
Server Side Algorithms for WHLK (Watermark, Hardware
Parameters and License Key) framework
Nishant Gupta, Shubhnandan S. Jamwal

Software piracy is the most significant and burning issue in the age of the internet.
Software piracy has been a direct threat for software vendors in terms of revenue and,
therefore, a number of effective and efficient techniques have been employed for the
detection and prevention of software piracy. One very important technique is software
watermarking and using registration keys. This paper proposes the Server-side algorithms
for registration and embedding the watermark into the software using the WHLK
(Watermark, Hardware Parameters and License Key) approach. We have tested the
algorithms and the analysis of the proposed algorithms proves that these registration
algorithms are more reliable and efficient in comparison to other techniques.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.868v1 | CC-BY 4.0 Open Access | rec: 1 Mar 2015, publ: 1 Mar 2015

P
re
P
rin

ts

SERVER-SIDE ALGORITHMS FOR WHLK

FRAMEWORK

Nishant Gupta1, Shubhnandan S. Jamwal2

1Research Scholar, Brampton, Ontario, Canada
2Department of Computer Science & IT, University of Jammu, Jammu, J&K, India

{1nis.decent, 2jamwalsnj}@gmail.com

ABSTRACT. Software piracy is the most significant and burning issue in the

age of the internet. Software piracy has been a direct threat for software vendors

in terms of revenue and, therefore, a number of effective and efficient tech-

niques were employed for detection and prevention of software piracy. One of

very important technique is software watermarking and using registration keys.

This paper proposes the Server-side algorithms for registration and embedding

the watermark into the software. We have tested the algorithms and the analysis

of the proposed algorithms proves that these registration algorithms are more

reliable and efficient in comparison to other techniques.

Keywords: Software watermarking, algorithms, software piracy, server-side

registration.

1 INTRODUCTION

In today’s global marketplace, the software industry has made progress by leaps and

bounds. The fast evolution of software industry not only leads neophytes to new op-

portunities, but also posing threats to software vendors. The curse of software piracy

hampers software industry in software development process. Initially the main focus

of software companies is to develop new and intuitive software. Afterwards, the time,

money and resources are being spent to protect their intellectual property through

proper researching and developing techniques. It has become important for software

companies to know what can be done to stop the average user from attempting to use

the pirated software due to the increasing amount of attention directed towards pre-

vention of software piracy.

According to Business Software Alliance (BSA), the amount of financial loss

caused by software piracy in 2011 was more than 63,456 million U.S. dollars [1]. In

addition, the rate of loss is growing day by day with the expansion of market size.

BSA estimated that the worldwide software piracy rate went up to 42 percent in 2011.

It was found that total losses due to software piracy in India stood at a staggering

figure of about INR 13,783 crores in 2011 showing about 63 per cent piracy rate in

India [2]. Thus, many studies have been promoted to protect software from being

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.868v1 | CC-BY 4.0 Open Access | rec: 1 Mar 2015, publ: 1 Mar 2015

P
re
P
rin

ts

mailto:nis.decent

pirated. These approaches which have emerged are hardware-based and software-

based. Some of the common software protection measures are:

Intellectual property protection: The main objective in this approach is to link the

software with information of author by using watermarking techniques [3].

Protection against function analysis: In this approach, the objective is to prevent a

malicious host from discovering the function which is computed by a software ele-

ment. Code obfuscation and function hiding are used in this control measure which is

complemented by the use of hardware tokens.

Software use-control: This control measure is aimed at guaranteeing only the au-

thorized users to the software based on some contractual conditions.

Our paper implemented new algorithms comprising of integration of software wa-

termarking and use of registration code.

2 LITERATURE REVIEW

In the past few years, numerous studies have been conducted related to global soft-

ware piracy.

In 2005, William Zhu et. al. [3] gives a brief overview of software watermarking.

In this research, the taxonomy of software watermarking and its algorithms were dis-

cussed.

Qiang Liu [4] in his paper focused on some special protective approaches using

some exterior components (such as smart cards, hardware security unit and dongles)

to make more difficult for unauthorized use of software. The paper also compared

these approaches and offer some insight into the different approaches adopted. But it

needed to bind the software with exterior component (hardware). The cost of exterior

component has to be added to the cost of software which seems to be unreasonable.

Yawei Zhang et.al [5] proposed a software-splitting technique which put the split

contents to the client instead of the remote trust server. In this technique, the extracted

contents of the software were encrypted using a key relating to the hardware charac-

teristics. These encrypted contents were decrypted dynamically during the main pro-

gram running. Even though it is a useful technique, it is not stimulating for Visual

Basic and JAVA languages as it is almost impossible to directly manipulate in the

memory.

Petar Djekic and Claudia Loebbecke [6] in their paper studied the influence of

technical copy protections on application software piracy. Empirical investigation has

been done through scientific research as to what extent the technical copy protections

avoids illegal copying. These research findings cannot confirm to be also applicable

to graphics application software.

Vineet Kumar Sharma et. al. [7] identifies that there were a number of flaws in the

existing defense mechanisms. The research examined the social and technical chal-

lenges associated with prevention of software piracy. In this paper, the currently used

static licensing structure in software distribution was characterized with its draw-

backs. Hence a dynamic software licensing scheme was proposed comprising of soft-

ware serial keys integrated with hardware token to provide an ethical optimal utiliza-

tion of software to the customer organization resulting in stopping software piracy.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.868v1 | CC-BY 4.0 Open Access | rec: 1 Mar 2015, publ: 1 Mar 2015

P
re
P
rin

ts

3

Ibrahim Kamel, Qutaiba Albluwi [8] proposed a technique in which the water-

marks were hidden in various data structures used by the code, e.g., R-trees, Bþ-trees

and linked lists to protect software copyright. In this paper, a detailed security analy-

sis and performance evaluation has been done to show that these embedded water-

marks are robust and can withstand various types of attacks. This approach can also

be applied to other data structures which do not put restrictions on the order of the

data; however, it is not suitable for data structures that are sensitive to the order of the

data like Bþ-trees, Quad-trees, k-d tree, etc. in addition to memory-resident data struc-

tures like stacks, linked lists, arrays, binary trees, etc.

Aniket Kulkarni, Sachin Lodha [9] examined software protection through code ob-

fuscation technique which resists reverse engineering attacks. Although the scheme

requires high development efforts to construct obfuscated code, it can be useful to

obfuscate code which implements secret functionality such as license checking mech-

anism.

Numbers of strategies have been employed to make it more difficult for unauthor-

ized user to use and duplicate the software. Ireneusz J. Jozwiak and Krzysztof Mar-

czak [10] introduced such a strategy to provide a hardware key which is typically

installed in the parallel port or USB on the computer to provide a software interlock.

The software will not execute if the key is not in place. This technique is relatively

expensive and cumbersome for the developer and authorized user respectively, while

remaining vulnerable to the theft conducting piracy by duplication of the hardware

key. Another technique requires the user to enter a customer identification number or

serial number during the process of software installation. This will prevent the soft-

ware installation if the registration information is missing or invalid. But this ap-

proach is easily defeated by transferring the serial number or customer identification

number to one or more unauthorized user. Another approach under the study registers

the software with the manufacturer or distributor to obtain an operational code or

password which is necessary for software installation. Once the operational code or

password is obtained, it may be perpetually transferred along with pirated copies to

numerous users which were unauthorized.

Ajay Nehra et. al. [11] proposed a SMS gateway based technique which checks the

authenticity of the software at every fixed time interval. It will be advantageous to

identify fake unauthorized users. Software companies were saved from huge loss by

blocking such installed software. As a manual response for each software on the client

machine will be a tedious task, there is a need to find an automation process.

3 OBSERVATION

WHLK Model [12] is developed and implemented on the basis of analysis of findings

from a survey conducted on a number of stakeholders involved in academic as well as

industrial sector. The results of this exploratory study clearly show that users are well

aware of software piracy. Even though the pirated software does not fulfill require-

ments of the user, but the involvement in software piracy is highly influential. A very

high percentage of users is acquiring software through their respective vendors who

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.868v1 | CC-BY 4.0 Open Access | rec: 1 Mar 2015, publ: 1 Mar 2015

P
re
P
rin

ts

load the pirated copies of software in their machines. This hard disk loading type of

piracy shows the highest percentage among all types of piracy. Even the core factors

like risk, market, morality and education are not able to affect the software pirates.

The findings clearly show that most of the software is acquired through piracy in-

stead of purchasing them. The queries generated in the questionnaire related to soft-

ware section resulted in a very high percentage of software acquiring through differ-

ent types of software piracy. Most of the software under different categories, i.e. op-

erating system, computer languages, office, databases, utilities, and educational are

acquired by the users through one type of piracy or the other. Results show that 98%

of software is pirated which give a different picture of piracy rate in India as com-

pared to BSA reports of 63% piracy rates in 2011.

In contrast to other techniques, our paper shows the implementation of the server-

side algorithms during the purchase and registration of software.

4 WHLK MODEL

The implementation and testing of WHLK Model [13] have been proposed to reduce

unauthorized use of software. This model introduced an integration of Software Wa-

termarking, Hardware Parameters and License Key. We incorporated the new proces-

es in the software registration process after noting the weaknesses in existing ap-

proaches of software registration. Our approach is to force the software to be used

only in an authorized running environment instead of preventing it from illicit copy-

ing. To accomplish this task, the user is required to submit his identification details.

These details applied through algorithms, thereby generating a random unique key

(string). This key is embedded as a watermark in the software program. Then an au-

tomated process fetches the serial numbers of CPU, the main board, processor and

other hardware information. These hardware characteristics and License key of soft-

ware are integrated to be used as parameters. An encryption algorithm is applied to

these parameters. It resulted in a random unique number called as Registration Code

(RGCN) which is being acknowledged to the software user. WHLK model provides

an integration of the privacy of users, security of information and license key to con-

trol software piracy. As this model enjoys a modular design, it can be implemented by

any machine with flexible configurations and windows X operating systems. In addi-

tion to these features of model, it also allows flexible registration information defini-

tion. WHLK Model prevents illegal uses on software copy and also makes it harder to

create an additional available copy based on diversity.

5 SERVER SIDE REGISTRATION ALGORITHMS

(a) SOFTWARE WATERMARKING ALGORITHM

Software Watermarking Algorithm 1.0 is implemented on the vendor’s side when a

user purchases the software. The personal information of user viz. name, affiliation

and identification number are input as parameters for generating a unique key. This

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.868v1 | CC-BY 4.0 Open Access | rec: 1 Mar 2015, publ: 1 Mar 2015

P
re
P
rin

ts

5

unique key is used to embed a watermark in the code of software. CT (Collberg

Thomborson) algorithm is applied on this unique key and embeds the watermark in

the class file. After successfully applying this algorithm, another algorithm, namely

StringEncodeObfuscator is applied to avoid reverse engineering. The watermark em-

bedded in the class file is secure and cannot be altered or tampered due to obfuscated

file.

(b) NEW REGISTRATION ALGORITHM

Registration Algorithm is designed for user to register the software first time on a

new machine. While registering the software on computer machine, the New Regis-

tration Algorithm 1.1 fetches the hardware characteristics of the client machine. These

characteristics include the harddisk ID, CPU ID, Processor Serial Number and MAC

ID. These values are concatenated and stored in a string. This string variable is veri-

fied by the server in the database. If this variable exists in the database, Algorithm 1.4

is applied else RNGCryptoServiceProvider is applied for generating unique key. A

unique key is generated by the server. Then the user inputs his E-Mail ID and License

key which are being submitted to the server. This license key is concatenated with a

unique key and the result is stored in another string variable. The concatenated string

is the registration code. Then the system date has been generated. The registration

code is stored in the database and also acknowledged to the e-mail id of the user.

Lastly, the database has been updated and new registration process completes its cy-

cle.

Algorithm 1.0: (Software Watermark Algorithm) Input

the User name N, affiliation A and

identification number I as string vari-

ables, this algorithm generates a

unique key UK and embed watermark in

the software using UK.

Step 1. Read: N, A, I from the user.

Step 2. Generate UK.

Step 3. Embed watermark using CT algorithm.

Step 4. String Encode Obfuscator algorithm is applied.

Step 5. Exit.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.868v1 | CC-BY 4.0 Open Access | rec: 1 Mar 2015, publ: 1 Mar 2015

P
re
P
rin

ts

(c) RE-REGISTRATION ALGORITHM IF HARDWARE CHANGES

Another algorithm is designed to manage the changes in the hardware of the ma-

chine of the user. If the user has changed the hardware of the machine, he needs to re-

register the software and in this case Re-registration Algorithm 1.2 is applied. Three

parameters, user name, affiliation and ID are concatenated and stored in a string vari-

able. This string variable is verified by the server in the database. If the variable does

not exist, NewRegistration algorithm 1.1 is applied otherwise an algorithm is applied,

which fetches the hardware characteristics of the client machine. These characteristics

include the harddisk ID, CPU ID, Processor Serial Number and MAC ID. These val-

ues are concatenated and stored in a string variable. This string variable is verified by

the server in the database. If this variable exists in the specified field of the database,

Algorithm 1.4 is applied else RNGCryptoServiceProvider is applied for generating

unique key. A unique key is generated by the server. Then the user inputs his E-Mail

ID and License key which are being submitted to the server. This license key is con-

Algorithm 1.1: (NewRegistration Algorithm) Fetch the CPU ID

(CID), Harddisk ID (HDID), MAC ID (MID) and

Processor Serial Number (PSN) of the machine,

this algorithm generates the unique key UK and

concatenates it with License Key (LK) to update

registration code database RGCNDB and send to

client.

Step 1. Read CID, HDID, MID, PSN from the machine.

Step 2. HWD : = Concatenate (CID,HDID,MID,PSN).

Step 3. Submit HWD to server for verification.

Step 4. If HWD exists, then:

 Apply Re-registration algorithm 1.4.

 Go To Step 5.

 Else:

 RNGCrptoServiceProvider is applied.

 Server generates UK.

 Input EID and LK.

 RGCN : = Concatenate (UK,LK).

 Read: SysDate : = DateTime().

 Update RGCNDB.

 ENDIF.

Step 5. Exit.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.868v1 | CC-BY 4.0 Open Access | rec: 1 Mar 2015, publ: 1 Mar 2015

P
re
P
rin

ts

7

catenated with a unique key and the result is stored in another string variable. The

concatenated string is the registration code. Then the system date has been generated.

The registration code is stored in the database and also acknowledged to the e-mail id

of the user. Lastly, the database has been updated and re-registration process com-

pletes its cycle.

;

Algorithm 1.2: (Re-registration Algorithm if machine hardware

changes)

Input the User name N, affiliation A and identifica-

tion number I as string variables, this algorithm

fetches the CPU ID (CID), Harddisk ID (HDID), MAC ID

(MID) and Processor Serial Number (PSN) of the machine

generating the unique key UK and concatenates it with

License Key (LK) to update registration code database

RGCNDB and send to the client.

Step 1. Read N, A, I from the user.

Step 2. Set X : = Concatenate (N,A,I).

Step 3. Submit X to server for verification.

Step 4. If X do not exists, then:

 Apply NewRegistration algorithm 1.1.

 Go To Step 5.

 Else:

 Read CID, HDID, MID, PSN from the machine.

 HWD= Concatenate (CID,HDID,MID,PSN).

 Submit HWD to server for verification.

 If HWD exists, then:

 Go To Step 5.

 Else:

 RNGCrptoServiceProvider is applied on HWD.

 Server generates UK.

 Input EID and LK.

 RGCN : = Concatenate (UK,LK).

 Read SysDate : = DateTime().

 Update RGCNDB.

 ENDIF.

 ENDIF.

Step 5. Exit.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.868v1 | CC-BY 4.0 Open Access | rec: 1 Mar 2015, publ: 1 Mar 2015

P
re
P
rin

ts

(d) RE-REGISTRATION ALGORITHM FOR SAME MACHINE IF NO

DETAILS AVAILABLE

This algorithm is designed to manage the re-registration process of software on the

same machine in case user does not have any details. If the user does not have any of

details required and needs to re-register the software on same machine again, Re-

registration Algorithm 1.3 is applied. The three parameters, user name, affiliation and

ID are concatenated and stored in a string variable. This string variable is verified by

the server in the database. If the variable does not exist, NewRegistration algorithm

1.1 is applied else, this algorithm fetches the hardware characteristics of the client

machine. These characteristics include the hard disk ID, CPU ID, Processor Serial

Number and MAC ID. These values are concatenated and stored in a string variable.

This string variable is verified by the server in the database. If this variable exists in

the specified field of database, Algorithm 1.4 is applied else RNGCryptoServicePro-

vider is applied for generating unique key. A unique key is generated by the server.

Then the user inputs his E-Mail ID and License key which are being submitted to the

server. This license key is concatenated with unique key and the result is stored in

another string variable. The concatenated string is the registration code. Then the

system date has been generated. The registration code is stored in the database and

also acknowledged to the e-mail id of the user. Lastly, the database has been updated

and re-registration process completes its cycle.

(e) RE-REGISTRATION ALGORITHM FOR SAME MACHINE IF DETAILS

AVAILABLE

This algorithm is designed to manage the re-registration process of software on the

same machine if details are available to the user. In case of availability of registration

code with the user while re-registering the software, Re-registration algorithm 1.4 is

applied. The user inputs the registration code and server verifies the code for its exist-

ence. If the code does not exist Re-registration Algorithm 1.3 is applied else a System

Date is generated. Database is updated and re-registration process completes its cycle.

(f) TIME-FRAME ALGORITHM

The time-frame algorithm is designed to block the software on the basis of the time

span to secure the software from being used elsewhere. The time-frame algorithm 1.5

is applied for blocking the software if time span between the system date of registra-

tion SysDate and current system date DBDate is more than 30. This is done by calcu-

lating the time span between SysDate and DBDate. If the time span is showing the

positive value less than 30, it means that the system date is correct and the user has

still days to update the software. In case, the time span is showing the negative value,

meaning that the system date is incorrect and needs to be corrected. If it is correct,

user can update the software, but if the time span is still showing the negative value,

the process generated kills the process itself after some stipulated time meaning that

software terminates itself. Software does not run, but will be blocked till the user re-

registers again with the correct details.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.868v1 | CC-BY 4.0 Open Access | rec: 1 Mar 2015, publ: 1 Mar 2015

P
re
P
rin

ts

9

Algorithm 1.3: (Re-registration Algorithm for same ma-

chine in case user does not have de-

tails)

 Input the User name N, affiliation A and

identification number I as string varia-

bles, this algorithm fetches the CPU ID

(CID), Harddisk ID (HDID), MAC ID (MID)

and Processor Serial Number (PSN) of the

machine generating the unique key UK and

concatenates it with License Key (LK) to

update registration code database RGCNDB

and send to client.

Step 1. Read: N, A, I from the user.

Step 2. Set X : = Concatenate (N,A,I).

Step 3. Submit X to server for verification.

Step 4. If X do not exists, then:

 Apply NewRegistration algorithm 1.1.

 Go To Step 5.

 Else:

 Read: CID, HDID, MID, PSN from the machine.

 HWD= Concatenate (CID,HDID,MID,PSN).

 Submit HWD to server for verification.

 If HWD do not exists, then:

 Apply algorithm 1.4.

 Go To Step 5.

 Else:

 RNGCrptoServiceProvider is applied.

 Server generates UK.

 Input EID and LK.

 RGCN : = Concatenate (UK,LK).

 Read SysDate : = DateTime().

 Update RGCNDB in the database.

 ENDIF.

 ENDIF.

Step 5. Exit.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.868v1 | CC-BY 4.0 Open Access | rec: 1 Mar 2015, publ: 1 Mar 2015

P
re
P
rin

ts

Algorithm 1.5: (Time-frame Algorithm)

 This algorithm reads current System Date

DBDate and finds the re-verification time

by finding difference DE between SysDate

and DBDate.

Step 1. Read: SysDate from RGCNDB.

Step 2. Read: DBDate=DateTime().

Step 3. TimeSpan ts= DBDate – SysDate.

Step 4. Int DE = ts.Days.

Step 5. String dt = DE.ToString().

Step 6. If dt.StartsWith(“-”), Then:

 Process.kill().

 Go To Step 7.

 Else

 Submit update.

 DE=DE + 30.

 ENDIF.

Step 5. Exit.

Algorithm 1.4: (Re-registration Algorithm for same ma-

chine in case user has details)

 This algorithm inputs the registration

code RGCN and re-register the software

till next update.

Step 1. Input RGCN.

Step 2. Submit RGCN to server for verification.

Step 3. If RGCN do not exists, Then:

 Apply Algorithm 1.3

 Go To Step 4.

 Else:

 Read: SysDate : = DateTime().

 Update RGCNDB.

 ENDIF.

Step 4. Exit.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.868v1 | CC-BY 4.0 Open Access | rec: 1 Mar 2015, publ: 1 Mar 2015

P
re
P
rin

ts

11

6 CONCLUSION

WHLK Model has been implemented on machines with variant configurations. Cli-

ent-side and server-side phases of this model have been put to test on these machines

and results observed are justifying the objectives of our research. WHLK Model pre-

vents illegal uses on software copy and also makes it harder to create an additional

available copy based on diversity.

The Server-side verification algorithms were designed and implemented on various

machines. It was observed that the newly designed algorithm at server side woks ac-

curately and the chances of pirating the software copy are reduced to nil.

REFERENCES

1. Business Software Alliance, 2012. Ninth Annual BSA Global Survey of PC User Atti-

tudes. [Online]. Available:

(http://globalstudy.bsa.org/2011/downloads/study_pdf/2011_BSA_Piracy_Study-

Standard.pdf)

2. Business Software Alliance, 2012. Ninth Annual BSA Global Survey of PC User Atti-

tudes. [Online]. Available:

(http://globalstudy.bsa.org/2011/downloads/study_pdf/pr_india_en.pdf)

3. Zhu, W., Thomborson, C., Wang, F.: A Survey of Software Watermarking. In Proceedings

of IEEE International Conference on Intelligence and Security Informatics. LNCS 3495,

pp. 454-458. Springer-Verlag Berlin Heidelberg, Germany (2005)

4. Liu, Q.: Techniques Using Exterior Component against Software Piracy. Technical Report,

Department of Computer Science, University of Auckland, New Zealand

5. Zhang, Y., Jin, L., Ye, X., Chen, D.: Software Piracy Prevention: Splitting on Client. In

Proceedings of International Conference on Security Technology. pp. 62-65. IEEE Com-

puter Society, Washington, DC, USA (2008)

6. Djekic, P., Loebbecke, C.: Preventing application software piracy: An empirical investiga-

tion of technical copy protections. Journal of Strategic Information Systems, Elsevier. 16,

173-186 (2007)

7. Sharma, V.K., Rizvi, S.A.M., Hussain, S.Z., Chauhan, A.S.: Dynamic Software License

Key Management Using Smart Cards. In Proceedings of International Conference on Ad-

vances in Computer Engineering. pp. 244-246, IEEE Computer Society (2010)

8. Kamel, I., Albluwi, Q.: A robust software watermarking for copyright protection. Comput-

ers and Security, Elsevier. 28, 6, 395-409 (2009)

9. Kulkarni, A., Lodha, S.: Software Protection through Code Obfuscation. Project Report,

Tata Research Development and Design Centre, Pune (2012)

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.868v1 | CC-BY 4.0 Open Access | rec: 1 Mar 2015, publ: 1 Mar 2015

P
re
P
rin

ts

http://globalstudy.bsa.org/2011/downloads/study_pdf/2011_BSA_Piracy_Study-Standard.pdf
http://globalstudy.bsa.org/2011/downloads/study_pdf/2011_BSA_Piracy_Study-Standard.pdf
http://globalstudy.bsa.org/2011/downloads/study_pdf/pr_india_en.pdf

10. Jozwiak, I.J., Marczak, K.: A Hardware-Based Software Protection Systems – Analysis of

Security Dongles with Time Meters. In Proceedings of Second International Conference

on Dependability of Computer Systems. pp. 254-261, IEEE Computer Society Washing-

ton, DC USA (2007)

11. Nehra, A., Meena, R., Sohu, D., Rishi, O.P.: A Robust Approach to Prevent Software Pira-

cy, In Proceedings of Students Conference on Engineering and Systems. pp.1-3, IEEE (

March 2012)

12. Gupta, N., Jamwal, S.S., Padha, D.: Watermark, Hardware Parameters and License Key:

An Integrated Approach of Software Protection. International Journal of Advanced Re-

search in Computer Science and Software Engineering, 3, 5, 1285-1289 (May 2013)

13. Gupta, N., Jamwal, S.S., Padha, D.: WHLK: Framework for Software Authentication and

Protection. IEEE African Journal of Computing & ICT, IEEE, Nigeria. 7, 1, 69-80 (2014)

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.868v1 | CC-BY 4.0 Open Access | rec: 1 Mar 2015, publ: 1 Mar 2015

P
re
P
rin

ts

