PC RS: Good 
RCS: Good 
Cluster: Good 
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Floodplain 
CBW0558
3-325362 

Summit 
Creek 

390544 4937077 C4b Wide, 
sinuous 

Pool Riffle Low-Moderate 
Sinuosity 
Planform-
Controlled 
Discontinuous 
Floodplain 

PC RS: Mod. 
RCS: Good 
Cluster: Good 

OJD0345
8-000031 

Camp 
Creek 

351579 4940332 B4 Wide, 
sinuous 

Confined Low-Moderate 
Sinuosity 
Planform-
Controlled 
Discontinuous 
Floodplain 

PC RS: Poor 
RCS: Mod. 
Cluster: Poor 

CBW0558
3-144394 

Slide 
Creek 

344959 4955342 E4 Narrow, 
sinuous 

Pool Riffle Meandering 
Planform-
Controlled 
Discontinuous 
Floodplain 

PC RS: Good 
RCS: Good 
Cluster: Good 

CBW0558
3-429810 

Summit 
Creek 

387760 4937802 C4b Narrow, 
sinuous 

Meandering Meandering 
Planform-
Controlled 
Discontinuous 
Floodplain 

PC RS: Good 
RCS: Good 
Cluster: Mod. 

CBW0558
3-013322 

Slide 
Creek 

345607 4957140 B4 Steep, 
narrow 

Pool Riffle Meandering 
Planform-
Controlled 
Discontinuous 
Floodplain 

PC RS: Good 
RCS: Mod. 
Cluster: Poor 

CBW0558
3-298738 

Middle 
Fork John 
Day River 

385006 4938373 B4c Wide, 
sinuous 

Meandering Meandering 
Planform-
Controlled 
Discontinuous 
Floodplain 

PC RS: Good 
RCS: Poor 
Cluster: Good 
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Figure 5. Example reaches describing agreement between classification outputs. Four 

reaches at which the four classifications had poor agreement, moderate agreement and good 

agreement in the observed channel planform. 
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At a confined valley reach on the Middle Fork John Day River (CHaMP site: CBW05583-

004682), we found a B4c RCS type, wide, low-gradient statistical cluster, island-braided NCC, 

and entrenched bedrock canyon river style (Figure 5). The statistical classification matched the 

definition of a wide, low-gradient, B4c RCS channel type. While it is plausible that a B4c RCS 

channel type and an entrenched bedrock canyon river style could be applied to the same reach, 

the island-braided NCC classification is deserving of further exploration as it may hint at a 

departure from historic channel condition, which NCC attempts to predict. Subsequent field 

visits by O’Brien [Personal Communication] note that numerous deposits of legacy sediment 

(e.g.[86])above the active channel at this site, along with the wide valley bottom allowing a high 

capacity for channel adjustment, may imply that the system was overwhelmed by sediment 

during the early Holocene. Accordingly, the pre-disturbance classification of an island-braided 

channel using NCC may be appropriate in this case, and could hint at the background 

morphology of the channel. Thus, the divergence in classified reach types at this site may arise as 

a result of NCC’s attempting to discern the background, pre-disturbance channel planform, while 

the other frameworks classify present channel condition. 

 

In contrast, we found good agreement between all classification frameworks at two example 

reaches. The first is a laterally unconfined reach on the Middle Fork John Day River (Figure 5; 

CHaMP site: CBW05583-003826) classified as a G4c RCS type, narrow sinuous statistical 

cluster, pool-riffle NCC, and meandering gravel bed river style. The second site is a partly 

confined reach on Slide Creek (Figure 5; CHaMP site: CWB05583-144394), classified as a 

meandering planform-controlled discontinuous floodplain river style. This site was further 

classified as an E4 RCS reach, pool riffle RCC type, and narrow, sinuous statistical cluster. At 
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these locations, the combination of geomorphic characteristics produced a reach classification 

that was highly similar in terms of valley setting, planform, and assemblage of geomorphic units 

between all four frameworks. In the case of the former site, the reach occurs within a broader 

~10 km reach of the Middle Fork John Day that exhibits a sinuous planform in an unconfined 

valley. The latter site also occurs in a ~5 km segment of Slide Creek that exhibits a consistent 

meandering planform. These more longitudinally-continuous reaches are undoubtedly helpful for 

agreement in classification among continuous frameworks (e.g. RSF and NCC) that may use 

disparate spatial scales of data (e.g. NHD+ and field-based validation versus NHD and basin-

scale 10 m DEMs, respectively) and derive classifications remotely prior to field-based 

verification. 

 

An example moderate agreement site was found in a partly confined valley setting on Slide 

Creek (Figure 5; CHaMP Site CBW05583-013322). This reach showed different, but plausible 

combinations of channel types. The reach was classified as a partly-confined valley with 

meandering planform-controlled discontinuous floodplain river style - whose in-channel 

geomorphic unit assemblage is essentially repeating pool-riffle sequences - and pool-riffle in 

NCC, but was classified as a B4 RCS and steep, narrow statistical cluster. Reaches such as this 

one that exhibit mixed agreement between classification frameworks highlight that subtle 

differences in channel characteristics, such as gradient and sinuosity, can lead to significant 

differences in the classification of an individual reach. These differences arise as a result of the 

hierarchical and statistical clustering classifications used here, as the order of appearance of 

geomorphic metrics in a decision tree can vary between frameworks and subsequently affect 

classification output. 
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Individual reaches classified into groups of similar morphologies within one framework 

sometimes failed to align with a comparable group under another classification framework 

(Table 4). This pattern was most apparent in confined reach types that did not aggregate into 

consistent groups across statistical clusters, Rosgen Classification System types, and natural 

channel classes. For example, River Styles’ confined valley with occasional floodplain pockets 

were classified as all four statistical clusters, five different RCS reaches, and three NCC classes 

(Table 4). In contrast, partly confined channel types were more likely to be grouped into only 

one or two channel types from other classifications. For example, River Styles’ partly confined 

low-moderate sinuosity, planform-controlled discontinuous floodplain grouped into RCS types 

of C4b and B4, and NCC classes of plane bed or straight planform, and steep/narrow and 

narrow/sinuous statistical clustering classes. Additionally, the partly confined low-sinuosity 

planform-controlled anabranching river style occurred exclusively as B4 RCS classes, straight, 

narrow statistical cluster, and straight NCC. The partly confined bedrock-controlled elongate 

discontinuous floodplain river style classified as slightly to moderately entrenched, moderate 

sinuosity RCS types (C, B channels), and wide, low-gradient clusters, but was less consistently 

grouped by NCC (straight, confined, and island braided). While strict fidelity between groups 

within each classification did not occur, partly confined River Styles grouped well with the other 

classifications based on their component inputs. 

 

5. DISCUSSION AND CONCLUSIONS 

Our comparison of four distinct classification frameworks demonstrates that there is significant 

overlap and agreement between outputs of the classifications used here. The most common result 
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in all four frameworks was some variant of moderate-high gradient channel with coarse 

substrate, reflecting the high relief nature of the Middle Fork John Day Basin resulting from 

resistant igneous and metamorphic lithologies (Figure 2, Table 2). Similarly, the least common 

channel types in all four frameworks were those variants corresponding to wide, freely 

meandering, low-gradient streams. These laterally unconfined streams are the ones most 

emphasized in classic channel planform classification and the fluvial geomorphology 

literature[87], although they are rare in many montane regions[33].  

 

The four classification frameworks showed widespread agreement between their outputs despite 

being variably based in either form or process (Table 2). While all four frameworks contained a 

combination of metrics that either directly described the processes at work in channel reaches or 

employed measurements of channel form as surrogates for geomorphic processes, the relative 

role of form- and process-based components varied between frameworks. For example, while the 

RSF depends on observation of processes (e.g. channel behavior at overbank flow, interaction 

with vegetation), NCC and RCS rely on measurements of channel form that are directly related 

to sediment supply and transport competence at individual channel reaches. Taken to the 

extreme, the statistical clustering approach used here exclusively relies on field-based measures 

of channel form in an attempt to differentiate individual reaches. Despite the range of form- and 

process-based metrics in each framework, the four approaches exhibited overall agreement, 

suggesting that a simple differentiation in terms of form or process does not characterize the 

utility of a particular approach. 
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Furthermore, when considering how the geomorphic and stream management or restoration 

communities group classification approaches (see [3]), the line between those based in form and 

those based in process is not necessarily clear. Many of the commonly used classification 

frameworks defy such simple binning, instead combining aspects of form and process to group 

river reaches. In general, the use of channel form metrics as surrogates for stream or valley-scale 

processes is widespread [3]. This is perhaps a reflection of the complexity involved in a purely 

process-based classification framework, which would require high-resolution measurement of 

rates of sediment transport, supply, and channel adjustment at many sites throughout a stream 

network of interest[4]. Such approaches are only possible under exceptional mandates, or with a 

great deal of human and financial capital[88]. In most basins, classification frameworks based on 

channel form metrics are the best surrogates for inferring process. Form-based assessments have 

been borne of a necessity to characterize river reaches over meaningful spatial scales within a 

reasonable timeframe and at moderate costs.  

 

At the same time, rivers are dynamic and adjust in response to water and sediment supply 

[89,90]. If these current boundary conditions are not considered, an assumption of stability may 

be made, when in fact channel form may indicate a transient, or responding state given altered 

sediment or water availability. For this reason, some classification frameworks separate current 

character and behavior from evolution, condition and trajectory (e.g. the RSF), and others 

separate condition  (e.g. RCS). In other systems, the degree of channel departure from 

background conditions is considered and may completely invalidate certain frameworks. For 

example, in watersheds heavily influenced by mill dams or beaver ponds and their associated 
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legacy sediment deposits [86,91], the NCC classification approach may not provide an 

informative river classification as this method predicts pre-disturbance channel planform.  

 

In contrast, RCS or RSF both lend importance to local-scale channel dimensions and, 

particularly in the case of RSF, the patterns of river types in a system, and may be quite revealing 

in pinpointing stream reaches that vary from expected channel forms. In cases of disagreement 

between frameworks that classify current channel form (e.g. RSF, RCS, clustering) and those 

that classify pre-disturbance channel planform (e.g. NCC), such disparate results may indicate 

departures from background conditions and allude that channel form is not at equilibrium with 

larger-scale controls such as valley setting. Such understandings of current channel form, 

compared to background form, are pivotal in appraising channel stability and potential capacity 

for adjustment [92]. Finally, our research does not examine the ability of form-based metrics 

used in river classification frameworks to capture ecological processes operating in streams, as 

we focus solely on river form as an indicator of physical process. Ecological dynamics in 

streams, such as presence/absence of aquatic biota or the distribution of riparian vegetation may 

be closely related to physical form [43,93]. Stream ecology may also exhibit dynamism at 

spatiotemporal scales not examined here (e.g. instream wood volume/frequency;[94]), or drive 

geomorphic processes themselves [73]. 

 

5.1 WHY DO CLASSIFICATION FRAMEWORKS DIFFER? 

Differences in the output of classification frameworks ultimately arise because each framework 

emphasizes physical variables differently throughout the classification process. Although the 

data requirements between classification frameworks are similar, including channel planform 
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metrics, substrate, and the ability of a channel to migrate and access sediment sources (Table 

S.1), the order in which these attributes appear within a particular framework’s decision tree may 

vary markedly (see Supporting Information). For example, at the broad planform scale, the first 

step in the differentiation of reach types within the RCS is to distinguish between single- and 

multi-thread channels. In contrast, this characterization of channel planform is completed several 

steps later in the River Styles framework, which instead places the greatest importance on the 

degree of valley confinement. Both RCS and River Styles, however, make their final 

differentiation between stream types based on the bed material texture within a reach.  

 

When considering statistical approaches such as NCC and clustering as employed here, all 

physical attributes are used in the grouping algorithm, and true hierarchical decision trees are 

foregone. Because most statistical classification techniques computationally determine which of 

the input variables are most important in differentiating stream types, ranking them accordingly, 

a priori importance is not placed upon a given variable. While variables can be weighted in 

clustering and machine-learning algorithms to emphasize the importance of specific processes, 

many classifications, like NCC’s support vector machine, instead use training data to fit 

algorithms before computing classes for a data set. This approach is limited not by what variable 

is perceived to be most important, but rather, what training data are available from which to build 

a model. Similar constraints exist on clustering, which can only group reaches that have data 

available. In building representative statistical classifications, having spatially-balanced, 

randomized sampling is ideal[95]. Another key methodological consideration in using statistical 

classification approaches is that the number of classes is often determined by the strength of the 

fit between data and algorithm, and must be validated by expert judgment of the classified 
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statistical groups and their geomorphic likelihood. Relatively strong clustering was observed 

here with a relatively small number of classes (four), whereas the other three classification 

schemes had between eight and eleven classes. Accordingly, parameter and algorithm selection, 

data transformation or standardization can all influence how well data fits a given clustering 

algorithm, with consequences on whether geomorphically meaningful groups are lumped or split. 

 

More generally, the difference in the relative importance of each physical variable within a 

particular classification framework points to the form-process interactions that each classification 

method attempts to document or explain. Particularly in the hierarchical approaches (e.g. RSF, 

RCS), the order of appearance of variables in the classification (Figures S.2-S.4, S.6) has a large 

impact on the classification of an individual channel reach. Distinct differences are also evident 

when the original intent of the classification framework is considered.  Some frameworks 

produce analyses of current reach type (e.g. RSF, RCS, statistical clustering), while others 

predict pre-disturbance or natural channel morphology (e.g. NCC). Differences in the temporal 

output of each framework may not be intuitive, but provide a critical context for interpreting and 

using the outputs derived[96]. 

 

5.2. COMPARISON OF TIME AND DATA REQUIREMENTS 

The amount of data, time, effort, or expertise necessary for the completion of a particular channel 

classification varies widely between frameworks (Table 5; Figure 6). Because these requirements 

vary depending on the classification employed, care must be taken to assure the information 

provided by the chosen framework is consistent with the purpose for which the framework is 

applied, be it basic eco-geomorphic inquiry[38,97,98] or applications such as watershed 
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management or stream restoration[5,13,99,100]. With regard to the classification frameworks 

examined here, both RCS and statistical clustering are relatively straightforward in application, 

and require minimal time and data to complete for a set of reaches (Figure 6). The simplicity of 

RCS’s reach-scale classification is one of the major reasons for its widespread use within the 

watershed management community[11]. In our case, the RCS classification presented here 

(Section 2.4) required roughly three weeks to complete, excluding field data collection. Although 

the level of computational and statistical expertise required to complete and interpret the results 

of a statistical clustering framework is not trivial, the rapidity with which clustering or simple 

statistical classifications can be completed, altered, and adaptively run is attractive. Once metrics 

are selected for use in the clustering algorithm (Section 2.5), the classification can be run in a 

matter of minutes. It is essential to point out that in reach-level methods like RCS and statistical 

clustering, field-based data collection are imperative for successful classification (and 

verification of reach types in the case of RCS). Because we used an existing, high-resolution 

dataset to complete these classifications, the time spent classifying reaches was greatly reduced.  
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Table 6. Summary of the trade-offs between methodological assumptions, data requirements, and outputs between River Styles, 1 
Natural Channel Classification, Rosgen Classification System, and statistical clustering methods. 2 
Classification 
framework 

Potential advantages  Potential drawbacks 

Explicitly uses watershed-, reach- and geomorphic unit-scale 
processes to classify stream segments[38]. Bi-directional (top 
down/bottom up) approach captures holistic vision of 
watershed[36] 

Requires relatively high-level understanding of fluvial 
and landscape geomorphology 

Uses flexible, defined criteria of both river forms and processes to 
identify groups of reaches and their requisite driving processes [9] 

Data-intensive; requires a combination of spatially 
extensive desktop data along with field-based 
information on reach/unit-scale channel form 

 Open-ended and generic approach that can be used in any 
watershed[9] 

Open-ended and generic approach that can be used in 
any watershed [9] 

River Styles 

Includes components for appraising river condition, recovery 
potential and prioritizing restoration and management[9,101] 

Time-intensive; examination of spatial data and 
development of river styles tree requires large time 
investment 

Spatially extensive, pre-calculated planform classification for 
channels > 3 m in width across the Columbia River Basin. 

NCC channel classes are currently limited to the 
Columbia River Basin, but the methodology is 
transferable to other locations. 

Identifies possible restoration targets where planform has been 
modified by watershed disturbance, changes in hydrologic regime 
or sediment supply. 

Pre-disturbance planform may not reflect current 
watershed disturbances or processes. Conversely, the 
NHD channel network reflects current conditions, 
which may lead to errors in predicted natural channel 
pattern where channel alignment has been modified.  

This classification method complements stream monitoring 
programs across the Columbia River Basin that measure channel 
attributes to infer habitat trend (e.g. CHaMP and PacFishInFish 
Biological Opinion; [102] 
 

Cannot be used to assess current channel condition and 
limiting processes without additional information on 
stream disturbance and condition following European 
settlement. 

Columbia 
Basin Natural 
Channel 
Classification 

Machine learning workflow can be modified for other watersheds 
with known relationships between landscape setting, channel 
attributes, and planform  

Relies on coarse-resolution landscape and channel data 
that may not be ideal for creating model training data in 
all channels and landscapes. 
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Effectively used to help develop restoration plans for stable 
meandering gravel and cobble bed rivers, provided a correct 
reference reach is identified[40] 

Metrics for stream type classification are based on 
empirical data from selected streams [28] 

Provides a common language for specialized professionals in 
watershed science to communicate when referencing stream types 
[28,103] 

Can be incorrectly applied due to seemingly ‘cookbook’ 
style of some reference materials [13] 

Rosgen 
Classification 
System 
 Correctly identified stream types have inherently different 

recovery potential, sensitivity to disturbance, and interactions with 
vegetation that can be used to inform management and restoration 
decisions[28] 

As a restoration tool, success is primarily based on 
locating a stable and ‘correctly identified’ reference 
reach[12,40] 

Can identify relationships between many interrelated reach-scale 
or watershed-scale processes[44] 

Can find unrealistic or hydrogeomorphically irrelevant 
patterns in noisy data [Caratti et al., 2004] 

Can take top-down (landscape – watershed – reach) or bottom-up 
(reach – watershed) approaches[43] 

Requires a priori selection of important processes 
within a given watershed or set of reaches. 

Numerous statistical approaches are available for clustering, 
classifying, and testing for between-group differences across 
multiple reaches. 

Relies on statistical expertise for effective 
implementation and interpretation. 

Classified groups of reaches make discrete units from which 
qualitative bioassessment for aquatic biota or habitat can take 
place. 

Often relies on correlations to biotic processes to 
differentiate “high quality” reaches from “lower 
quality” reaches. 

A long tradition in ecology, hydrology, and geomorphology has 
developed well-understood methods that can be implemented in 
many software packages. 

Rapidly developing methods in statistics machine 
learning allow for “black box” correlative models that 
can be difficult to interpret, understand or explain to 
managers. 

Allows for user-defined watershed attributes for defining 
classification groups. 

Workflows can be time consuming and difficult to 
interpret to non-expert users. 

Statistical 
Classification 

Can be used in the absence of “reference” reaches to identify 
typological gradients between many reaches. 

Requires moderate to large sample sizes and relatively 
high quantities of remotely sensed or field-collected 
data to find meaningful patterns at large scales. 

 3 

 4 
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Figure 6. Trade-offs between each of the four classification frameworks shown in relative 

bivariate space. Trade-offs are between (A) time and data requirements required to perform a 

classification, (B) the amount of statistical and geomorphic expertise required by the classifying 

individual/organization, and (C) the complexity of analysis versus the spatial scale at which each 

framework operates. Note that all classifications require either significant data, expertise in 

statistics and/or geomorphology, and that the position of each framework in panels reflects the 

stage(s) to which their workflows were completed in this study only. 

 

In the case of RCS, the classification produced output for which we confidently expect the 

classified channel type to accurately reflect the site-level conditions in nearly all classified 

reaches. At the same time, within the RCS, field-based measurement and validation of 

classification is of high importance, and so confidence in classification output can be increased 

with subsequent site visits. In fact, site visits are imperative in later stages not only to confirm 

reach-scale classification, but to assess channel condition and determine whether the classified 

channel type reflects an equilibrium or transient state [29]. We are somewhat less confident that 

statistical clustering will produce groups of channels that always reflect conditions in the field. 

This is because the distance measure, clustering algorithm, and the resulting number of groups – 

in effect, the number of representative channel forms found at individual reaches – is inherently a 

choice of the classifier. Much like RSF, the user is forced to compromise between selecting an 
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informative number of classification groups and creating parsimonious groups from which to 

make general inference (i.e. lumping versus splitting groups). This process has major 

implications for subsequent statistical analyses, stratified sampling of reach types for other 

measurements, and condition assessment.  

 

In contrast, the NCC framework and RSF require greater investments of time, and require greater 

expertise in fluvial geomorphology to achieve meaningful results (Figure 6). Not including 

algorithm refinement, the NCC classification can be completed for a large watershed (e.g. data 

gathering, preparation, computation) in roughly two months’ time. However, automated 

classification over broad areas means that the validity of site-level predictions from NCC 

requires careful interpretation. For example, site visits to confirm predictions of NCC may not be 

straightforward, since the framework attempts to classify pre-disturbance, and not current, 

channel planform. Stage one of the RSF, as detailed in Section 2.2, required an investment of 

roughly 3-4 months. This timeframe included a desktop-based classification, field-based 

refinement of classes, and field-based ratification of reach boundaries that produced relatively 

high levels of confidence in the resulting outputs. In the case of NCC, computational expertise is 

paramount, in addition to a thorough understanding of the landscape-scale controls (independent 

or anthropogenic disturbance) on channel planform throughout a watershed of interest. In the 

case of RSF, a similar understanding of both landscape and local-scale controls on river form is 

required, as is the ability to distill the formative processes within a watershed down to the most 

relevant geomorphic characteristics for classification.  
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Perhaps obviously, the increased amount of time and expertise required for implementation of 

the RSF or NCC is counterbalanced by the larger spatial extent across which either framework 

can be applied, creating continuous, network-scale results (Figure 2; Figure 6C; Section 2.7), and 

in the case of RSF the level of process-based detail that is generated. While it would be difficult, 

if not impossible, to upscale the results of RCS or statistical clustering to approximate a 

continuous classification throughout a stream network, this scale of classification is a 

fundamental component of both RSF and NCC. As such, information regarding reach-scale 

anomalies in river characteristics can be easily gleaned from continuous network-scale 

classification frameworks. 

 

Finally, frameworks may be differentiated on the basis of their repeatability. That is, when 

confronted with the same watershed (or dataset), to what degree will two individuals come to the 

same conclusions regarding the number of reach types and their locations throughout a 

watershed? The answer to this question has major implications for the transferability of a 

classification across watersheds and communication to stakeholders. Unfortunately, this is a 

largely unexplored question, and must be more fully addressed before the utility of individual 

classifications can be assessed. Given knowledge of the prescribed workflow for each 

framework, we can attempt to draw inferences regarding the repeatability of each classification 

used herein. The reliance of NCC and statistical clustering on pre-determined algorithms indicate 

that they will be highly repeatable between classification runs, provided that the same input data 

(e.g. the same set of measurements) are used during each run. The number of clusters that are 

settled upon in a statistical clustering workflow is reliant on a combination of fit statistics and 
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expert judgment on the attributes being clustered. This can lead to variability in the final number 

of classified reach types and the processes or elements of form that distinguish them.  

 

The finite number of possible reach types in the RCS classification, along with the discrete 

workflow and associated reach measurements required to work through the hierarchical tree, 

suggest that RCS may also be highly repeatable. While inherent observer variability may lead to 

differences in final stream type(e.g. [13]), Rosgen[15] argues that this issue may be corrected by 

increased field crew training, with particular regard for the identification of bankfull discharge 

level, which influences entrenchment ratio. The RSF does not set concrete quantitative breaks 

between distinguishing attributes leading to reach types (with the possible exception of valley 

confinement; Figure S.2 – S.4) and nor does it set intrinsic limits on the number of reach types 

that can occur within a watershed. As a result, the number of, and distinguishing factors between, 

basin-wide reach types using River Styles may differ markedly between investigators.   

 

While data, time, and expertise requirements differ between stream classification frameworks, 

we can still conclude that river and stream classification are powerful tools that can be used to 

make inference about how stream channel and floodplain landforms respond to hydrologic and 

geomorphic processes. In our application of four distinct classification approaches, we found that 

each methodology captures the range of channel classes within the Middle Fork John Day River. 

Although the frameworks incorporated, to varying degrees, aspects of channel form and process, 

their outputs were often highly comparable and often resulted in overlapping groups of reaches 

with similar hydrogeomorphic setting, channel form, and bed sediment characteristics. All four 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.885v2 | CC-BY 4.0 Open Access | rec: 2 Jul 2015, publ: 2 Jul 2015

P
re
P
rin

ts



 

56 

classifications yielded results that, regardless of their comparison with the other classification 

outputs, can inform applied river management, restoration, and condition assessment. 

 

While it is often assumed that classification merely describes the form of a stream reach, our 

results indicate that these classifications effectively capture how channel form may respond to 

hydrologic, geomorphic, and landscape processes. In the absence of exhaustive sediment 

transport, hydrologic, and/or hydraulic data, and the personnel to analyze them, stream 

classification provides a critical tool for watershed managers to better understand the range of 

potential reach types in their watershed and the likely driving processes. Because classifications 

range from thorough but time-consuming network based approaches (RSF, NCC) to more rapid 

reach-based approaches (statistical clustering, RCS) that categorize current (RCS, statistical 

clustering, RSF), historic (NCC; later stages of RSF not discussed here), and potential future 

trajectories (later stages of RSF not discussed here), we urge managers to use classifications 

appropriate for the application at hand. By pairing network based classification methods with 

network- or watershed-based applications (e.g. habitat audits, landscape planning) and reach-

scale classification with reach-scale applications like reach-scale  habitat comparisons following 

habitat change from hydrologic alteration or restoration activities, classification can effectively 

link stream forms to their governing processes in applied contexts. 
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