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ABSTRACT  21 

Stream classification provides a means to understand the diversity and distributions of channels 22 

and floodplains occurring across a landscape while drawing linkages between geomorphic form 23 

and process. Accordingly, stream classification is frequently employed as a watershed planning 24 

tool. In practice, a variety of frameworks are available to managers for classifying rivers, yet 25 

little information exists about how frameworks compare. Specifically, the data, time, and 26 

expertise required to implement a given classification, consistency of classification results, and 27 

the subsequent geomorphic interpretation between multiple frameworks have not been discussed 28 

following data-driven framework comparisons. Here we apply four classification methods within 29 

a watershed of high conservation interest in the U.S. Columbia River Basin. We compare the 30 

results of the River Styles Framework (RSF), Natural Channel Classification (NCC), Rosgen 31 

Classification System (RCS), and channel form-based statistical classification. We find that the 32 

four frameworks generally classified reach types consistently. Where divergence in classified 33 

channel types occurred, differences could be attributed to the (a) spatial scale of input data used, 34 

(b) the requisite metrics and their order in completing a framework’s decision tree and/or (c) 35 

whether the framework attempted to classify current or historic channel form. We discuss the 36 

relative effort and disciplinary expertise required to complete each classification, noting that if a 37 

framework classifies current or pre-disturbance channel form, results can provide insight on 38 

watershed disturbance. By classifying a single watershed using multiple frameworks, we are able 39 

to identify trade-offs between frameworks, discussing how each framework mechanistically 40 

differs in grouping streams and their driving processes. 41 
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1. INTRODUCTION 42 

The physical form of a stream channel is the result of the coupled climatic, vegetative, and 43 

hydrogeomorphic processes acting upon it [Davis, 1899; Schumm and Lichty, 1965; Buffington 44 

and Montgomery, 2013]. As such, the classification of rivers into reach types by their physical 45 

characteristics lends insight into the relative efficacy of the formative processes that shape 46 

channels. These insights can be leveraged when assessing channel condition and/or prioritizing 47 

the management and restoration of degraded streams [Kondolf, 1995; Fausch et al., 2002; Roni 48 

et al., 2002]. Numerous frameworks for classifying streams exist, with markedly differing 49 

spatiotemporal output scales [see Montgomery and Buffington, 1998; Brierley and Fryirs, 2005; 50 

Kondolf et al., 2005], but over the past two decades, there has been intense debate and criticism 51 

of the utility of particular frameworks [Palmer et al., 2005; Simon et al., 2007; Roper et al., 52 

2008; Lave, 2009; Rosgen, 2009].. These criticisms range from the limitations of a given 53 

framework, to criticisms of the decisions that can arise when a given classification framework is 54 

misapplied, to the fact that measurements of process rates (e.g. sediment flux, bank stability) are 55 

absent from most frameworks and process is more often inferred. An unfortunate effect of these 56 

criticisms is that stream channel classification frameworks may not be applied for what they 57 

deliver, but for perceptions of past applications. Important decisions about why stream 58 

classification is being undertaken in a watershed are often poorly defined at the outset, leading to 59 

difficulty in choosing a framework that will best achieve the intended goals and deliver the 60 

information required.  61 

 62 

The lack of acknowledgement and understanding of the core underlying principles of each 63 

framework, and for what purpose they were designed, has been lost in a broader debate involving 64 
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the relative merits of individual classification frameworks [Tadaki et al., 2014]. The discussion 65 

of appropriate channel classification frameworks has been frequently subsumed in a broader 66 

conversation on stream restoration [Wilcock, 1997; Lave, 2008; Lave, 2009]. This debate weighs 67 

the relative merit of ‘process-based’ restoration approaches against others that are viewed as 68 

simpler, ‘form-based’ approaches. We argue that this broader debate has been ambiguously 69 

executed and often simplistically identifies any restoration that leverages channel type 70 

classification for context as ‘form-based.’ We do not digress into this broad restoration debate 71 

here, but instead attempt to evaluate the requirements of, and agreement between, classification 72 

frameworks that can inform such channel restoration.  73 

 74 

The ‘best’ classification framework is not simply the least-criticized, nor the oldest, the most 75 

popular, or the easiest to implement. In a long and fruitful history of disagreement between 76 

proponents and detractors of particular classification frameworks, it would appear that the one 77 

tenet upon which all frameworks agree is that geomorphic context matters in terms of separating 78 

channel reaches [Buffington and Montgomery, 2013]. That is, in nearly all frameworks, metrics 79 

are used which describe the capacity of a channel to perform geomorphic work and adjust within 80 

a valley bottom (e.g. channel gradient, measures of valley setting or entrenchment, and sediment 81 

characteristics). At the same time, competing classification frameworks produce results over 82 

vastly different spatial scales and may seek to describe past or present channel condition, while 83 

also requiring disparate types and amounts of input data, analysis time, and geomorphic 84 

expertise. As such, we argue that no single framework is best suited for all classification 85 

scenarios across all stream networks, or even within a single watershed. This suggestion is 86 

similar to that made by Buffington and Montgomery [2013] in their recent review on the 87 
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geomorphic classification of rivers. Instead the choice to employ a classification framework, and 88 

the ensuing choice of which classification to use, varies depending on the management or 89 

research objectives of a given watershed or reach-scale assessment. A secondary consideration is 90 

that the ‘best’ framework is the one that matches the time, data, and financial resources available 91 

to the practitioner and their level of geomorphic expertise. 92 

 93 

Despite the fact that the relevance or utility of a particular classification framework may vary on 94 

a case-by-case basis [Tadaki et al., 2014], few, if any, direct comparisons have been made 95 

between the application of several classification frameworks. One byproduct of this lack of a 96 

direct comparison is that practitioners and researchers alike may not understand the inherent 97 

uncertainty of the classified output and the relative resource commitment and insight provided by 98 

one framework versus another. Instead of relying on direct comparisons of the applications and 99 

trade-offs between frameworks, watershed managers may instead fall back on the framework 100 

they are most comfortable with or know best. While there is a growing body of literature with 101 

examples of how individual stream classification frameworks can be applied [Savery et al., 2001; 102 

Thomson et al., 2004; Beechie and Imaki, 2014], here we present a direct comparison of stream 103 

classification frameworks, discussing not only classification outputs, but also the process by 104 

which each classification aggregates reaches into groups that reflect geomorphic processes in 105 

their patterns. 106 

 107 

This paper applies four classification frameworks across a watershed of high conservation 108 

interest in the Pacific Northwest, USA. Our goal is to understand the similarities and differences 109 

in their outputs. Where the frameworks differ, we attempt to ascertain the methodological 110 
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differences that lead to divergence in classification. We further explore the complexity of each 111 

analysis, along with the requisite amount of time and degree of geomorphic expertise necessary 112 

for successful stream classification using each framework. Herein we focus on the River Styles 113 

Framework (RSF; Brierley and Fryirs, 2005), the Natural Channel Classification (NCC) 114 

method developed by Beechie and Imaki [2014], and the popular Rosgen Classification System 115 

(RCS; Rosgen, 1994; Rosgen and Silvey, 1996] approach to stream classification. We contrast 116 

these with a statistical classification approach that clusters field-measured, reach-scale data into 117 

groups based on channel form. While both the RSF and RCS are well known and commonly 118 

applied, the NCC framework as presented here uses elements of the Montgomery and Buffington 119 

[1997] framework, whereas the statistical classification we use is a good proxy for similar 120 

approaches commonly used in geomorphology (e.g. Sutfin et al., 2014) and hydrology (e.g. 121 

Coopersmith et al., 2014). This research aims to familiarize watershed scientists with select 122 

classification frameworks of the many that are available. In so doing, we anticipate that this 123 

discussion will also assist those seeking to perform stream classification in selecting a 124 

framework that addresses the geomorphic processes at work in the watershed of interest, while 125 

also matching their resources and expertise.  126 

 127 

2. METHODS  128 

2.1. STUDY SETTING 129 

The Middle Fork of the John Day River (Oregon, USA) is 117 km long and drains 2051 km
2
 130 

within the broader Columbia River Basin (Figure 1). The landscape is largely composed of 131 

metamorphic and igneous rocks underlain by basalt and older extrusive rock, which have been 132 

uplifted and reworked to create a watershed marked by steep-sloped canyons, deeply dissected 133 
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highlands, dissected tablelands, and rounded uplands containing broad meadows. The watershed 134 

is generally semi-arid, receiving 560 mm of annual precipitation throughout the basin on average 135 

[PRISM Climate Group, 2014]. However, the John Day Basin is also marked by distinct 136 

elevation-dependent precipitation boundaries: the upper 10% of elevations receive an average of 137 

880 mm of precipitation, while the lowest 10% receive 370 mm. Average annual streamflow 138 

measured at the Ritter, Oregon gauging station (USGS #14044000, Ad = 1334 km
2
; 83 years of 139 

record) is 7.36 m
3
s

-1
. This varies considerably from the spring months when snowmelt in the 140 

uplands causes peak flows that average 21.0 m
3
s

-1
 to low summer base flows that average 1.1 141 

m
3
s

-1
. Lowland vegetation is dominated by sagebrush (Artemisia sp.) and grasslands interspersed 142 

with juniper (Juniperus sp.), while uplands are comprised of forests dominated by subalpine fir 143 

(Abies lasiocarpa), Engelmann’s spruce (Picea engelmannii), lodgepole pine (Pinus 144 

contorta spp. latifolia) and Douglas fir (Pseudotsuga menziesii). Riparian vegetation ranges from 145 

gallery cottonwood (Populus balsamifera) forests to alder (Alnus spp.) and willow (Salix spp.) 146 

shrublands to wetland meadows dominated by sedges (Carex spp.), graminoids, and forbs. 147 

 148 

2.2. COLUMBIA HABITAT MONITORING PROGRAM 149 

Reductions in native fish populations throughout the Columbia River Basin, including the 150 

Middle Fork John Day River, have led to large-scale aquatic habitat monitoring across the 151 

Columbia Basin. In particular, steelhead trout (Oncorhynchus mykiss), listed as threatened under 152 

the U.S. Endangered Species Act, have seen drastic reductions in the size of their runs [Nehlsen 153 

1997], presumably as a direct effect of anthropogenic habitat degradation [Waples et al., 2009]. 154 

As a result, sub-watersheds throughout the Columbia River Basin have received intensive 155 

monitoring efforts to document the status and trend of salmonid populations and habitats. For 156 
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example, the U.S. Bureau of Reclamation [2008] has completed channel classification based on 157 

valley confinement [e.g. Frissell et al., 1986] and associated geomorphic condition assessments 158 

for selected sediments of the mainstem Middle Fork John Day River. Additional classifications 159 

documenting the suitability of habitat for native vegetation have been performed by Beschta and 160 

Ripple [2005], along with assessments of morphologic variability and the presence of thermal 161 

refugia for salmonids along the mainstem [e.g. Torgerson et al., 1999; McDowell, 2001]. 162 

 163 

The Middle Fork John Day River is also monitored as part of the larger Columbia Habitat 164 

Monitoring Program (CHaMP; see http://www.champmonitoring.org). CHaMP data are 165 

collected at wadeable, perennial streams throughout the Columbia River Basin [US EPA, 2006]. 166 

Here we use survey data from the Middle Fork John Day River watershed collected during 2012 167 

and 2013 (n = 33 sites). Discrete sampling reaches in the 2012-2013 dataset are twenty times as 168 

long as the bankfull channel width at each site and range from 120 to 360 meters in length. We 169 

use CHaMP data derived from field measurements of channel bankfull width and depth, 170 

gradient, substrate, and sinuosity. 171 

 172 

2.3. THE RIVER STYLES FRAMEWORK 173 

The River Styles framework seeks to provide a “coherent set of procedural guidelines with which 174 

to document the geomorphic structure and function of rivers, and appraise patterns of river types 175 

and their biophysical linkages in a catchment context” [Brierley and Fryirs, 2005]. In practice, 176 

the RSF offers the potential for a process-based, watershed-scale classification system for rivers, 177 

with implications for prioritizing their management and restoration. It consists of four distinct 178 

stages that progress from (1) classifying landscapes and current river form and function, to (2) 179 
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assessing geomorphic river condition in context of reach evolution, to (3) understanding and 180 

forecasting trajectories of river change, and (4) prioritizing catchment management. A full 181 

description of the methods entailed in the RSF can be found in Brierley and Fryirs [2005]. Here 182 

we describe the application of stage one of the River Styles framework, which has been 183 

completed for the Middle Fork John Day River as part of an ongoing effort to contextualize site-184 

specific CHaMP monitoring data in a watershed-wide framework [O’Brien and Wheaton, 2015].  185 

Stage one provides a baseline assessment of current reach types (referred to as ‘river styles’) in a 186 

system with emphasis on longitudinal variability of stream form (i.e. longitudinal profile 187 

analyses) along the mainstem channel and tributary network.  188 

 189 

The RSF explicitly couples channel form and watershed process, beginning with the 190 

classification of landscape units (Figure S.1). Each landscape unit has a propensity to contain a 191 

unique distribution of river styles. Within a given landscape unit, stream reaches are classified 192 

based on their valley confinement, presence or absence of floodplains, channel planform, 193 

distribution of in-channel and floodplain geomorphic units, and dominant channel substrate 194 

(Table S.1). In contrast to the other classification systems presented herein and those used among 195 

practitioners [e.g. Rosgen, 1994; Montgomery and Buffington, 1997], there is no intrinsic limit on 196 

the number of river styles that may occur in a watershed of interest. In practice, once the 197 

diversity of river styles for a particular watershed is known, a river style tree (Figures S.2 – S.4) 198 

can be constructed that allows for the classification of any stream segment from a finite list. The 199 

top-level discriminator in the RSF is valley confinement (Figures S.2 – S.4), which Brierley and 200 

Fryirs [2005] define as “the proportion of the channel length that abuts a confining margin on 201 

either side.” Therein, confined channel reaches abut a confining margin along more than 90% of 202 
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their length, laterally unconfined channel reaches abut a confining margin along less than 10% of 203 

their length, and partly confined channel reaches abut a confining margin along 11-89% of their 204 

length [Fryirs and Brierley, 2010b].  205 

 206 

We used O’Brien and Wheaton’s [2015] delineation of river styles for the MFJD where the 207 

boundaries between landscape units were defined using geospatial datasets for elevation (10 m 208 

and 1 m digital elevation models; US Geological Survey, 2014), slope, underlying geology 209 

[Walker and MacLeod, 1991], dominant vegetation [US Department of the Interior, 2012], and 210 

Level IV EcoRegion boundaries [US Environmental Protection Agency, 2013]. Following the 211 

delineation of landscape units, individual river styles were initially digitized on the National 212 

Hydrography Dataset (NHD; as polylines in ArcGIS; ESRI, Redlands, CA) using aerial photos 213 

(US Department of Agriculture, 2012; 1 m resolution) and elevation datasets as a guide. Field 214 

visits were conducted in the summer of 2012 and 2013 to confirm the accuracy of these 215 

delineations, refine the distinguishing characteristics of each river style and its location in the 216 

river style tree (Figures S.2 – S.4) and pinpoint boundaries between river styles. 217 

 218 

2.4 NATURAL CHANNEL CLASSIFICATION 219 

Beechie and Imaki [2014] constructed a probabilistic map of pre-disturbance, alluvial channel 220 

planforms observed in the Columbia River Basin, USA (drainage area 674,500 km
2
). Beechie 221 

and Imaki’s [2014] classes include confined channels and four channel patterns for unconfined 222 

reaches: straight, meandering, island-braided, and braided. These four unconfined channel 223 

patterns are commonly identified planforms for alluvial, floodplain rivers [Leopold and Wolman, 224 

1957; Schumm, 1985; Beechie et al., 2006], which have distinctly different morphology, 225 
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dynamics, and ecological attributes [Ward et al., 2002; Beechie et al., 2006]. In NCC, 226 

confinement is considered simply as the ratio of bankfull width to valley width, and unconfined 227 

channels are those where the valley floor width is more than four times the bankfull width. 228 

Predictor variables in the model were based on known physical controls on channel pattern, 229 

including channel gradient, discharge, valley confinement, sediment supply, and sediment size 230 

[Benda et al., 2004]. Channel slope, discharge, and confinement were estimated directly from 231 

digital elevation models. Relative reach slope, percent of watershed in unvegetated alpine terrain, 232 

and percent of watershed in fine-grained erosive sediments were hypothesized to be surrogates 233 

for sediment supply and size, respectively. Relative slope is the slope of a reach minus the slope 234 

of its upstream neighbor. Positive relative slope values indicate that a reach is steeper than its 235 

upstream neighbor (likely sediment supply-limited or undersupplied), and for a given slope and 236 

discharge is likely be narrower, deeper, and more armored [Schumm, 1985; Dietrich et al., 1989], 237 

whereas negative values indicate that a reach is more likely to have low transport capacity 238 

relative to bed load supply (i.e., transport-limited or oversupplied), and will likely be wider, 239 

shallower, and finer grained or less armored. 240 

 241 

For all channel segments with bankfull width > 8 m, attributes were assigned to each 200-m long 242 

reach in the study area (> 2,000,000 reaches) based on available geospatial data, and adjacent 243 

reaches with similar characteristics were then aggregated into sets of geomorphically meaningful 244 

reaches. A sample of more than 30 relatively natural reaches of each channel pattern was 245 

selected as the training data set (i.e., the natural channel pattern was not obscured by 246 

contemporary land use or dams); hence, the model should predict channel patterns expected in 247 

the absence of human impacts, rather than current channel form. A support vector machine 248 
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(SVM) classifier was used to relate all 63 possible combinations of reach attributes to channel 249 

pattern using a total training data set of 147 reaches. The multiple models were evaluated using 250 

cross-validation (classification accuracy), and the most accurate SVM model was then used to 251 

predict channel pattern for all reaches in the study area. Bootstrapping of the final model created 252 

1000 separate predictions of channel pattern for each reach, and the consistency of predictions 253 

can be used as an indicator of model uncertainty for each reach. For example, if 85% of the 254 

predictions for a reach were ‘braided,’ we considered that reach to have a high likelihood of 255 

having a braided channel pattern. This statistical approach produces maps of (1) the most likely 256 

channel pattern for each reach in the Columbia River Basin, and (2) uncertainty in the channel 257 

pattern prediction. For channels with bankfull width < 8 m, reaches were classified as pool-riffle, 258 

plane-bed, step-pool or cascade based on channel gradient [Montgomery and Buffington, 1997].    259 

 260 

2.5. ROSGEN CLASSIFICATION SYSTEM 261 

The Rosgen Classification System (RCS; Rosgen, 1994; Rosgen, 2011) is widely used to assess 262 

channel condition and in the design of reach-scale stream restoration projects, providing a 263 

standardized workflow for river classification based on a field survey of the geomorphic 264 

characteristics of a particular stream reach. RCS consists of four hierarchical stages of 265 

classification moving from coarse to fine spatial scales [Rosgen, 2009]. In Level I, the system 266 

uses spatial data describing valley confinement, channel planform, local soil types, hydrologic 267 

regime, and watershed physiography to establish a broad geomorphic characterization of river 268 

reaches. In Level II, the geomorphic characteristics of a site (e.g. entrenchment ratio, width/depth 269 

ratio, sinuosity, median grain size, and gradient) are assessed and a particular stream type is 270 

assigned to the reach using the decision tree first presented by Rosgen [1994]. Like the RSF and 271 
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NCC, in Level II the RCS emphasizes valley setting and confinement early in the process. RCS 272 

uses a field-measured entrenchment ratio (channel wetted width at two times bankfull depth 273 

divided by the bankfull width), which is analogous to the bankfull to valley width ratio that NCC 274 

uses as a proxy for confinement. In Level III, the stream’s condition is assessed based on channel 275 

planform, bed and bank stability, occurrence and type of riparian vegetation, and any alterations 276 

in flow regime. Finally, stream types delineated in Levels II and III are field-checked by direct 277 

measurements of sediment transport and size, flow, bed/bank stability, and rates of bank erosion 278 

to ensure a valid stream type classification has been made (Level IV). 279 

 280 

We classified the 33 CHaMP reaches in the Middle Fork John Day watershed (Figure 1) using 281 

Levels I and II of the RCS. Channel form data used to complete RCS classification were 282 

collected during the summers of 2012 and 2013. We used digital elevation models, aerial 283 

imagery, and ground-based assessments to infer the Level I valley types surrounding each 284 

CHaMP reach. Delineation of bankfull elevation was completed by trained technicians in the 285 

field and surveyed as part of the CHaMP topographic survey. Calculations of width-to-depth 286 

ratio, channel sinuosity, entrenchment ratio, and channel gradient were derived from CHaMP 287 

topographic survey DEMs (0.1 m grid resolution) using the River Bathymetry Toolkit (RBT; 288 

McKean et al., 2009). A bankfull water surface was derived by detrending a DEM and best-289 

fitting a water stage through the measured bankfull points and examining inflections in the 290 

hydraulic geometry using the CHaMP Topo Toolbar 291 

(https://sites.google.com/a/northarrowresearch.com/champtools/). Measurements that typically 292 

are derived from cross sections using RCS were derived from averages of 100+ of cross sections 293 

spaced at 1-meter intervals at every CHaMP site and processed using the River Bathymetry 294 
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Toolkit. These metrics allowed us to categorize each CHaMP reach into broad level RCS stream 295 

types (A-G). By combining broad RCS stream types with median grain size data (D50) collected 296 

during CHaMP surveys, we classified each site into a final channel type according to the RCS 297 

classification. Although we did not explicitly validate our reach type delineations in the field 298 

(e.g. Level IV as described above), the wealth of on-the-ground photographs and high-resolution 299 

topographic data (0.1 m-resolution DEMs) collected as part of CHaMP surveys were used to 300 

ensure the validity of classified reaches. 301 

 302 

2.6 STATISTICAL CLASSIFICATION 303 

We classified the 33 CHaMP reaches in the Middle Fork John Day Watershed by clustering 304 

reaches on their multiple instream geomorphic attributes: bankfull width, wetted width, site 305 

sinuosity, stream gradient, bankfull width to depth ratio, and D16, D50, and D84 particle size. 306 

CHaMP metrics that reflect sediment size and channel form were selected in order to maintain 307 

consistency with data used in the classifications presented in Sections 2.3, 2.4, and 2.5. We 308 

selected a partitioning around medoids clustering algorithm to identify clusters of distinct reach 309 

types, testing for differences in stream attributes between reach clusters using PERMANOVA 310 

[Anderson, 2001]. We plotted the cluster solution within a principal components analysis (PCA) 311 

of the same stream channel attributes, visually comparing the classification of CHaMP reaches 312 

between each method. Full clustering methods and results are presented in the supporting 313 

information. 314 

 315 

2.7. SPATIOTEMPORAL SCALES OF CLASSIFICATION FRAMEWORKS        316 
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Each of the four classification frameworks discussed here requires data from, and produces 317 

outputs at, different spatial scales and points in time. Both the requisite scale of input data and 318 

the scale of output channel classifications are important when considering which framework is 319 

appropriate for a particular application. The data requirements and outputs of each framework 320 

are shown in Table 1. We discuss only the spatiotemporal scales of input/outputs used for the 321 

stage(s) of each framework completed here. The River Styles framework requires information at 322 

the watershed scale, including data describing land cover, climate, and bedrock/surficial geology 323 

(particularly for the delineation of landscape units). It requires reach-scale information 324 

describing channel confinement and the distribution of in-channel and floodplain geomorphic 325 

units, ultimately classifying current channel types continuously at the network scale, which in 326 

turn require site-level visits for validation of stream types and confirmation of the location of 327 

reach breaks.  328 

 329 

Natural Channel Classification uses regional-scale input data describing slope, bedrock and 330 

surficial geology, and vegetation cover to derive a continuous prediction of background (e.g. pre-331 

disturbance) channel types across a large land area (here, the Columbia River Basin). The 332 

Rosgen Classification System requires field-based, reach-scale measurements of channel and 333 

floodplain geometry and physical characteristics (e.g. sediment size, channel gradient) to classify 334 

current reach types at the site scale. Finally, statistical clustering employs similar site-scale data 335 

of the user’s choosing to classify current channel types at the reach scale. Here we employed 336 

metrics for clustering reaches most similar to those used in the other frameworks described (see 337 

Section 2.6). Note that while the RSF and NCC may be downsampled to derive discrete site-338 

scale reach types from the continuous network-scale classification, it is difficult to upscale the 339 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.885v1 | CC-BY 4.0 Open Access | rec: 11 Mar 2015, publ: 11 Mar 2015

P
re
P
rin

ts



16 

 

reach types classified by the RCS and statistical clustering to produce a continuous, network-340 

scale classification of past or present channel types. 341 

 342 

2.8 ASSESSING CLASSIFICATION FRAMEWORK AGREEMENT 343 

To compare the level of agreement between each classification framework at the 33 CHaMP 344 

sites discussed in Section 2.2, we compared classifications by approximating analogous reach 345 

types between each classification framework. We began by using the eight reach types identified 346 

by Natural Channel Classification, as these descriptors provided intuitive and widely-known 347 

examples of channel planforms and associated physical characteristics. For each NCC reach 348 

type, we identified the most closely related reach types from the RSF, the RCS (using top-level 349 

channel types A-G), and statistical clustering. Where available (RSF, RCS), decision trees were 350 

used to select those reach types that best approximated each NCC type based on common 351 

geomorphic metrics (gradient, geomorphic units present, planform). In the case of statistical 352 

clustering, the geomorphic attributes inherent to each of the four clusters (Figure 4) were used to 353 

approximate the corresponding NCC reach type. Those RSF, RCS, and statistical clustering 354 

reach types that were most closely related to each NCC type were classified as being in “good” 355 

agreement (e.g. all geomorphic attributes of the reach type could conceivably be present in the 356 

associated NCC channel class), while those which were only marginally related to each NCC 357 

class (that is, some aspects of the reach types fit with an NCC class while others did not) were 358 

classified as having “moderate” agreement (Table 3). RSF, RCS, and clustering reach types with 359 

no characteristics in common with NCC classes were classified as having “poor” agreement. 360 

While this method is inherently qualitative, we attempted to take an inclusive approach when 361 

determining agreement among reach types between frameworks, as considerable geomorphic 362 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.885v1 | CC-BY 4.0 Open Access | rec: 11 Mar 2015, publ: 11 Mar 2015

P
re
P
rin

ts



17 

 

variability can exist across each reach type within a given framework [Rosgen, 1996; Brierley 363 

and Fryirs, 2005]. 364 

 365 

3. RESULTS 366 

3.1. THE RIVER STYLES FRAMEWORK 367 

In total, 14 distinct river styles were classified across the MFJD Watershed. To begin, landscape 368 

units were classified across the watershed (Figure S.1). The river styles trees showing the 369 

characteristics of each river style are shown in Figures S.2 - S.4, and the distribution of river 370 

styles within the MFJD Watershed is shown in Figure 2.1, with distinctions made based on 371 

valley confinement (confined, partly confined, laterally unconfined; Fryirs and Brierley, 2010). 372 

Overall, confined valley channels were the most common river styles across the MFJD 373 

Watershed (86% of total stream length), whereas channels in partly confined valley (8%) and 374 

laterally unconfined valleys (6%) were far less common although they comprise the majority of 375 

the mainstem (Figure 3.1). Small, low-order, confined channels (boulder bed and steep 376 

ephemeral hillslope river styles) comprised the majority of total stream length within the 377 

watershed (68%, Table 2). Regarding the most common classifications of CHaMP sites, 33% of 378 

sites were classified as partly-confined valley with low-moderate sinuosity planform-controlled 379 

discontinuous floodplain reach types, 15% were classified as confined valley with occasional 380 

floodplain pockets, and 12% each were classified as partly-confined valley with meandering 381 

planform-controlled discontinuous floodplain and bedrock-controlled elongate discontinuous 382 

floodplain reach types (Figure 3.1). Classification of all channels (approximately 4100 km total 383 

length) across the MFJD Watershed required roughly three to four months to complete using 384 

desktop based reach delineation and field work. 385 
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 386 

3.2 NATURAL CHANNEL CLASSIFICATION 387 

Natural Channel Classification derived nine channel patterns across the Columbia River Basin 388 

[Beechie and Imaki, 2014], eight of which were predicted within the MFJD Watershed (Figure 389 

2.2). By total stream length, the majority of reaches (83%) were small channels with bankfull 390 

width < 8 m. Across the MFJD, 35% of the total reach length was classified as step-pool 391 

channels, and 25% classified as plane-bed channels [Montgomery and Buffington, 1997]. For 392 

channels > 8 m bankfull width, 8% of the total reach length was classified as having a straight 393 

planform, 3% of channels classified as island-braided, and 2% classified as meandering (Figure 394 

3.2; Table 2). The remaining reaches > 8 m were classified as confined channels because valley 395 

width was less than four times bankfull channel width [Beechie and Imaki, 2014]. With regard to 396 

the most common classifications of CHaMP sites, 25% of sites each were classified as straight or 397 

plane bed reaches, with an additional 15% of sites classified as pool riffle (Figure 3.2). 398 

Classification was completed for all channels > 3 m bankfull width over the entirety of the 399 

Columbia River Basin. Model development, including data collection and pre-processing - 400 

projecting to a common coordinate system, mosaicking of individual raster tiles - and subsequent 401 

analysis required roughly two months to complete. Once data were collected and pre-processed, 402 

actual model run time was approximately two days. 403 

 404 

3.3 ROSGEN CLASSIFICATION SYSTEM  405 

We classified 11 RCS stream types within 33 CHaMP surveyed reaches in the MFJD Watershed 406 

(Figure 2.3). The most common stream types, each containing 24% of the CHaMP reaches, were 407 

B4 (stable plane bed with occasional pools) and C4b (low gradient, meandering, riffle/pool 408 
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sequences; Figure 3.3). In total, 50% of the reaches were B stream types, all of which were 409 

within valley type II (colluvial, moderately steep and confined), with a single exception. C 410 

stream types (sinuous, wide and low-gradient) were the next most common (27%) and E (highly 411 

sinuous, coarse-fine bed), F (entrenched, wide, moderately sinuous, low gradient), and G 412 

(entrenched, low-gradient, low width:depth ratio) types were the least common (3% each). Only 413 

one CHaMP site had a substantial length of side channels (24%), however the other metrics did 414 

not fit a D stream type. Therefore, we did not delineate any multi-threaded channels (RCS stream 415 

type D). Surveying of individual CHaMP sites required approximately eight hours of crew time 416 

(typically 2-4 individuals), although some of this time was spent collecting data not used in the 417 

classifications here. Subsequent manual RCS classification of all 33 CHaMP sites required about 418 

two weeks. 419 

 420 

3.4 STATISTICAL CLASSIFICATION 421 

Because statistical clustering does not have an a priori set of outcomes, we compared multiple 422 

classification results (two to ten groups of channels) from the partitioning around medoids 423 

algorithm. We selected a four cluster final solution based on cluster fidelity, minimizing overlap 424 

between cluster groups (Figure 4; Tables S.2. – S.4.). After plotting the final cluster solution 425 

within a principal component analysis, the clustered stream channel attributes showed that each 426 

group differed based on multiple channel form attributes. Accordingly, each cluster was named 427 

based on the dominant attributes that differentiated clusters from one another. The four final 428 

groups consisted of (1) narrow, sinuous, high-gradient reaches (n=7), (2) wide, low-gradient, 429 

coarse substrate reaches with high width to depth ratios (n=5), (3) high-gradient, narrow reaches 430 

with moderate-sized substrates (n=16), and (4) moderate gradient, wide and sinuous, coarse-431 
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substrate reaches (n=5; Figure 4). The number of CHaMP sites assigned into each cluster are 432 

shown in Figure 3.4. Channel clusters were significantly different from one another 433 

(PERMANOVA; p < 0.05), and particle D16, D50, and D84 were the attributes that were most 434 

strongly correlated to the principal component analysis (Tables S.2. – S.4.). Clusters in the final 435 

four cluster solution were distinct (silhouette widths 0.24-0.60; mean width 0.41; Figure 4). The 436 

cluster group assigned to each CHaMP site is shown in Figure 2.4 and Figure S.7. Because the 437 

same CHaMP sites were classified using statistical clustering and RCS, the time spent on data 438 

collection is identical to RCS classification detailed above. Actual run time of clustering 439 

algorithms was less than one minute. 440 

 441 

4. SYNTHESIS 442 

4.1. COMPARING OUTPUTS BETWEEN CLASSIFICATION FRAMEWORKS  443 

Stream channel classification often relies on multiple landscape, watershed, and reach-scale 444 

attributes to create pattern-based groups of reaches that reflect hydrologic, geomorphic, and 445 

often, ecological processes. Here we classified 33 individual reaches into river styles, Natural 446 

Channel Classification planform types, Rosgen Classification System classes, and statistically 447 

clustered groups of reaches. We followed each classification framework’s data requirements 448 

(Table 1) in this process, relying on a mix of remotely-sensed landscape data and field-collected 449 

stream channel data.  450 

 451 

The analysis of agreement between reach types of each framework used here (Section 2.8; Table 452 

3) generally indicates that more often than not, frameworks produced reach type classifications 453 

that were congruent with one another. When comparing the level of agreement between NCC 454 
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and each of the other three frameworks at 33 CHaMP sites (for a total of 99 comparisons), we 455 

found “good” agreement at 60 sites (61%), “moderate” agreement at 19 sites (19%), and “poor” 456 

agreement at 20 sites (Table 4). Thus, reasonable agreement was found at 80% of sites. The 457 

reasons that the reach classification of each framework does (or does not) agree with those of the 458 

other frameworks may be the result of the spatial scale of the requisite input data, the timeframe 459 

(e.g. current or historic) that each framework attempts to classify or alternatively may arise as a 460 

result of differences in the workflow of each framework. To illustrate this, here we discuss four 461 

cases exhibiting a range of agreement between frameworks (Figure 5). 462 

 463 

At a confined valley reach on the Middle Fork John Day River (CHaMP site: CBW05583-464 

004682), we found a B4c RCS type, wide, low-gradient statistical cluster, island-braided NCC, 465 

and entrenched bedrock canyon river style (Figure 5). The statistical classification matched the 466 

definition of a wide, low-gradient, B4c RCS channel type. While it is plausible that a B4c RCS 467 

channel type and an entrenched bedrock canyon river style could be applied to the same reach, 468 

the island-braided NCC classification is deserving of further exploration as it may hint at a 469 

departure from historic channel condition, which NCC attempts to predict. Subsequent field 470 

visits by O’Brien [Personal Communication] note that numerous deposits of legacy sediment 471 

[e.g. Walter and Merritts, 2008] above the active channel at this site, along with the wide valley 472 

bottom allowing a high capacity for channel adjustment, may imply that the system was 473 

overwhelmed by sediment during the early Holocene. As such, the pre-disturbance classification 474 

of an island-braided channel using NCC may be appropriate in this case, and could hint at the 475 

background morphology of the channel. Thus, the divergence in classified reach types at this site 476 
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may arise as a result of NCC’s attempting to discern the background, pre-disturbance channel 477 

planform, while the other frameworks classify present channel condition. 478 

 479 

In contrast, we found good agreement between all classification frameworks at two example 480 

reaches. The first is a laterally unconfined reach on the Middle Fork John Day River (Figure 5; 481 

CHaMP site: CBW05583-003826) classified as a G4c RCS type, narrow sinuous statistical 482 

cluster, pool-riffle NCC, and meandering gravel bed river style. The second site is a partly 483 

confined reach on Slide Creek (Figure 5; CHaMP site: CWB05583-144394), classified as a 484 

meandering planform-controlled discontinuous floodplain river style. This site was further 485 

classified as an E4 RCS reach, pool riffle RCC type, and narrow, sinuous statistical cluster. 486 

At these locations, the combination of geomorphic characteristics produced a reach classification 487 

that was highly similar in terms of valley setting, planform, and assemblage of geomorphic units 488 

between all four frameworks. In the case of the former site, the reach occurs within a broader 489 

~10 km reach of the Middle Fork John Day that exhibits a sinuous planform in an unconfined 490 

valley. The latter site also occurs in a ~5 km segment of Slide Creek that exhibits a consistent 491 

meandering planform. These more longitudinally-continuous reaches are undoubtedly helpful for 492 

agreement in classification among continuous frameworks (e.g. RSF and NCC) that may use 493 

disparate spatial scales of data (e.g. NHD+ and field-based validation versus NHD and basin-494 

scale 10 m DEMs, respectively) and derive classifications remotely prior to field-based 495 

verification. 496 

 497 

An example moderate agreement site was found in a partly confined valley setting on Slide 498 

Creek (Figure 5; CHaMP Site CBW05583-013322). This reach showed different, but plausible 499 
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combinations of channel types. The reach was classified as a partly-confined valley with 500 

meandering planform-controlled discontinuous floodplain river style - whose in-channel 501 

geomorphic unit assemblage is essentially repeating pool-riffle sequences - and pool-riffle in 502 

NCC, but was classified as a B4 RCS and steep, narrow statistical cluster. Reaches such as this 503 

one that exhibit mixed agreement between classification frameworks highlight that subtle 504 

differences in channel form, such as channel gradient and sinuosity, can lead to significant 505 

differences in the classification of an individual reach. These differences arise as a result of the 506 

hierarchical and statistical clustering classifications used here, as the order of appearance of 507 

geomorphic metrics in a decision tree can vary between frameworks and subsequently affect 508 

classification output. 509 

 510 

Individual reaches classified into groups of similar morphologies within one framework 511 

sometimes failed to align with a comparable group under another classification framework 512 

(Table 4). This pattern was most apparent in confined reach types that did not aggregate into 513 

consistent groups across statistical clusters, Rosgen Classification System types, and natural 514 

channel classes. For example, River Styles’ confined valley with occasional floodplain pockets 515 

were classified as all four statistical clusters, five different RCS reaches, and three NCC classes 516 

(Table 4). In contrast, partly confined channel types were more likely to be grouped into only 517 

one or two channel types from other classifications. For example, River Styles’ partly confined 518 

low-moderate sinuosity, planform-controlled discontinuous floodplain grouped into RCS types 519 

of C4b and B4, and NCC classes of plane bed or straight planform, and steep/narrow and 520 

narrow/sinuous statistical clustering classes. Additionally, the partly confined low-sinuosity 521 

planform-controlled anabranching river style occurred exclusively as B4 RCS classes, straight, 522 
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narrow statistical cluster, and straight NCC. The partly confined bedrock-controlled elongate 523 

discontinuous floodplain river style classified as slightly to moderately entrenched, moderate 524 

sinuosity RCS types (C, B channels), and wide, low-gradient clusters, but was less consistently 525 

grouped by NCC (straight, confined, and island braided). While strict fidelity between groups 526 

within each classification did not occur, partly confined River Styles grouped well with the other 527 

classifications based on their component inputs. 528 

 529 

4.2 WHY DO CLASSIFICATION FRAMEWORKS DIFFER? 530 

Differences in the output of classification frameworks ultimately arise because each framework 531 

emphasizes physical variables differently throughout the classification process. Although the 532 

data requirements between classification frameworks are similar, including channel planform 533 

metrics, substrate, and the ability of a channel to migrate and access sediment sources (Table 534 

S.1), the order in which these attributes appear within a particular framework’s decision tree may 535 

vary markedly (see Supporting Information). For example, at the broad planform scale, the first 536 

step in the differentiation of reach types within the RCS is to distinguish between single- and 537 

multi-thread channels. In contrast, this characterization of channel planform is completed several 538 

steps later in the River Styles framework, which instead places the greatest importance on the 539 

degree of valley confinement. Both RCS and River Styles, however, make their final 540 

differentiation between stream types based on the bed material texture within a reach.  541 

 542 

Natural Channel Classification and statistical clustering, as employed here, both use field-543 

measured or remotely-sensed channel data to classify and group reaches based on their physical 544 

similarity. Using gradient, discharge, valley confinement, sediment supply, and sediment caliber 545 
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estimated from GIS data, NCC classified historic reach types in a 147-reach training data set 546 

before classifying an entire stream network. Each reach type was probabilistically assessed 547 

through resampling procedures to provide a measure of error (uncertainty). Here, statistical 548 

clustering was used with unweighted variables that estimate channel width, gradient, sediment 549 

size, and ability to move laterally (sinuosity). These workflows and their predictor variables, 550 

while similar to RCS and RSF in that they require reach-level data from which they fit groups, 551 

differ markedly in how they group channels. A key difference between the statistical methods 552 

(NCC and statistical clustering) and RCS or RSF is that while RCS and RSF explicitly 553 

incorporate channel form (e.g. number of channels, sinuosity, entrenchment) into the 554 

classification system, the statistical methods use variables that can be expected to predict channel 555 

form (e.g. sediment size, channel dimensions, basin lithology, landscape cover).  556 

 557 

When considering statistical approaches such as NCC and clustering as employed here, all 558 

physical attributes are used in the grouping algorithm, and true hierarchical decision trees are 559 

foregone. Because most statistical classification techniques computationally determine which of 560 

the input variables are most important in differentiating stream types, ranking them accordingly, 561 

a priori importance is not placed upon a given variable. While variables can be weighted in 562 

clustering and machine-learning algorithms to emphasize the importance of specific processes, 563 

many classifications, like NCC’s support vector machine, instead use training data to fit 564 

algorithms before computing classes for a data set. This approach is limited not by what variable 565 

is perceived to be most important, but rather, what training data are available from which to build 566 

a model. Similar constraints exist on clustering, which can only group reaches that have data 567 

available. In building representative statistical classifications, having spatially-balanced, 568 
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randomized sampling is ideal [Stevens and Olsen, 2004]. Another key methodological 569 

consideration in using statistical classification approaches is that the number of classes is often 570 

determined by the strength of the fit between data and algorithm, and must be validated by expert 571 

judgment of the classified statistical groups and their geomorphic likelihood. Relatively strong 572 

clustering was observed here with a relatively small number of classes (four), whereas the other 573 

three classification schemes had between eight and eleven classes. Accordingly, parameter and 574 

algorithm selection, data transformation or standardization can all influence how well data fits a 575 

given clustering algorithm, with consequences on whether geomorphically meaningful groups 576 

are lumped or split.  577 

 578 

More generally, the difference in the relative importance of each physical variable within a 579 

particular classification framework points to the form-process interactions that each classification 580 

method attempts to document or explain. Distinct differences are also evident when the original 581 

intent of the classification framework is considered.  Some frameworks produce analyses of 582 

current reach type (e.g. RSF, RCS, statistical clustering), while others predict pre-disturbance or 583 

natural channel morphology (e.g. NCC).  Differences in the temporal output of each framework 584 

may not be intuitive, but provide a critical context for interpreting and using the outputs derived 585 

[Grabowski et al., 2014].  586 

 587 

Likewise, in stage one, River Styles attempts to aggregate channels into current groups 588 

regardless of their condition; an assessment of channel disturbance is made in later stages, and as 589 

such there can be significant variability in the geomorphic characteristics of a single stream type. 590 

Thus, the divergent temporal scales of classification necessitates the use of different datasets 591 
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between these classifications (Sections 2.2 through and 2.4), and as a result channel reaches are 592 

classified quite differently when comparing the two frameworks depending on whether current or 593 

background channel form/condition is taken into account (Figure 2). The River Styles 594 

framework, while also providing a reach-scale classification, places a large degree of importance 595 

on landscape-scale controls and patterns of reaches in driving channel dynamics, and thus 596 

requires the integration of watershed-scale data (e.g. landscape unit delineation, Section 2.2) in 597 

concert with local valley confinement classifications. Taken to the extreme, the results of the 598 

statistical clustering approach (Section 2.5) are entirely dependent on user-defined data inputs, 599 

and variability in the results of this classification framework can be largely ascribed to the choice 600 

of metrics fed into the classifier.   601 

 602 

5. DISCUSSION 603 

A useful classification framework is one that aggregates channels into geomorphically - and 604 

often ecologically - meaningful groups within a watershed that match the purposes of the 605 

application at hand. This aggregation into groups may reflect current or historic channel 606 

conditions, and should reflect geomorphic processes that control channel form and condition. 607 

Our comparison of four distinct classification frameworks demonstrates that there is significant 608 

overlap and agreement between the workflows in terms of basin-wide channel classification. The 609 

most common classification in all four frameworks was some variant of moderate-high gradient 610 

channel with coarse substrate, reflecting the high relief nature of the Middle Fork John Day 611 

Basin resulting from resistant igneous and metamorphic lithologies (Figure 2, Table 2). 612 

Similarly, the least common channel types in all four frameworks were those variants 613 

corresponding to wide, freely meandering, low-gradient streams. Ironically, these laterally 614 
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unconfined streams are the ones most emphasized in classic channel planform classification and 615 

fluvial geomorphology text books [Knighton, 1998], although they are rare in many montane 616 

regions [Fryirs and Brierley, 2010]. Despite the general similarity between the classification 617 

frameworks, different approaches can provide strikingly different answers in several cases, and 618 

comparisons of these classification frameworks’ results are not always straightforward. 619 

Therefore, it is imperative that watershed managers understand the underlying formative 620 

processes that control river diversity across their watershed of interest, and implement a 621 

classification framework that best suits the aims of the classification.   622 

 623 

For example, in watersheds heavily influenced by mill dams or beaver ponds and their associated 624 

legacy sediment deposits [Walter and Merritts, 2008; Polvi and Wohl, 2013], the NCC 625 

classification approach may not provide the most informative stream classification as this 626 

method attempts to predict pre-disturbance channel planforms. However, in cases where post-627 

colonization channel and landscape alterations are so pervasive that they are reflected in DEMs 628 

and vegetation data, the NCC approach will more likely predict a natural channel type expected 629 

under current conditions rather than the pre-disturbance condition. In contrast, RCS or RSF both 630 

lend importance to local-scale channel dimensions and, particularly in the case of RSF, the 631 

patterns of river types in a system, and may be quite revealing in pinpointing stream reaches that 632 

vary from expected channel forms. Such understandings are pivotal in appraising prospective 633 

adjustments to rivers [Fryirs et al., 2009]. 634 

 635 

The utility of any classification is highlighted by how each framework can be applied in support 636 

of watershed or stream condition assessment or used to aid decision-making. While some 637 

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.885v1 | CC-BY 4.0 Open Access | rec: 11 Mar 2015, publ: 11 Mar 2015

P
re
P
rin

ts



29 

 

frameworks are not inherently designed to provide information about past or future condition 638 

(e.g. statistical classifications), they can provide examples of the range of conditions within a set 639 

of monitored reaches. For example, reach-level monitoring data acquired from programs like 640 

EPA Wadeable stream assessment [US Environmental Protection Agency, 2006], 641 

PACFISH/INFISH Biological Opinion [Kershner et al., 2004], or the CHaMP reach data used 642 

here can be used to identify the range of potential channel forms via statistical classification. 643 

When channels are classified across broad spatial extents, those reach types consistent with 644 

particular process domains, and their characteristic downstream progression in a basin, can be 645 

understood [Montgomery, 1999] and anomalous or poor-condition reaches identified.  646 

 647 

Both RSF and RCS provide guidance in later stages for determining the condition of individual 648 

reaches and prioritizing channel restoration activities. Both classifications have been used in 649 

planning for watershed disturbance or restoration [Brierley et al., 2002; Hey, 2006]. NCC is a 650 

historic planform classification and can be used in concert with knowledge of current channel 651 

form to make inference on whether and how changes in sediment supply, floodplain access, 652 

hydrology, or vegetation have led to stream degradation. Similarly, these historic forms can be 653 

used as restoration baselines where known hydrogeomorphic processes can be restored. Each of 654 

these classifications may also provide information regarding habitat availability or suitability for 655 

benthic invertebrates, fish, or riparian vegetation, enabling holistic understanding of a stream 656 

ecosystem [Thomson et al., 2004]. For example, states and transitions between river styles, 657 

statistical classes, or RCS reach types may correspond to observed changes in populations and 658 

communities of aquatic biota, although the degree to which these classification frameworks are 659 

ecologically meaningful merits further research [Thomson et al., 2004]. 660 
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 661 

In many cases, the degree of data, time, effort, or expertise necessary for the completion of a 662 

channel classification (Figure 6) may be a primary determinant of which framework is chosen. 663 

Because of these issues of convenience, we caution that care must be taken to assure the 664 

information provided by that framework is consistent with the driving processes most related to 665 

management concerns in the watershed of interest. It is critical to specify the resolution at which 666 

the framework was used and the degree of confidence in the output data. With regard to the 667 

classification frameworks examined here, both RCS and statistical clustering are relatively 668 

straightforward in application, and require minimal time and data to complete for a set of reaches 669 

(Figure 6). The simplicity of RCS’s reach-scale classification is one of the major reasons for its 670 

widespread use within the watershed management community [Palmer et al., 2005]. In our case, 671 

the RCS classification presented here (Section 2.4) required roughly three weeks to complete, 672 

excluding field data collection. Although the level of computational and statistical expertise 673 

required to complete and interpret the results of a statistical clustering framework is not trivial, 674 

the rapidity with which clustering or simple statistical classifications can be completed, altered, 675 

and adaptively run is attractive. Once metrics are selected for use in the clustering algorithm 676 

(Section 2.5), the classification can be run in a matter of minutes. It is essential to point out that 677 

in reach-level methods like RCS and statistical clustering, field-based data collection are 678 

imperative for successful classification (and verification of reach types in the case of RCS). 679 

Because we used an existing, high-resolution dataset to complete these classifications, the time 680 

spent classifying reaches was greatly reduced.  681 

 682 
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In the case of RCS, the classification produced an output in which we have a high level of 683 

confidence: that is, we expect the classified channel type to accurately reflect the site-level 684 

conditions in nearly all classified reaches. At the same time, we note that in RCS, field-based 685 

measurement and validation of classification is of high importance, and so our confidence in 686 

classification output would be increased with subsequent site visits.  We are somewhat less 687 

confident that statistical clustering will produce groups of channels that always reflect conditions 688 

in the field. This is because both the clustering algorithm and the choice of the number of groups 689 

– in effect, the number of representative channel forms found at individual reaches – is 690 

inherently a choice of the classifier. Much like RSF, the user is forced to compromise between 691 

selecting an informative number of classification groups and creating parsimonious groups from 692 

which to make generalization (i.e. lumping versus splitting groups), which has major 693 

implications for subsequent statistical analyses.  694 

 695 

In contrast, the NCC framework and RSF require greater investments of time, and require greater 696 

expertise in fluvial geomorphology to achieve meaningful classification results (Figure 6). Not 697 

including algorithm refinement, the NCC classification can be completed for a large watershed 698 

(e.g. data gathering, preparation, computation time) in roughly two months’ time. However, 699 

automated classification over broad areas means that we cannot be as confident in the validity of 700 

site-level predictions when using NCC; in fact, site visits to confirm predictions of NCC may not 701 

be straightforward since the framework attempts to classify pre-disturbance, and not current, 702 

channel planform. Stage one of the RSF, as detailed in Section 2.2, required an investment of 703 

roughly 3-4 months. This timeframe included a desktop-based classification, field-based 704 

refinement of classes, and field-based ratification of reach boundaries which produced relatively 705 
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high levels of confidence in the outputs produced. In the case of NCC, computational expertise is 706 

paramount, in addition to a thorough understanding of the landscape-scale controls (independent 707 

of anthropogenic disturbance) on channel planform throughout a watershed of interest. In the 708 

case of RSF, a similar understanding of both landscape and local-scale controls on channel form 709 

is required, as is the ability to distill the formative processes within a watershed down to the most 710 

relevant geomorphic characteristics for classification. Other frameworks that are based on 711 

morphometric analyses alone may not provide nuanced process-based understanding, but come 712 

with the advantage of requiring less geomorphic expertise for completion.  713 

 714 

Perhaps obviously, the increased amount of time and expertise required for implementation of 715 

the RSF or NCC is counterbalanced by the larger spatial extent across which either framework 716 

can be applied, creating continuous, network-scale results (Figure 2; Figure 6.3; Section 2.7), and 717 

in the case of RSF the level of process-based detail that is generated. While it would be difficult, 718 

if not impossible, to upscale the results of RCS or statistical clustering to approximate a 719 

continuous classification throughout a stream network, this scale of classification is a 720 

fundamental component of both RSF and NCC. As such, information regarding reach-scale 721 

anomalies in channel characteristics can be easily gleaned from continuous network-scale 722 

classification frameworks. Placing classified sites along a continuum of channel types using RCS 723 

or statistical clustering requires a full representation of the range of potential channel types. To 724 

use either framework for network to watershed scale analyses would be difficult without a 725 

significant increase in the amount and resolution of data collected in a watershed. 726 

 727 
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Finally, we note that one of the as-yet unmentioned hallmarks of a ‘good’ classification 728 

framework is repeatability. That is, when confronted with the same watershed (or dataset), to 729 

what degree will two individuals come to the same conclusions regarding the number of reach 730 

types and their locations throughout the watershed? The answer to this question has major 731 

implications for the transferability of a classification across systems and communication to 732 

stakeholders. Unfortunately, this is a largely unexplored question, and must be more fully 733 

addressed before the utility of individual classifications can be assessed. Given knowledge of the 734 

prescribed workflow for each framework, we can attempt to draw inferences regarding the 735 

repeatability of each classification used herein. The reliance of NCC and statistical clustering on 736 

pre-determined algorithms indicate that they will be highly repeatable between classification 737 

runs, provided that the same input data (e.g. the same set of measurements) are used during each 738 

run. The number of clusters that are settled upon in a statistical clustering workflow is often 739 

reliant on a combination of fit statistics and expert judgment on the attributes being clustered, 740 

which may lead to variability in the final number of reach types that are classified.  741 

 742 

The finite number of selectable reach types in the RCS classification, along with the discrete 743 

workflow and associated measurements that must be taken while working through the 744 

hierarchical tree, suggest that RCS may also be highly repeatable. While inherent observer 745 

variability may lead to differences in final stream type [e.g. Roper et al., 2008], Rosgen [2009] 746 

argues that this issue may be corrected by increased field crew training, with particular regard for 747 

the identification of bankfull discharge level, which influences entrenchment ratio. The RSF does 748 

not set concrete quantitative breaks between distinguishing attributes leading to reach types (with 749 

the possible exception of valley confinement; Figure S.2 – S.4) and does not set intrinsic limits 750 
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on the number of reach types that may be present within a watershed. As such, the number of, 751 

and distinguishing factors between, basin-wide reach types using River Styles may differ 752 

between investigators.   753 

 754 

6. CONCLUSIONS 755 

Classification frameworks are useful for understanding the formative processes that shape 756 

channels, either historically or under present conditions. Despite the utility of channel 757 

classification, the debate surrounding their relative merits and focus on form versus process of 758 

individual frameworks has led to the view that some classification systems are ‘better’ than 759 

others. In fact, the utility of information gained from a particular classification framework 760 

depends largely on the classification’s intended use. We classified both individual reaches and 761 

the full perennial stream network within the Middle Fork John Day River watershed, Oregon, 762 

USA, according to four frameworks. In general, we found that the frameworks classified reach 763 

types relatively consistently. Where differences occurred between frameworks, those differences 764 

could be attributed to variability in (a) the spatial scale of input data used, (b) the relevant 765 

metrics and their order in completing a framework’s decision tree, or (c) whether the framework 766 

attempted to classify current or historic channel form. Additionally, the frameworks require a 767 

range of investments of time and geomorphic expertise and result in classification at different 768 

spatial scales, from discrete sites to continuous classification across a stream network. The 769 

diversity of requisite input data, characteristic timeframe, and necessary investments of time and 770 

geomorphic expertise imply that there is no ‘best’ classification framework. Here we have 771 

attempted to highlight the differences so that individual practitioners and researchers can choose 772 

the appropriate classification tool for their specific needs.    773 

774 
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List of Figures 1018 

Figure 1. A map of the Middle Fork John Day Watershed, Oregon, USA, including 33 Columbia 1019 

Habitat Monitoring Program (CHaMP) reaches monitored between 2012-2013. The National 1020 

Landcover Dataset (USGS) is presented as the base map to illustrate biophysical gradients across 1021 

the watershed. 1022 

 1023 

Figure 2. Results of the four classifications (1) River Styles, (2) Natural Channel Classes, (3) 1024 

Rosgen Classification System, and (4) statistical classification with clustering (partitioning 1025 

around medoids), mapped across the Middle Fork John Day Watershed. River Styles and Natural 1026 

Channel Classes are mapped across the entire stream network, while Rosgen Classification 1027 

System and statistical classification results are presented only for CHaMP reaches. Full River 1028 

Style and Natural Channel Class results for CHaMP reaches are presented in Table 4. 1029 

 1030 

Figure 3. Percent of total network channel length and percent of CHaMP sites classified into 1031 

reach types using each classification framework. 1032 

 1033 

Figure 4. Principal Components Analysis (PCA) of reaches based on gradient, D16, D50, D84, 1034 

bankfull width, bankfull width:depth ratio, and integrated wetted width, illustrating differences 1035 

between CHaMP reaches classified into four discrete groups using partitioning around medoids. 1036 

Vectors of stream channel variables are plotted based on the strength of their correlation to the 1037 

PCA (e.g. longer vectors are more strongly correlated to the channel form variable PCA). The 1038 

first and second principal components explained 85.6% and 10.9% of the variability in the reach 1039 

attribute data within the PCA. 1040 

 1041 

Figure 5. Four example reaches at which the four classifications had poor agreement, moderate 1042 

agreement and good agreement in the observed channel planform. 1043 

 1044 

Figure 6. Trade-offs between each of the four classification frameworks in relative bivariate 1045 

space. Trade-offs are between (1) time and data requirements required to perform a 1046 

classification, (2) the amount of statistical and geomorphic expertise required by the classifying 1047 

individual/organization, and (C) the complexity of analysis versus the spatial scale at which each 1048 
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framework operates. Note that all classifications require either significant data, expertise in 1049 

statistics and/or geomorphology, and that the position of each framework in panels reflects the 1050 

stage(s) to which their workflows were completed in this study only.1051 
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Table 1.  

Classification 

Framework 

(abbreviation) 

Description Examples  Data requirements Classified 

output  

References 

River Styles 

Framework 

(RS) 

A hierarchical, multi-scale 

classification scheme for 

describing river character and 

behavior. River Styles can be used 

to understand river condition, 

recovery potential and prioritize 

management. 

Use in river 

management practice 

across NSW, Australia 

[Brierley et al., 2002, 

2011; Fryirs and 

Brierley, 2005] 

 

Determined correlates to 

downstream sediment 

storage and landscape 

connectivity [Fryirs and 

Brierley, 2001, 2010; 

Fryirs et al., 2007a, b; 

Kuo and Brierley, 2013] 

 

Ecological community 

composition varies as a 

function of River Styles 

[Thomson et al., 2004; 

Chessman et al. 2006] 

Field, remote-sensing and other 

GIS data on geology, 

hydrology, and stream 

geomorphic setting to identify 

broad-scale to local controls on 

river character and behavior. 

Continuous 

stream 

network 

(NHD+) 

[Brierley and 

Fryirs, 2001, 

Brierley et al., 

2002, 2011, 

2013; Brierley 

and Fryirs, 

2005] 

Columbia Basin 

Natural Channel 

Classification 

(NCC) 

NCC is a model-based stream 

classification using a machine 

learning (support vector machine) 

algorithm to group reaches based 

on their historic, undisturbed 

planform. Divides reaches into 

groups based on channel width 

before sub-dividing on reach-level 

remote sensing data. 

A historic planform map 

and dataset for the 

Columbia River Basin 

[Beechie and Imaki, 

2014] 

Remotely-sensed channel slope, 

discharge, valley confinement, 

sediment supply, and sediment 

size are used as predictors of 

channel planform in a modeling 

framework. 

Continuous 

stream 

network 

(NHD) 

[Beechie and 

Imaki, 2014] 
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Rosgen 

Classification 

System (RCS) 

RCS is a stream-reach taxonomy 

based on field-collected empirical 

data that classifies geomorphic 

stream features to identify stream 

types by numerically bounded 

physical metrics. This is arguably 

the most commonly used stream 

classification system in North 

America and the world. 

RCS can be employed to 

successfully restore a 

reach to a reference 

condition, provided that 

the reference reach is 

stable [Hey, 2006] 

 

RCS stream type 

classifications provide 

inferences into the 

sensitivity of stream 

reaches to natural 

channel changes 

[Newman and Swanson, 

2008] 

Valley morphology for broad 

context, and reach-scale 

monitoring data to calculate 

basic dimensionless metrics 

linking form to physical 

processes. 

Individual 

reaches within 

a stream 

network 

(field-

monitored 

reaches) 

[Rosgen, 

1994; Rosgen 

and Silvey, 

1996]  

Statistical 

Classification 

(SC) 

Statistical classification refers to 

any classification methods used to 

differentiate or group stream 

reaches, watersheds, etc. based on 

multiple physical, chemical, and/or 

biological attributes. Attributes are 

often selected for their role in 

driving or responding to dominant 

processes within a catchment. 

Prioritizing conservation 

and restoration within 

mined watersheds 

[Merovich et al., 2013]; 

Comparing restored, 

forested, and urban 

channels [Laub et al., 

2012]; Identifying 

vegetation communities 

and environmental 

filters [Hough-Snee et 

al., 2014]; Classification 

of desert washes [Sutfin 

et al., 2014] 

Requires reach-scale 

monitoring data for “bottom-

up” classifications. Requires 

remote sensing and GIS data to 

classify reaches from the “top-

down” or correlate classified 

reaches to larger-scale 

environmental or physical 

processes. 

Individual 

reaches within 

a stream 

network 

(field-

monitored 

reaches) 

Hough-Snee 

et al., [2014]; 

Sutfin et al., 

[2014]; 

Discussed in 

Buffington 

and 

Montgomery 

[2013] 
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Table 2.  

Classification 

framework 

Reach types Total stream 

length (km) 

% Total 

length 

% CHaMP 

reaches 

# CHaMP 

reaches 

River Styles Confined 

valley 

Boulder bed 1230.7 30.2 3.0 1 

Entrenched bedrock 

canyon 

121.1 3.0 6.1 2 

Occasional floodplain 

pockets 

242.5 6.0 15.2 5 

Step cascade 37.9 0.9 0 0 

Steep ephemeral hillslope 1542.3 37.9 0 0 

Steep perennial headwater 319.4 7.8 0 0 

Partly 

confined 

 

(discontin-

uous flood-

plains) 

Meandering planform 

controlled discontinuous 

floodplain 

34.5 0.8 12.1 4 

Low sinuosity planform 

controlled anabranching 

18.2 0.5 6.1 2 

Low-moderate sinuosity 

planform-controlled 

discontinuous floodplain 

170.2 4.2 33.3 11 

Bedrock controlled 

elongate discontinuous 

floodplain 

113.8 2.8 12.1 4 

Laterally 

unconfined 

Low-moderate sinuosity 

gravel bed 

31.9 0.8 3.0 1 

Alluvial fan 49.3 1.2 3.0 1 

Meandering gravel bed 62.9 1.5 6.1 2 

Intact valley fill 99.4 2.4 0 0 

Columbia 

Basin Natural 

Channel 

Classification 

Bankfull 

width  

> 8m 

Straight 132.9 7.8 24.2 8 

Meandering 34.7 2.0 9.1 3 

Island-braided 42.8 2.5 6.1 2 

Confined 76.5 4.5 9.1 3 

Bankfull Plane bed 431.5 25.4 24.2 8 
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width  

< 8m 

Pool riffle 129.9 7.7 15.2 5 

Step pool 595.3 35.1 12.1 4 

Cascade 253.7 14.9 0 0 

Rosgen 

Classification 

System 
Entrenched 

A A4  12.1 4 

F F3 3.0 1 

G G4c 3.0 1 

Moderately 

Entrenched 
B 

B3c 6.1 2 

B4 24.2 8 

B4a 3.0 1 

B4c 15.2 5 

Slightly 

Entrenched 

C 
C3b 3.0 1 

C4b 24.2 8 

E 
E3 3.0 1 

E4 3.0 1 

Statistical 

classification 

Narrow, sinuous (1) 21.2 7 

Wide, low-gradient (2) 15.2 5 

High-gradient, narrow (3) 48.5 16 

Wide, sinuous (4)  15.2 5 
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Table 3. 

 
NCC reach type  River Styles reach type       RCS reach type  Statistical cluster 

Island Braided  Low Sinuosity Planform Controlled Anabranching (G)   D (G)  2: Wide, Sinuous (M) 

   Intact Valley Fill (M) 

   Alluvial Fan (M) 

 

Meandering  Meandering Gravel Bed (G)      C (G)  4: Wide, Sinuous (G) 

   Meandering Planform-Controlled Discontinuous Floodplain (G)  E (G)  1: Narrow, Sinuous (M) 

   Low-Moderate Sinuosity Gravel Bed (M)    G (M)  2: Wide, Low-Gradient (M) 

   Low-Moderate Sinuosity Planform-Controlled Disc. Floodplain (M) F (M) 

   Bedrock-Controlled Elongate Discontinuous Floodplain (M) 

   Low-Moderate Sinuosity Gravel Bed (M) 

 

Straight   Boulder Bed (G)       A (G)  2: Wide, Low-Gradient (G) 

   Meandering Planform-Controlled Disc. Floodplain (G)   B (G)  3: Steep, Narrow (G) 

   Confined Valley – Floodplain Pockets (G)    G (M)  

   Low-Moderate Sinuosity Partly Confined Disc. Floodplain (G) 

   Low-Moderate Sinuosity Gravel Bed (G) 

   Alluvial Fan (M) 

   Bedrock-Controlled Elongate Discontinuous Floodplain (M) 

 

Confined  Entrenched Bedrock Canyon (G)     A (G)  1: Narrow, Sinuous (G) 

   Confined Valley – Floodplain Pockets (G)    F (G)  3: Steep, Narrow (G) 

   Step Cascade (G)       G (G)  2: Wide, Low Gradient (M) 

   Steep Perennial Headwater (M)      B (M) 

   Steep Ephemeral Hillslope (M) 
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Table 3. (Continued) 
NCC reach type  River Styles reach type          RCS reach type  Statistical cluster 

Cascade  Step Cascade (G)       B (G)  3: Steep, Narrow (G) 

   Boulder Bed (G)       F (G)  1: Narrow, Sinuous 

   Floodplain Pockets (M)       G (G) 

   Steep Perennial Headwater (M)      A (M) 

   Steep Ephemeral Hillslope (M) 

 

 

Pool Riffle  Meandering Gravel Bed (G)      C (G)  1: Narrow, Sinuous (G) 

   Meandering Planform Controlled Discontinuous Floodplain (G)  F (G)  2: Wide, Low Gradient (G) 

   Confined Valley – Floodplain Pockets (G)    G (G)  4: Wide, Sinuous 

   Bedrock-Controlled Elongate Discontinuous Floodplain (G)  E (G) 

   Low-Moderate Sinuosity Planform Controlled Disc. Floodplain (M) B (M) 

   Meandering Partly-Confined Floodplain (M) 

 

Step Pool  Boulder Bed (G)       B (G)  3: Steep, Narrow (G) 

   Step Cascade (G)       F (G)  1: Narrow, Sinuous (M) 

   Steep Perennial Headwater (G)      G (G) 

   Steep Ephemeral Hillslope (G)      A (M) 

   Confined Valley - Floodplain Pockets (M) 

 

Plane Bed  Entrenched Bedrock Canyon (G)     A (G)  3: Steep, Narrow (G) 

   Confined Valley – Floodplain Pockets (G)    B (G)  1: Narrow, Sinuous (F) 

   Bedrock Controlled Elongate Discontinuous Floodplain (G)  C (G)  4: Wide, Sinuous (F) 

   Low-Moderate Sinuosity Planform Controlled Disc. Floodplain (G) F (G) 

   Meandering Planform Controlled Floodplain (M)   G (G) 

   Boulder Bed (M) 

   Steep Perennial Headwater (M) 

   Steep Ephemeral Hillslope (M) 
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Table 4. 

 

CHaMP 

Site ID 

Stream 

name 

UTM 

Easting 

UTM 

Northing 

Rosgen 

Class. 

System 

Statistical 

Clustering 

Natural 

Channel 

Classes 

River Styles River Style 

valley 

confinement 

 

Agreement 

CBW0558

3-250506 

Lunch 

Creek 

377638 4930916 A4 Narrow, 

sinuous 

Step Pool Boulder Bed CV RS: Good 

RCS: Mod 

Cluster: Good 

CBW0558

3-004682 

Middle 

Fork John 

Day River 

333505 4971313 B4c Wide, low-

gradient 

Island 

Braided 

Entrenched 

Bedrock 

Canyon 

CV RS: Poor 

RCS: Poor 

Cluster: Poor 

CBW0558

3-021066 

Middle 

Fork John 

Day River 

337657 4968709 F3 Wide, 

sinuous 

Confined Entrenched 

Bedrock 

Canyon 

CV RS: Good 

RCS: Good 

Cluster: Mod. 

CBW0558

3-144114 

Vinegar 

Creek 

380932 4942422 A4 Steep, 

narrow 

Step Pool Floodplain 

Pockets 

CV RS: Mod. 

RCS: Mod. 

Cluster: Good 

CBW0558

3-223986 

Bridge 

Creek 

379613 4935524 B4 Steep, 

narrow 

Plane Bed Floodplain 

Pockets 

CV RS: Good 

RCS: Good 

Cluster: Good 

CBW0558

3-456690 

Butte 

Creek 

369488 4942756 A4 Steep, 

narrow 

Plane Bed Floodplain 

Pockets 

CV RS: Good 

RCS: Good 

Cluster: Good 

OJD0345

8-000017 

West Fork 

Lick Creek 

357991 4940711 B4a Steep, 

narrow 

Step Pool Floodplain 

Pockets 

CV RS: Mod. 

RCS: Good 

Cluster: Good 

CBW0558

3-051954 

Dry Fork 

Clear 

Creek 

383698 4934662 E3 Wide, 

sinuous 

Straight Floodplain 

Pockets 

CV RS: Good 

RCS: Poor 

Cluster: Poor 

CBW0558

3-189938 

Granite 

Boulder 

Creek 

369068 4945617 B4 Wide, low-

gradient 

Straight Alluvial Fan LUV RS: Mod. 

RCS: Good 

Cluster: Good 

CBW0558 Middle 376782 4941104 C4b Steep, Meandering Low-Moderate LUV RS: Mod. 
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3-449266 Fork John 

Day River 

narrow Sinuosity 

Gravel Bed 

RCS: Good 

Cluster: Poor 

CBW0558

3-003826 

Summit 

Creek 

386503 4937885 G4c Narrow, 

sinuous 

Pool Riffle Meandering 

Gravel Bed  

LUV RS: Good 

RCS: Good 

Cluster: Good 

CBW0558

3-358130 

Squaw 

Creek 

388721 4936107 B4c Steep, 

narrow 

Pool Riffle Meandering 

Gravel Bed 

LUV RS: Good 

RCS: Mod. 

Cluster: Poor 

CBW0558

3-289522 

Middle 

Fork John 

Day River 

378688 4939623 C4b Steep, 

narrow 

Island-

Braided 

Bedrock-

controlled 

Elongate 

Discont. 

Floodplain 

PC RS: Poor 

RCS: Poor 

Cluster: Poor 

CBW0558

3-275954 

Middle 

Fork John 

Day River 

364436 4947549 B3c Wide, low-

gradient 

Straight Bedrock-

controlled 

Elongate 

Discont. 

Floodplain 

PC RS: Mod. 

RCS: Good 

Cluster: Good 

CBW0558

3-290034 

Middle 

Fork John 

Day River 

370912 4944299 B3c Wide, low-

gradient 

Straight Bedrock-

controlled 

Elongate 

Discont. 

Floodplain 

PC RS: Mod. 

RCS: Good 

Cluster: Good 

CBW0558

3-415218 

Middle 

Fork John 

Day River 

361529 4948510 C3b Wide, low-

gradient 

Confined Bedrock-

controlled 

Elongate 

Discont. 

Floodplain 

PC RS: Poor 

RCS: Mod. 

Cluster: Mod. 

CBW0558

3-030730 

Camp 

Creek 

352247 4942752 B4 Steep, 

narrow 

Straight Low-Moderate 

Sinuosity 

Planform-

Controlled 

Discontinuous 

PC RS: Good 

RCS: Good 

Cluster: Good 
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Floodplain 

CBW0558

3-330226 

Camp 

Creek 

357015 4947826 B4c Steep, 

narrow 

Straight Low-Moderate 

Sinuosity 

Planform-

Controlled 

Discontinuous 

Floodplain 

PC RS: Good 

RCS: Good 

Cluster: Good 

CBW0558

3-118770 

North Fork 

Bridge 

Creek 

375925 4933066 A4 Narrow, 

sinuous 

Step Pool Low-Moderate 

Sinuosity 

Planform-

Controlled 

Discontinuous 

Floodplain 

PC RS: Poor 

RCS: Mod. 

Cluster: Mod. 

CBW0558

3-299658 

Clear 

Creek 

382042 4930368 B4c Narrow, 

sinuous 

Plane Bed Low-Moderate 

Sinuosity 

Planform-

Controlled 

Discontinuous 

Floodplain 

PC RS: Good 

RCS: Good 

Cluster: Mod. 

 

 

 

 

CBW0558

3-438922 

 

 

 

 

Dry Fork 

Clear 

Creek 

 

 

 

 

384597 

 

 

 

 

4933274 

 

 

 

 

C4b 

 

 

 

 

 

Narrow, 

sinuous 

 

 

 

 

Straight 

 

 

 

 

Low-Moderate 

Sinuosity 

Planform-

Controlled 

Discontinuous 

Floodplain 

 

 

 

 

PC 

 

 

 

 

RS: Poor 

RCS: Poor 

Cluster: Poor 

CBW0558

3-234122 

Clear 

Creek 

382238 4929332 B4 Steep, 

narrow 

Plane Bed Low-Moderate 

Sinuosity 

Planform-

Controlled 

PC RS: Good 

RCS: Good 

Cluster: Good 
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Discontinuous 

Floodplain 

CBW0558

3-381682 

Vinegar 

Creek 

380718 4944390 C4b Steep, 

narrow 

Plane Bed Low-Moderate 

Sinuosity 

Planform-

Controlled 

Discontinuous 

Floodplain 

PC RS: Good 

RCS: Good 

Cluster: Good 

CBW0558

3-383986 

Camp 

Creek 

353774 4936398 C4b Steep, 

narrow 

Plane Bed Low-Moderate 

Sinuosity 

Planform-

Controlled 

Discontinuous 

Floodplain 

PC RS: Good 

RCS: Good 

Cluster: Good 

CBW0558

3-404210 

Vinegar 

Creek 

379442 4940614 B4 Steep, 

narrow 

Plane Bed Low-Moderate 

Sinuosity 

Planform-

Controlled 

Discontinuous 

Floodplain 

PC RS: Good 

RCS: Good 

Cluster: Good 

CBW0558

3-477938 

Clear 

Creek 

381713 4935379 B4 Steep, 

narrow 

Straight Low-Moderate 

Sinuosity 

Planform-

Controlled 

Discontinuous 

Floodplain 

PC RS: Poor 

RCS: Good  

Cluster: Good 

OJD0345

8-000536 

Vinegar 

Creek 

378654 4940187 C4b Steep, 

narrow 

Plane Bed Low-Moderate 

Sinuosity 

Planform-

Controlled 

Discontinuous 

Floodplain 

PC RS: Good 

RCS: Good 

Cluster: Good 

CBW0558 Summit 390544 4937077 C4b Wide, Pool Riffle Low-Moderate PC RS: Mod. 
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3-325362 Creek sinuous Sinuosity 

Planform-

Controlled 

Discontinuous 

Floodplain 

RCS: Good 

Cluster: Good 

OJD0345

8-000031 

Camp 

Creek 

351579 4940332 B4 Wide, 

sinuous 

Confined Low-Moderate 

Sinuosity 

Planform-

Controlled 

Discontinuous 

Floodplain 

PC RS: Poor 

RCS: Mod. 

Cluster: Poor 

CBW0558

3-144394 

Slide 

Creek 

344959 4955342 E4 Narrow, 

sinuous 

Pool Riffle Meandering 

Planform-

Controlled 

Discontinuous 

Floodplain 

PC RS: Good 

RCS: Good 

Cluster: Good 

CBW0558

3-429810 

Summit 

Creek 

387760 4937802 C4b Narrow, 

sinuous 

Meandering Meandering 

Planform-

Controlled 

Discontinuous 

Floodplain 

PC RS: Good 

RCS: Good 

Cluster: Mod. 

CBW0558

3-013322 

Slide 

Creek 

345607 4957140 B4 Steep, 

narrow 

Pool Riffle Meandering 

Planform-

Controlled 

Discontinuous 

Floodplain 

PC RS: Good 

RCS: Mod. 

Cluster: Poor 

CBW0558

3-298738 

Middle 

Fork John 

Day River 

385006 4938373 B4c Wide, 

sinuous 

Meandering Meandering 

Planform-

Controlled 

Discontinuous 

Floodplain 

PC RS: Good 

RCS: Poor 

Cluster: Good 
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Table 5.  

Classification 

framework 

Potential advantages  Potential drawbacks 

River Styles 

Explicitly uses watershed-, reach- and geomorphic unit-scale 

processes to classify stream segments [Thomson et al., 2004]. Bi-

directional (top down/bottom up) approach captures holistic vision 

of watershed (e.g. Kuo and Brierley, 2013) 

Requires relatively high-level understanding of fluvial 

and landscape geomorphology 

Uses flexible, defined criteria of both river forms and processes to 

identify groups of reaches and their requisite driving processes 

[Brierley and Fryirs, 2005] 

Data-intensive; requires a combination of spatially 

extensive desktop data along with field-based 

information on reach/unit-scale channel form 

 Open-ended and generic approach that can be used in any 

watershed [Brierley and Fryirs, 2005] 

Open-ended and generic approach that can be used in 

any watershed [Brierley and Fryirs, 2005] 

Includes components for appraising channel condition, recovery 

potential and prioritizing restoration and management [Brierley 

and Fryirs, 2005, 2008]. 

Time-Intensive; examination of spatial data and 

development of river styles tree requires large time 

investment 

Columbia 

Basin Natural 

Channel 

Classification 

Spatially extensive, pre-calculated planform classification for 

channels > 3 m in width across the Columbia River Basin. 

NCC channel classes are currently limited to the 

Columbia River Basin, but the methodology is 

transferable to other locations. 

Identifies possible restoration targets where planform has been 

modified by watershed disturbance, changes in hydrologic regime 

or sediment supply. 

Pre-disturbance planform may not reflect current 

watershed disturbances or processes. Conversely, the 

NHD channel network reflects current conditions, 

which may lead to errors in predicted natural channel 

pattern where channel alignment has been modified.  

This classification method complements stream monitoring 

programs across the Columbia River Basin that measure channel 

attributes to infer habitat trend (e.g. CHaMP and PacFish InFish 

Biological Opinion; Kershner et al., 2004). 

 

Cannot be used to assess current channel condition and 

limiting processes without additional information on 

stream disturbance and condition following European 

settlement. 

Machine learning workflow can be modified for other watersheds 

with known relationships between landscape setting, channel 

attributes, and planform  

Relies on coarse-resolution landscape and channel data 

that may not be ideal for creating model training data in 

all channels and landscapes. 

Rosgen Effectively used to help develop restoration plans for stable Metrics for stream type classification are based on 
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Classification 

System 

 

meandering gravel and cobble bed rivers, provided a correct 

reference reach is identified [Hey, 2006]. 

empirical data from selected streams [Rosgen, 1994]. 

Provides a common language for specialized professionals in 

watershed science to communicate when referencing stream types 

[Rosgen, 1994; Miller and Ritter, 1996]. 

Can be incorrectly applied due to seemingly ‘cookbook’ 

style of some reference materials [Roper et al., 2008; 

Rosgen, 2009]. 

Correctly identified stream types have inherently different 

recovery potential, sensitivity to disturbance, and interactions with 

vegetation that can be used to inform management and restoration 

decisions [Rosgen, 1994]. 

As a restoration tool, success is primarily based on 

locating a stable and ‘correctly identified’ reference 

reach [Hey, 2006; Simon et al., 2007]. 

Statistical 

Classification 

Can identify relationships between many interrelated reach-scale 

or watershed-scale processes [Sutfin et al., 2014]. 

Can find unrealistic or hydrogeomorphically irrelevant 

patterns in noisy data [Caratti et al., 2004] 

Can take top-down (landscape – watershed – reach) or bottom-up 

(reach – watershed) approaches [Hough-Snee et al., 2014]. 

Requires a priori selection of important processes 

within a given watershed or set of reaches. 

Numerous statistical approaches are available for clustering, 

classifying, and testing for between-group differences across 

multiple reaches. 

Relies on statistical expertise for effective 

implementation and interpretation. 

Classified groups of reaches make discrete units from which 

qualitative bioassessment for aquatic biota or habitat can take 

place. 

Often relies on correlations to biotic processes to 

differentiate “high quality” reaches from “lower 

quality” reaches. 

A long tradition in ecology, hydrology, and geomorphology has 

developed well-understood methods that can be implemented in 

many software packages. 

Rapidly developing methods in statistics machine 

learning allow for “black box” correlative models that 

can be difficult to interpret, understand or explain to 

managers. 

Allows for user-defined watershed attributes for defining 

classification groups. 

Workflows can be time consuming and difficult to 

interpret to non-expert users. 

Can be used in the absence of “reference” reaches to identify 

typological gradients between many reaches. 

Requires moderate to large sample sizes and relatively 

high quantities of remotely sensed or field-collected 

data to find meaningful patterns at large scales. 
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